
Towards a quantitative FRG approach for the BCS-BEC crossover

Michael M. Scherer

Theoretisch Physikalisches Institut, Jena University

in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies, Jan Martin Pawlowski
and Christof Wetterich

presented at INT-10-45W, Seattle, USA, Feb 26, 2010

Michael M. Scherer (TPI Jena U.) The BCS-BEC crossover INT-10-45W, Feb 26, 2010 1 / 21



Outline

1 The BCS-BEC crossover

2 Microscopic Description of the Crossover

3 Flow Equations and Truncation

4 Particle-Hole Fluctuations and (Re-)Bosonization

5 Running fermion sector & higher order interaction terms

6 Results

Michael M. Scherer (TPI Jena U.) The BCS-BEC crossover INT-10-45W, Feb 26, 2010 2 / 21



The BCS-BEC crossover

The BCS-BEC Crossover

Ultracold gases of fermionic atoms near a Feshbach resonance show a crossover between BCS
superfluidity and Bose-Einstein condensation (BEC) of molecules (→ talk by Ryan Kalas)

different pairing mechanisms in fermionic systems, weak coupling/strong coupling/many
body effects
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The BCS-BEC crossover

Parametrization

Crossover can be parametrized by the dimensionless inverse s-wave scattering length (akF )−1

Experimentally: phenomenon of Feshbach resonances in an external magnetic field

(akF )−1 < −1: weakly attractive, Cooper pairing → below Tc : BCS superfluidity
(perturbative)

(akF )−1 > 1: two-body bound state, formation of molecules → below Tc : (interacting) BEC
(see also talk by J.-P. Blaizot)

|(akF )−1| < 1: strongly correlated regime, Unitarity limit at c−1 → 0 (non-perturbative
regime)
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The BCS-BEC crossover

Universality and Challenges

Universality:

Limit of broad Feshbach resonances (experiments, e.g. with 6Li and 40K)

Thermodynamic quantities are independent of the microscopic details and can be expressed
in terms of two dimensionless parameters:

1 the concentration akF

2 the temperature T/TF

Units are set by the density n = k3
F
/(3π2).

BCS-BEC crossover physics is a challenge for theoretical physics:

BEC side: interacting QFT beyond perturbation theory (→ talk by J.-P. Blaizot)

BCS side: Complex many-body physics beyond BCS theory leads to significant quantitative
effects

Unitarity limit: Perturbation theory fails, Non-perturbative techniques required, e.g. QMC

We will provide a method, that gives a unified description of the whole crossover. Quantitative
measurements provide a testing ground for non-perturbative theoretical techniques in QFT.
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Microscopic Description of the Crossover

Microscopic action and Parameters

We start with the microscopic action

S =

1/T
Z

0

dτ

Z

~x

ψ†(∂τ − ∆ − µ)ψ + φ∗(∂τ − ∆

2
− 2µ + ν)φ− h(φ∗ψ1ψ2 + h.c.)

ψ = (ψ1, ψ2) is a two component Grassmann field (fermions in two hyperfine states)

µ is the chemical potential

φ is a complex scalar field (molecules, Cooper pairs,...)

ν = µ(B − B0) determines the detuning from the Feshbach resonance

Yukawa coupling h couples the fermionic and bosonic fields, related to the width of the
Feshbach resonance

Nonrelativistic natural units with ~ = kB = 2M = 1
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Microscopic Description of the Crossover

Hubbard-Stratonovich Transformation

Model is equivalent to a purely fermionic theory with an interaction term

Sint =

Z

q1,..,q4

 −h2

Pφ(q1 + q3)

ff

ψ∗
1 (q1)ψ1(q2)ψ

∗
2 (q3)ψ2(q4) δ(q1 − q2 + q3 − q4)

The classical inverse boson propagator is given by

Pφ(q) = iq0 − 1

2
~q2 + ν − 2µ

On microscopic level the interaction between the fermions is described by tree level process

λψ,eff = − h2

−ω + 1
2
~q2 + ν − 2µ
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Flow Equations and Truncation

Flow equation and theory space

Average action Γk [χ] interpolates between

microscopic action (k → Λ) : Γk [χ] → S[χ]

full effective action (k → 0) : Γk [χ] → Γ[χ]

The scale dependence of Γk [χ] is given by exact flow equation (Wetterich 1993)

∂kΓk [χ] =
1

2
STr

»

“

Γ
(2)
k

+ Rk

”−1
∂kRk

–

Theory Space

Γ0(T = 0, n = 0) → scattering physics

Γ0(T 6= 0, n 6= 0) → thermodynamics

ΓΛ = S
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Flow Equations and Truncation

Truncation

Γk [χ] =

Z 1/T

0
dτ

Z

d3x



+ ψ̄†Zψ(∂τ − ∆)ψ̄ + m̄ψ
2ψ̄†ψ̄

+ φ̄∗(Z̄φ∂τ − Aφ

2
∆)φ̄

+ Ū(φ̄∗φ̄, µ) +
λ̄ψ

2
(ψ̄†ψ̄)2

− h̄(φ̄∗ψ̄1ψ̄2 + φ̄ψ̄∗
2 ψ̄

∗
1 ) + λ̄φψφ̄

∗φ̄ψ̄†ψ̄

ff

Effective potential: Expansion around the k-dependent location of the minimum ρ0(k)

Uk(ρ, µ) = m2(ρ− ρ0) +
1

2
λ(ρ− ρ0)

2

+U(ρ0, µ0) − n(µ− µ0) + α(µ − µ0)(ρ − ρ0)

We classify the thermodynamic phases of the system

Symmetric regime : ρ0 = 0, m2 > 0

Symmetry broken regime : ρ0 > 0, m2 = 0

Phase transition : ρ0 = 0, m2 = 0
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Flow Equations and Truncation

Basic truncation & critical temperature

Solution of the two-body problem: Scattering physics of the fermionic system in vacuum
(T = 0 and n = 0) yields microscopic parameters (see also talk by Boris Krippa)

Start the flow in the UV at defined T and look in the IR if it ends up in the symmetric phase
or the spontaneously broken phase.

The temperature for which m2 → 0 and ρ0 → 0 as k → 0 is Tc (λψ,eff ∝ −h2

m2 → ∞)
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Particle-Hole Fluctuations and (Re-)Bosonization

Momentum Dependent Four-Fermion Interaction

In purely fermionic language the fermion interaction is momentum dependent
Z

p1,p2,p
′

1,p
′

2

λψ(p′
1, p1, p

′
2, p2)ψ

∗
1 (p′

1)ψ1(p1)ψ
∗
2 (p′

2)ψ2(p2)

The flow of λψ has two contributions:

p1 p2

p′
1 p′

2

p1 p2

p′
2 p′

1

∂tλψ = ∂̃t + ∂̃t

BCS theory: Only particle-particle fluctuations (first loop) → phase transition to
superfluidity:

Tc,BCS ≈ 0.61eπ/2kF aTF

Screening of the interaction between two fermions by the particle-hole fluctuations (second
loop) is a quantitative effect and lowers the critical temperature as compared to BCS theory

Tc =
1

(4e)1/3
Tc,BCS ≈ 1

2.2
Tc,BCS (Gorkov , 1963)
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Particle-Hole Fluctuations and (Re-)Bosonization

Bosonization

In a bosonized language, the fermionic interaction is described by boson exchange

p1 p2

p′
1 p′

2

p1 p2

p′
2 p′

1

∂t = ∂̃t + . . .

The phase transition to the superfluid phase is indicated by the vanishing of the bosonic
mass term m2 = 0 (SSB)

For vanishing external momenta: λψ,eff = −h2

m2

In this setting, where the bosonization took place only on the microscopic scale, we do not
account for particle-hole fluctuations
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Particle-Hole Fluctuations and (Re-)Bosonization

Bosonization is destroyed by the RG flow

The particle-hole fluctuations are not yet included, since we neglected so far, that the term

Z

τ,~x
λψψ

†
1ψ1ψ

†
2ψ2

is re-generated by the flow.

∂tλψ = ∂̃t

λψ contributes to the effective interaction between fermions

λψ,eff =
−h2

m2
+ λψ

The physical picture, that the divergence of λψ,eff is connected to the onset of a nonvanishing
expectation value of the bosonic field ρ0 does not hold anymore.

Michael M. Scherer (TPI Jena U.) The BCS-BEC crossover INT-10-45W, Feb 26, 2010 13 / 21



Particle-Hole Fluctuations and (Re-)Bosonization

Rebosonization I

Idea:

1 Bosonize at microscopic scale with a
field φΛ, ⇒ λψ,Λ = 0
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Particle-Hole Fluctuations and (Re-)Bosonization

Rebosonization I

Idea:

1 Bosonize at microscopic scale with a
field φΛ, ⇒ λψ,Λ = 0

2 Perform one renormalization step δk
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Idea:

1 Bosonize at microscopic scale with a
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Particle-Hole Fluctuations and (Re-)Bosonization

Rebosonization I

Idea:

1 Bosonize at microscopic scale with a
field φΛ, ⇒ λψ,Λ = 0

2 Perform one renormalization step δk

3 The boxdiagram regenerates a
nonvanishing λψ,Λ−δk

4 Bosonize again (with a field φΛ−δk ),
⇒ λψ,Λ−δk = 0

5 Repeat the steps 2 - 4 until we reach
k = 0

(Re-)appearance of a λψ by the flow of the box diagrams can be absorbed by the
introduction of scale dependent fields φk

Context of QCD → talk by J. M. Pawlowski: dynamical hadronisation

Scale dependent fields → modified flow equation (Gies & Wetterich 2001, Pawlowski 2005,
Floerchinger & Wetterich 2009)

∂kΓk [χk ] =
1

2
STr

»

“

Γ
(2)
k

+ Rk

”−1
∂kRk

–

+

Z

δΓk

δχk

∂kχk

k-dependence can be chosen arbitrarily
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Particle-Hole Fluctuations and (Re-)Bosonization

Rebosonization II

We choose the following scale dependence for the bosonic fields

∂k φ̄k(q) = (ψ1ψ2)(q)∂kυ

∂kυ is to be determined for our purposes

Flow equations are modified

∂k h̄ = ∂k h̄
˛

˛

φ̄k
− m̄2∂kυ

∂kλψ = ∂kλψ
˛

˛

φ̄k
− 2h̄∂kυ

Choose ∂kυ such that the flow of λψ vanishes ⇒ λψ = 0 on all scales

The modified flow of the Yukawa coupling reads

∂k h̄ = ∂k h̄

˛

˛

˛

˛

φk

− m̄2

2h̄
∂kλψ

˛

˛

˛

˛

φk

Four-fermion interaction is now purely given by the boson exchange and ph-fluctuations are
incorporated via the second term in the latter equation
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Running fermion sector & higher order interaction terms

Atom-dimer vertex

Atom-dimer vertex λφψ contributes to vacuum dimer-dimer scattering length aM/a

-6 -4 -2 0 2 4 6

0.5

1

1.5

2

aM/a

lnk

Taking into account λφψ yields aM/a = 0.59

The exact result is aM/a = 0.60 (cf. Petrov et al. 2004)

In the SSB regime λφψ also has an effect on the Fermi-surface
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Running fermion sector & higher order interaction terms

Running fermion sector

Running Zψ ,m
2
ψ , λφψ → dispersion relation:

Renormalized propagator of the fermionic field after analytical continuation to real frequencies

G−1
ψ =

 

−hφ0ǫ −ω − (~q2 + m2
ψ + λφψρ0)

−ω + (~q2 + m2
ψ + λφψρ0) hφ0ǫ

!

The dispersion relation follows from det G−1
ψ = 0

ω = ±
q

∆2 + (~q2 − r2
F
)2 where ∆ = h

√
ρ0 is the gap and rF =

q

−m2
ψ − λφψρ0 the effective

radius of the Fermi sphere

-2 -1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
rF/kF

(akF )−1
0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

ω/EF

q/kF
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Results

Single-particle gap at T = 0

Gap in units of the Fermi energy ∆/EF

-2 -1 0 1 2 3 4
0.0

0.5

1.0
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2.5

∆/EF

(akF )−1

For comparison the result found by Gorkov and Melik-Bakhudarov

At the unitarity point ∆GMB/EF = 0.49.

µ/EF ∆/EF

Carlson et al. 2004 0.43 0.54
Haussmann et al. 2007 0.36 0.46
Bartosch et al. 2009 0.32 0.61

present work 0.51 0.46
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Results

Critical Temperature
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On BEC-side our result approaches the critical temperature of a free Bose gas in the form

Tc − Tc,BEC

Tc,BEC

= c
aM

a

akF

(6π2)1/3
,

aM is the scattering length between the molecules. We use our result aM/a = 0.59. and find
c = 1.39. Arnold et al. (2001) and Baym et al. (2006) give c ≈ 1.31.

Tc/TF µc/TF

Burovski et al. 2006 0.15 0.49
Akkineni et al. 2006 0.245 -
Bulgac et al. 2008 < 0.15 0.43

present work 0.248 0.55
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Results

Conclusions & Outlook

Conclusions:

We established a unified description of the whole crossover region

We can assess scattering physics as well as thermodynamics

A simple truncation gives a good qualitative picture

Extended truncation recovers quantitatively the well-known weak-coupling limits (TD and
scattering physics)

At the unitarity point we are in reasonable quantitative agreement with QMC data and other
methods for T = 0, deviations for T 6= 0

Outlook:

Understand the difference of the results at unitarity for T 6= 0 from different methods

More involved frequency and momentum dependence of the propagators and vertices?

Put the system in a finite volume and study the volume dependence to make contact with
QMC simulations (with Jens Braun and Sebastian Diehl)

Study effects of a trap & imbalanced Fermi gas
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Results
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