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The BCS-BEC Crossover

Ultracold gases of fermionic atoms near a Feshbach resonance show a crossover between BCS
superfluidity and Bose-Einstein condensation (BEC) of molecules (— talk by Ryan Kalas)

BCS —= inverse s-wave scattering length = BEC
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o different pairing mechanisms in fermionic systems, weak coupling/strong coupling/many
body effects
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The BCS-BEC crossover

Parametrization

@ Crossover can be parametrized by the dimensionless inverse s-wave scattering length (akr) ™!
@ Experimentally: phenomenon of Feshbach resonances in an external magnetic field

BCS inverse s-wave scattering length BEC
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Cooper pairs strongly interacting pairs  diatomic molecules

o (akp)~! < —1: weakly attractive, Cooper pairing — below T.: BCS superfluidity
(perturbative)

o (akg)™! > 1: two-body bound state, formation of molecules — below T¢: (interacting)
(see also talk by J.-P. Blaizot)

@ |(akr)™1| < 1: strongly correlated regime, Unitarity limit at ¢! — 0 (non-perturbativ
regime)

Michael M. Scherer (TPI Jena U.) The BCS-BEC crossover INT-10-45W, Feb 26, 2010 4 /21




Universality and Challenges

Universality:
@ Limit of broad Feshbach resonances (experiments, e.g. with °Li and 40K)

@ Thermodynamic quantities are independent of the microscopic details and can be expressed
in terms of two dimensionless parameters:

Q the concentration akg
Q the temperature T/ T¢

@ Units are set by the density n = k2 /(372).

BCS-BEC crossover physics is a challenge for theoretical physics:
@ BEC side: interacting QFT beyond perturbation theory (— talk by J.-P. Blaizot)

@ BCS side: Complex many-body physics beyond BCS theory leads to significant quantitative
effects

@ Unitarity limit: Perturbation theory fails, Non-perturbative techniques required, e.g. QMC

We will provide a method, that gives a unified description of the whole crossover. Quantitative
measurements provide a testing ground for non-perturbative theoretical techniques in QFT. -
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Microscopic action and Parameters

We start with the microscopic action

1/T
A
S= [ dr [0 - A=+ 6" = 5 ~2u+ )6~ W& rba + he)
0 X

@ 1 = (11,12) is a two component Grassmann field (fermions in two hyperfine states)
@ 4 is the chemical potential

@ ¢ is a complex scalar field (molecules, Cooper pairs,...)

@ v = u(B — Bp) determines the detuning from the Feshbach resonance

°

Yukawa coupling h couples the fermionic and bosonic fields, related to the width of the
Feshbach resonance

(9

Nonrelativistic natural units with A= kg =2M =1
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Hubbard-Stratonovich Transformation

Model is equivalent to a purely fermionic theory with an interaction term

2
Sint = / {%Th-i-qa) } 1 (q1)¥1(q2)¥3 (93)v2(qa) (g1 — g2 + g3 — qa)

q1,--,G4

The classical inverse boson propagator is given by
. 1,
Ps(q) = iqo — 54" +v — 2
On microscopic level the interaction between the fermions is described by tree level process

h2

A= —————
1, eff ot %E]Q tv—2u

ll[),eff T §¢
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Flow equation and theory space

@ Average action [,[x] interpolates between
microscopic action (k — A): Tx[x] — Slx]
full effective action (k — 0) :  Ti[x] — T[x]

@ The scale dependence of [',[x] is given by exact flow equation (Wetterich 1993)

1 1
Ol = 55T {(rf) + Re) 8kRk}

Theory Space

\
0><Q I'o(T = 0,n = 0) — scattering physics
©) @

To(T # 0,n # 0) — thermodynamics
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Flow Equations and Truncation

Truncation

1/T _ _ i
b= [ ar [ d3x{ L 20 — DY+ 20
+ (2.0 — 7A)¢3

o Ny —s -
+ UG+ @)

(B Buia + BT350) + 20055010 |
Effective potential: Expansion around the k-dependent location of the minimum po(k)
1 2
Udpi) = (o= )+ 5o = 10)

+U(po, mo) — n(p — po) + o(p — po)(p — ro)

We classify the thermodynamic phases of the system

Symmetric regime: po =0, m~ >0
Symmetry broken regime : pg > 0, m? =0
Phase transition : pg =0, m? =
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Basic truncation & critical temperature

@ Solution of the two-body problem: Scattering physics of the fermionic system in vacuum
(T =0 and n = 0) yields microscopic parameters (see also talk by Boris Krippa)

@ Start the flow in the UV at defined T and look in the IR if it ends up in the symmetric phase
or the spontaneously broken phase.

@ The temperature for which m?> — 0 and pg — 0 as k — 0 is T, (A, efr ’m—’f — 00)

Tc/TF

0.30F
0.25¢
0.20f
0.15F
0.10f
0.05F

0 Fov 0.00
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Particle-Hole Fluctuations and (Re-)Bosonization

Momentum Dependent Four-Fermion Interaction

@ In purely fermionic language the fermion interaction is momentum dependent

i (Bl Pr B P25 (L)1 (P )03 (052 (p2)
P1,P2:P] P

@ The flow of Ay has two contributions:

» 2
2 P
Oidy = O + b
p1 P2
P D2

@ BCS theory: Only particle-particle fluctuations (first loop) — phase transition to
superfluidity:
Tepcs ~ 0.61e™/2kF2 T

@ Screening of the interaction between two fermions by the particle-hole fluctuations (second
loop) is a quantitative effect and lowers the critical temperature as compared to BCS the

1 1
TC = W TC,BCS ~ E c,BCS (GOI‘kOV ) 1963)
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Michael M. Scherer (TPI Jena U.) The BCS-BEC crossover

Particle-Hole Fluctuations and (Re-)Bosonization

Bosonization

In a bosonized language, the fermionic interaction is described by boson exchange
/ / ™
P2 P1

@ The phase transition to the superfluid phase is indicated by the vanishing of the bosonic
mass term m? = 0 (SSB)

L )
@ For vanishing external momenta: )‘w,eff = ?’7—

@ In this setting, where the bosonization took place only on the microscopic scale, we do not
account for particle-hole fluctuations
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Particle-Hole Fluctuations and (Re-)Bosonization

Bosonization is destroyed by the RG flow

The particle-hole fluctuations are not yet included, since we neglected so far, that the term
At i
Aythy iy b
T,X

is re-generated by the flow.

N’

I I
| |
O = b
| |

/TN

Ay contributes to the effective interaction between fermions
—_h?

A eff = —5 + A

P, m2 P

The physical picture, that the divergence of A\, ¢ is connected to the onset of a nonvanishijz
expectation value of the bosonic field py does not hold anymore.
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Particle-Hole Fluctuations and (Re-)Bosonization
Rebosonization |

Idea:

& Bosonize at microscopic scale with a
field pp, = A¢,A =0

Ay.A T %d)/\
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Particle-Hole Fluctuations and (Re-)Bosonization

Rebosonization |

Idea:

& Bosonize at microscopic scale with a
field pp, = A¢,A =0

Q Perform one renormalization step dk
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The BCS-BEC crossover
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Particle-Hole Fluctuations and (Re-)Bosonization
Rebosonization |

Idea:

& Bosonize at microscopic scale with a
field pp, = A¢,A =0

Q Perform one renormalization step dk

Q The boxdiagram regenerates a
nonvanishing Ay A—sk

7w A gl Aok
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Particle-Hole Fluctuations and (Re-)Bosonization
Rebosonization |

Idea:

& Bosonize at microscopic scale with a
field pp, = A¢,A =0

Q Perform one renormalization step dk

Q The boxdiagram regenerates a \\h/
nonvanishing Ay A—sk |

Q Bosonize again (with a field ¢p_sk), A ¥, A0k <~ i d)A"“‘

= )‘1/%/\*5’( =0
N
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Particle-Hole Fluctuations and (Re-)Bosonization
Rebosonization |

Idea:

& Bosonize at microscopic scale with a
field pp, = A¢,A =0

Perform one renormalization step dk
The boxdiagram regenerates a \\h/

nonvanishing Ay A—sk I
Bosonize again (with a field ¢a_sk), A ¥, A0k <~ i d)A"“‘

= )‘1/%/\*5’( =0
Repeat the steps 2 - 4 until we reach A
k=0

¢ ¢© ¢ ¢
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Rebosonization |

Idea:

O Bosonize at microscopic scale with a
field ¢p, = Ay a =0

Q Perform one renormalization step dk

Q The boxdiagram regenerates a \\h/
nonvanishing Ay A—sk |

Q Bosonize again (with a field ¢p_sx), Ay.n-o < T i ¢A’§k
= )‘wy/\*5k =0 }

]

Repeat the steps 2 - 4 until we reach A
k=0

@ (Re-)appearance of a Ay, by the flow of the box diagrams can be absorbed by the
introduction of scale dependent fields ¢

@ Context of QCD — talk by J. M. Pawlowski: dynamical hadronisation

@ Scale dependent fields — modified flow equation (Gies & Wetterich 2001, Pawlowski 2005,
Floerchinger & Wetterich 2009)

1 -1 or
Okl klxk] = ESTT [(Ff) + Rk) 8kRk} + / ﬁ@m

9 k-dependence can be chosen arbitrarily
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Particle-Hole Fluctuations and (Re-)Bosonization

Rebosonization Il
@ We choose the following scale dependence for the bosonic fields
(Y102)(q)0kv

di(q) =

@ Flow equations are modified
h frd h - —_ _2
8kh 8kh|¢k m 8kv

@ Okv is to be determined for our purposes
KAy = 8k’\¢|4‘>k — 2hdv

@ Choose Jiv such that the flow of Ay, vanishes = \;, = 0 on all scales

@ The modified flow of the Yukawa coupling reads
Al — 00y

15 / 21

@ Four-fermion interaction is now purely given by the boson exchange and ph-fluctuatio
INT-10-45W, Feb 26, 2010

incorporated via the second term in the latter equation
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Running fermion sector & higher order interaction terms

Atom-dimer vertex

@ Atom-dimer vertex Ay contributes to vacuum dimer-dimer scattering length an/a
am/a

= = 5 0 P 7 s Ink

@ Taking into account Ay, yields ayn/a = 0.59
@ The exact result is ay;/a = 0.60 (cf. Petrov et al. 2004)

@ In the SSB regime A4y, also has an effect on the Fermi-surface
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Running fermion sector

Running Zy, mfp,)\w, — dispersion relation:
Renormalized propagator of the fermionic field after analytical continuation to real frequencies

-1 _
G, =

—heoe —w = (G + m3, + Xpyp0)
—w+ (P + mi, + Agu00) hgoe

The dispersion relation follows from det G;l =0

w = £,/A2 4 (g2 — r2)2 where A = h,/py is the gap and rr = ,/—mfp — Apypo the effective

radius of the Fermi sphere

rr/kr E
10 F L . . .
06 3 1
04 2 B
VVVVVVVV - J 1
02 o i
00 0 NS . . .
-2 -1 0 1 2 4 00 05 10 15 20 25
(akr) afkr
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Single-particle gap at T =0

Gap in units of the Fermi energy A/Er

A/Ep

25F 1
20p 1
15 1
10t 1

0.5F 1

00.__/ e

-2 -1 0 1 2 3

4
(akr)~!

@ For comparison the result found by Gorkov and Melik-Bakhudarov

@ At the unitarity point Agmp/EF = 0.49.

n/Er  AJEr

Carlson et al. 2004 0.43 0.54
Haussmann et al. 2007 0.36 0.46
Bartosch et al. 2009 0.32 0.61
present work 0.51 0.46
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Critical Temperature

0.301

0.25
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0.10
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2 4

On BEC-side our result approaches the critical temperature of a free Bose gas in the form

Tc—Teec  am akr

Tc,BEC 7(671'2)1/37

ap is the scattering length between the molecules. We use our result ap/a = 0.59. and find
¢ = 1.39. Arnold et al. (2001) and Baym et al. (2006) give ¢ ~ 1.31.

TC/TF IJC/TF
Burovski et al. 2006 0.15 0.49
Akkineni et al. 2006 0.245 -
Bulgac et al. 2008 < 0.15 0.43
present work 0.248 0.55
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Conclusions & Outlook

Conclusions:
@ We established a unified description of the whole crossover region
@ We can assess scattering physics as well as thermodynamics
@ A simple truncation gives a good qualitative picture

@ Extended truncation recovers quantitatively the well-known weak-coupling limits (TD and
scattering physics)

@ At the unitarity point we are in reasonable quantitative agreement with QMC data and other
methods for T = 0, deviations for T # 0

Outlook:
@ Understand the difference of the results at unitarity for T # 0 from different methods
@ More involved frequency and momentum dependence of the propagators and vertices?

@ Put the system in a finite volume and study the volume dependence to make contact with
QMC simulations (with Jens Braun and Sebastian Diehl)

@ Study effects of a trap & imbalanced Fermi gas

Michael M. Scherer (TPI Jena U.) The BCS-BEC crossover INT-10-45W, Feb 26, 2010 20 /21



Thanks to...

Jens Braun

Sebastian Diehl
Stefan Florchinger
Holger Gies

Jan Martin Pawlowski
Christof Wetterich

¢ ¢ ¢ ¢ ¢ ¢

Michael M. Scherer (TPI Jena U.) The BCS-BEC crossover INT-10-45W, Feb 26, 2010 21 /21



	The BCS-BEC crossover
	Microscopic Description of the Crossover
	Flow Equations and Truncation
	Particle-Hole Fluctuations and (Re-)Bosonization
	Running fermion sector & higher order interaction terms
	Results

