The Similarity Renormalization Group (SRG)

Robert Perry

Department of Physics THE Ohio State University

INT, Seattle, February 2010

Work supported by NSF and UNIDEF/SciDAC (DOE)

Collaborators: E.R.Anderson, S.K.Bogner, R.J.Furnstahl, S.D.Glazek, B. Jones, E.D.Jurgenson, A.Schwenk, K. Wendt, K.G.Wilson

On the web: http://www.physics.ohio-state.edu/~ntg/srg/
 $\left(5 + \frac{1}{2} + \frac{1}{2}$

 $2Q$

Motivation for SRG

- Want to use minimal degrees of freedom for precision nonperturbative microscopic low-energy calculations
- As resolution increases degrees of freedom increase without bound
- Need a formalism that rigorously controls resolution \rightarrow **Exact Renormalization Group**
- **•** The Similarity Renormalization Group is an Exact RG

Motivation for SRG II

- **•** The SRG produces band-diagonal interactions
	- Unitary transformation designed to decouple low- and high-energy states
	- All observables preserved
	- No relevant changes to low energy observables even when high momenta are removed
	- Natural hierarchy of many-body forces maintained

 $\mathcal{A} \oplus \mathcal{B}$, and $\mathcal{B} \oplus \mathcal{B}$, and $\mathcal{B} \oplus \mathcal{B}$.

Þ

Motivation for SRG III

• Designed for light-front QCD

Requires Hamiltonian formulation and suitable renormalization

$$
\bullet \ \ P^- = \tfrac{P_{\rho e r \rho}^2 + m^2}{P^+}
$$

- \bullet Wee partons have high energy \rightarrow vacuum decouples
- Constituent picture emerges naturally

o In OED:

- $\lambda^2 < m^2 \rightarrow$ electron-positron pairs decouple
- $\lambda^2 < \alpha m^2 \rightarrow$ photons decouple

イロト (母) (ヨ) (ヨ)

Þ $2Q$

The Similarity Renormalization Group (SRG)

Robert Perry [The Similarity Renormalization Group \(SRG\)](#page-0-0)

4 D F

→ 君をす者を

母下

重

The Similarity Renormalization Group (SRG)

$$
H_s = U(s)H U^{\dagger}(s) \equiv T + V_s
$$

\n
$$
\frac{dH_s}{ds} = [\eta(s), H_s] \quad \text{where} \quad \eta(s) = \frac{dU(s)}{ds} U^{\dagger}(s) = -\eta^{\dagger}(s)
$$

\n
$$
\eta(s) = [G_s, H_s] \quad \Longrightarrow \quad \frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$

Projected onto partial-wave momentum representation $(G_s = T)$:

$$
\frac{dV_s(k, k')}{ds} = -(\epsilon_k - \epsilon_{k'})^2 V_s(k, k') \n+ \frac{2}{\pi} \int_0^\infty q^2 dq (\epsilon_k + \epsilon_{k'} - 2\epsilon_q) V_s(k, q) V_s(q, k')
$$

す 御 メ イ 重 メ オ 重 メー

 299

重

"Simple" example: delta function potential

$$
H_{\Lambda} = P^2 - \alpha_{\Lambda} \Lambda^{2-d} \delta_{\Lambda}^{d}(X)
$$

\n
$$
H_{\Lambda} |\psi_{\Lambda}\rangle = E |\psi_{\Lambda}\rangle
$$

\n
$$
< k|H|\psi\rangle = k^2 \psi(k) - \alpha \Lambda^{2-d} \int d^d q \langle k|\delta_{\Lambda}|q\rangle \psi(q)
$$

\n
$$
= E \psi(k)
$$

• Choice of initial regulator affects no qualitative results $< k|\delta_{\Lambda}|q> = (\frac{1}{2\pi})$ 2π $\int d^d\theta (\Lambda - |k|) \theta(\Lambda - |q|)$

Focus on s-wave: $k^2\psi(k)-\frac{\alpha\Lambda^{2-d}\Omega_d}{(2\pi)^d}$ \int^{Λ} *dq* $q^{d-1}\psi(q) = E\psi(q)$ $(2\pi)^d$ 0 QQ

Introduce discretization, exponentially spaced grid

$$
q=q_0 e^x \to q_0 e^{an}
$$

- Discretize x with uniform spacing
- Exponentially small discretization error and cutoff 'error'

$$
q_n=b^n
$$

$$
\frac{dV_{mn}}{ds} = -(b^{2m} - b^{2n})^2 V_{mn} + c_d \sum_{k} b^{dk} (b^{2m} + b^{2n} - 2b^{2k}) V_{mk} V_{kn}
$$

• We want $b \rightarrow 1$ limit, but $b \rightarrow \infty$ limit can be solved analytically and yields main features of [nu](#page-6-0)[m](#page-8-0)[e](#page-6-0)[ric](#page-7-0)[a](#page-8-0)[l](#page-3-0) [r](#page-4-0)[e](#page-27-0)[s](#page-28-0)[u](#page-3-0)[l](#page-4-0)[t](#page-27-0)[s.](#page-28-0)

 QQ

$G = [T, H], g = 0.5, E_{bd} = 2.4674$

 $q0=0.50$ b=1.2247 M=-20 N=30 $\lambda = \infty$

$G = [T, H], g = 0.5, E_{bd} = 2.4674$

q0=0.50 b=1.2247 M=-20 N=30 }=100.00

$G = [T, H], g = 0.5, E_{bd} = 2.4674$

q0=0.50 b=1.2247 M=-20 N=30 }=20.00

$G = [T, H], g = 0.5, E_{bd} = 2.4674$

g0=0.50 b=1.2247 M=-20 N=30)=10.00

$G = [T, H], g = 0.5, E_{bd} = 2.4674$

 $q0=0.50$ b=1.2247 M=-20 N=30 \rightarrow =5.00

$G = [T, H], g = 0.5, E_{bd} = 2.4674$

 $q0=0.50$ b=1.2247 M=-20 N=30 λ =1.00

$G = [T, H], g = 0.5, E_{bd} = 2.4674$

 $q0=0.50$ b=1.2247 M=-20 N=30 \rightarrow =0.80

Robert Perry [The Similarity Renormalization Group \(SRG\)](#page-0-0)

$G = [T, H], g = 0.5, E_{bd} = 2.4674$

$\overline{G} = [H_{\text{diag}}, H], g = 0.5, E_{\text{bd}} = 2.4674$

Robert Perry [The Similarity Renormalization Group \(SRG\)](#page-0-0)

 299

重

q0=0.50 b=1.2247 M=-20 N=30 }=100.00

q0=0.50 b=1.2247 M=-20 N=30 }=20.00

q0=0.50 b=1.2247 M=-20 N=30 }=10.00

 $q0=0.50$ b=1.2247 M=-20 N=30 \rightarrow =5.00

 $q0=0.50$ b=1.2247 M=-20 N=30 λ =1.50

 $q0=0.50$ b=1.2247 M=-20 N=30 λ =1.00

q0=0.50 b=1.2247 M=-20 N=30 }=0.90

 $q0=0.50$ b=1.2247 M=-20 N=30 \rightarrow =0.80

 $q0=0.50$ b=1.2247 M=-20 N=30 \rightarrow =0.60

 $q0=0.50$ b=1.2247 M=-20 N=30 \rightarrow =0.10

$G = [H_{diag}, H], g = 0.5, E_{bd} = 2.4674$

[Objective](#page-1-0) [SRG](#page-4-0) [Universality](#page-28-0) [3-Body](#page-44-0) [Summary](#page-48-0) [Perturbative](#page-30-0)

Sources of Nonperturbative Physics for NN

- **¹** Strong short-range repulsion ("hard core")
- **2** Iterated tensor interaction
- **³** Near zero-energy bound states

É

[Objective](#page-1-0) [SRG](#page-4-0) [Universality](#page-28-0) [3-Body](#page-44-0) [Summary](#page-48-0) [Perturbative](#page-30-0)

Sources of Nonperturbative Physics for NN

- **¹** Strong short-range repulsion ("hard core")
- **²** Iterated tensor interaction
- **³** Near zero-energy bound states

 $2Q$

- **Consequences:**
	- Strong correlations overwhelm Hartree-Fock.
	- Diagrammatic analyses become hopelessly complicated. \bullet

[Objective](#page-1-0) [SRG](#page-4-0) [Universality](#page-28-0) [3-Body](#page-44-0) [Summary](#page-48-0) [Perturbative](#page-28-0)

Sources of Nonperturbative Physics for NN

- **¹** Strong short-range repulsion ("hard core")
- **²** Iterated tensor interaction
- **³** Near zero-energy bound states

- **Consequences:**
	- Strong correlations overwhelm Hartree-Fock.
	- Diagrammatic analyses become hopelessly complicated.
- **However** ...
	- the potential depends on the resolution \implies cutoff dependent
	- We can use a RG to control the cutoff.

(ロトス個) (運) (運)

 299

Þ

す 伊 メ マ ヨ メ マ ヨ メ

す 伊 メ マ ヨ メ マ ヨ メ

- $\text{Run from } \Lambda_B = 25 \,\text{fm}^{-1}$ to $\Lambda = 2 \text{ fm}^{-1} \sim E_{\text{lab}} = 350 \text{ MeV}$
- Same long distance physics \Longrightarrow collapse to " $V_{\text{low }k}$ "!

 $2Q$

The Similarity Renormalization Group (SRG)

$$
H_s = U(s)H U^{\dagger}(s) \equiv T + V_s
$$

\n
$$
\frac{dH_s}{ds} = [\eta(s), H_s] \quad \text{where} \quad \eta(s) = \frac{dU(s)}{ds} U^{\dagger}(s) = -\eta^{\dagger}(s)
$$

\n
$$
\eta(s) = [G_s, H_s] \quad \Longrightarrow \quad \frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$

Projected onto partial-wave momentum representation $(G_s = T)$:

$$
\frac{dV_s(k, k')}{ds} = -(\epsilon_k - \epsilon_{k'})^2 V_s(k, k') \n+ \frac{2}{\pi} \int_0^\infty q^2 dq (\epsilon_k + \epsilon_{k'} - 2\epsilon_q) V_s(k, q) V_s(q, k')
$$

 299

重

Typical comparison in ${}^{1}S_0$

1S0 potential #12

Robert Perry [The Similarity Renormalization Group \(SRG\)](#page-0-0)

 $2Q$

É

[Objective](#page-1-0) [SRG](#page-4-0) [Universality](#page-28-0) [3-Body](#page-44-0) [Summary](#page-48-0) [Perturbative](#page-28-0)

Phase shifts do not change

 \bullet S-wave phase shifts from the two chiral EFT N^3LO potentials.

Bare vs. SRG phase shifts

• Several partial waves

[Objective](#page-1-0) [SRG](#page-4-0) [Universality](#page-28-0) [3-Body](#page-44-0) [Summary](#page-48-0) [Perturbative](#page-28-0)

SRG decouples high momenta from low-energy observables

Phase shifts with $V_s(k, k') = 0$ for $k, k' > k_{max}$

Robert Perry [The Similarity Renormalization Group \(SRG\)](#page-0-0)

 $2Q$

The strength of observables shifts considerably

Distribution of kinetic and potential energies in the deuteron

 299

Þ

The evolution with *s* of any other operator *O* is given by the same unitary transformation, $O_\mathrm{s} = U(s) O U^\dagger(s)$, which means that *O^s* evolves according to

$$
\frac{dO_s}{ds}=[\eta(s),O_s]=[[T_{\text{rel}},V_s],O_s]\,.
$$

- Consider the evolution of $<\psi_d|a^\dagger(q)a(q)|\psi_d>$.
- The integral does not change, but the strength flows.
- Look at $<\psi_d(s)|k>< k|U_s|q>< q|U^\dagger|k'>< k'|\psi_d>.$

イロメ イ部メ イヨメ イヨメー

重 $2Q$

Flow of strength from *a* †*a*

 299

Þ

Deuteron Observables

Soft Potentials in History

- There were active attempts to transform away hard cores and soften the tensor interaction in the late sixties and early seventies.
- • But the requiem for soft potentials was given by Bethe: *"Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required."*

Soft Potentials in History

- There were active attempts to transform away hard cores and soften the tensor interaction in the late sixties and early seventies.
- But the requiem for soft potentials was given by Bethe: *"Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required."*
- But that story is not complete: three-nucleon forces (3NF)!

 \sqrt{m}) \sqrt{m}) \sqrt{m})

[Objective](#page-1-0) [SRG](#page-4-0) [Universality](#page-28-0) [3-Body](#page-44-0) [Summary](#page-48-0) [Evolved Three-Body Force](#page-44-0)

Three-Body Interactions in the SRG

Same SRG equation: $\frac{dH}{ds} = [[T, H], H]$

$$
\bullet H = T + V_2 + V_3 + \cdots
$$

$$
\bullet \ \ V_2 = \tfrac{1}{2!} a_i^\dagger a_j^\dagger (ij|V_2|kl) a_l a_k
$$

 $V_3 = \frac{1}{3!} a_i^{\dagger}$ *i a* † *j a* † *k* (*ijk*|*V*3|*lmn*)*anama^l*

 $2Q$

Fock space SRG equation

• 2-body and 3-body problems separate

イロメ イ部メ イ君メ イ君メー

唐山 298

Summary

- SRG provides a powerful new RG tool
- **Produces well-defined RG-improved perturbation theory**
- **Provides new exact RG calculations**
- SRG universality provides well-defined nuclear interactions
- \bullet SRG \rightarrow soft NN force & small compensating 3N force

Þ

1 [Objective: Precise Strong Interaction Calculations at all](#page-1-0) [Scales](#page-1-0)

2 [Similarity Renormalization Group](#page-4-0)

3 [Selecting the right degrees of freedom](#page-28-0)

Robert Perry [The Similarity Renormalization Group \(SRG\)](#page-0-0)

4 包)

 \rightarrow \equiv \rightarrow

重