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Introduction

* Inverse square potential is classically scale invariant

Vir)= _

T2

* Classical scattering is well defined if

b > % for Kk >0

otherwise— fall to the center

* QM estimate: particle confined to a small ball of radiys

* Itis a border between regular and singular potentials



Introduction

* In QM a critical k., > 0 exists. Fork > k., the
Hamiltonian is unbounded from below problems

* Effective 1D Schrodinger equation

[_d_2 . ﬁ] b(r) = Bo(r)  E=—0®<0

e Solution, which is well-behaved as— oo

U(r) = VrK,(or) v=1+/1/4—k




Introduction

In QM a critical k., > 0 exists. Forx > k., the
Hamiltonian is unbounded from below problems

Effective 1D Schrodinger equation

d? K

[_— _ —] Y(r) = Ey(r) E=—-0%<0
Solution, which 1s well-behaved as— oo

U(r) =+rK,(or) v = \/1/4 — K

Infinity of nodes— infinity of bound states fok > k.,.?

Proper treatment: regularize around the origin and use RG

A lot of previous RG studies
Beane et al. 01, Bawin&Coon 03, Barford&Birse 03 . ..



Motivation

* Efimov effect for three bosons interacting through a short
range attractive potential Efimov 70 . ..
At unitarity point— effective 1D equation

d? 21+ 1/4
& st Y(r) = EY(r), so=1.0062

dr? r2

Experimentally observed in cold atoms  kraemeretal. 06, ...
* A neutral polar molecule interacts with an electron via

cos 6

VA7) ~

T2

can be reduced to the isotropic form Camblong et al. 01



Motivation

* Transition from the conformak( < «.,) to the
nonconformal £ > k..) regime resembles the BKT phase
transition in two dimensions Kaplan et al. 09

e Scalar field near the Reissner-Nordstrom black hole
background Camblong et al. 03

* AdS/CFT correspondence: scalar field in the anti-de Sitter
spacetimeddS,, 1

d—1 m?
0= — Taréb— p@b—C]Q(ﬁ:Oa ¢ =)+
after change of fielgp = r(?=1/2y) one gets

m? + (d* — 1) /4
2

— 0% + Y =—¢*¢



Functional renormalization group

- Effective average actiohi;|¢| solves  wetterich 93

1 OLR
O Li[d] = =Tr———=

2 F/(f) o] + Ry,

* RG flow In theory space

Theory space

« Truncation needed to solve the flow equation



Model

* Our model in Euclidean QFT formulation
T [, %] = / Q)i + (@) —
Q
= / Fa)* Q1)1 (Q2)%* (Q3)(Qa)0(—Q1 + Q2 — Q3 + Qa)

- P (Q1)Y(Q2)Y™ (Q3)Y(Q4)6(—Q1 + Q2 — Q3 + Qa),

with the Fourier transform of /r* potential ind dim

(4m) /2T (d/2 — 1)[I]
4

* )\ Is an emergent coupling generated by guantum loops
* We use sharp regulator

d > 2

Fy(l) =

Ry (L) = (iw + 1?) (9(12 1_ o) 1)



Flow equation

* The propagator is not renormalized in the nonrelativistic
vacuum

* The long-range potential couplingis not renormalized

* RG flow for the coupling\

* )\ Is taken to be momentum-independent

* Flow equation for a rescaled dimensionless

,{2

2K

d— 2

8t)‘¢R: _>\12pR—|_ <— ‘|‘d—2> )\wR_

(d—2)2



Solution of the flow equation

d

%)‘wR(t) = adgr(t)? + Bryr(t) + 7

* The solution is determined by the sign of the discriminant

D = 3% — 4oy

[ — function

* Kk < ke — D >0 — two fixed points (CFT)

* k=Ko — D = 0 — single fixed point— k., =

°* k> Koy — D < 0— no fixed points (limit cycle)



Complex extension— analytical treatment

* For a deeper mathematical understanding we perform a
complex extension

)\—>>\1—|‘Z>\2

O = aX] — ari + B+

O = aX® + B+
! “ 6 Y {&5)\2 :2&)\1)\2+ﬁ)\2

* The analytical solution is

\(D) = (5 fcej_t)

Ce

* (' determines initial condition fok in complex plane

* RG trajectories have a constant positive curvature



Complex extension— numerical treatment

* D > 0: two real fixed points with real eigenvalues

t

S5 10 15 20
(B)

* Divergences are regularized metastable resonances

* Flow of the imaginary part determines the decay width



Complex extension— numerical treatment

* D < 0: two complex fixed points with imaginary
eigenvalues

* For D = 0 two fixed points merge

* Intuitive understanding of the transition



Complex extension— physical motivation

* Partial wave expansion for a scattering amplitude

f(p,0) = > (2l +1)fi(p)Pi(cos())

* For short-range forces s-wave dominates at low energies

1 1

fo — — =~ :
go(p?) —ip  —a~t + renp® — ip

* Complex scattering lengilh= « + 3 opens an inelastic
scattering channel

* Bound states with finite decay width resonances



Riemann sphere

* The complex plan& can be extended by an additional
point oo

* The extended complex plane is mapped onto the Riemann
sphere via the stereographic projection Wikipedia




Flows on the Riemann sphere:D > 0

* Two fixed point on the great real circle



Flows on the Riemann sphere:D < 0

* Real flow forms an infinite limit cycle in the complex plane
with periodic discontinuities

* On the Riemann sphere the flow periodically traverses the
great real circle



Connection to large-flavor QCD

* FRG studies of conformal windows and chiral phase
transition in many flavor massless QCD Gies, Jaeckel 06

* RG g-functions of the fermionic self-interactions at a
fixed gauge coupling

e [-function are similar to our problem

* However, gauge coupling is running in QCD
* No limit cycles, but chiral symmetry breaking far> «..,



Conclusions

Nonrelativistic inverse square potential has different
physical applications

It Is a paradigm for nonrelativistic conformal symmetry and
scale anomaly

It must be regularized at orighs> need for RG

Complex extension provides a deeper mathematical
understanding and is physically motivated

Geometric descriptior- flows on the Riemann sphere

More can be found in Annals of Physigg5 491 (2010)



Extra slides



Functional renormalization group

* We use quantum field theory methods to
investigate nonrelativistit/r* problem

 In quantum field theory in Euclidean formulation
W) _ / Dpe=Sle] ¢

- FromW|[.J] we can extract connected correlation
functions

e

scattering amplitudes, bound state energies

- However, the functional integral fd#'|.J] is
difficult to evaluate



Functional renormalization group

 Renormalization group idea- introduce regulator

1
eVl Z/@SOGXP <—S[Sﬁ] —§/¢Rk¢+/JS@)

and study sliding scale dependence

- Effective average actiohi;|¢| is a Legandre
transform oflV/; | J]

* RegulatorR;. introduces scheme dependence In
the problem

« Fork = 0 we recover the effective actidn¢| =
1Pl vertices= correlation functions



Solution of the flow equation

* D> 0and\} < Ayr < Ayf: smooth interpolation
between two fixed points

—f — VD tanh {*/Tﬁ(t +- 77)}

Apr(t) =
wR(t) =
* D = 0: logarithmic running— Landau pole
1 b
Mr(t) = A p — ANip = ——
vr(E) = Ayr air o RT T,

* D < 0: periodic infinities— geometric bound spectrum

—5—|-\/jtan{ (t—l—n)}

200

Ayr(t) =
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