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• Introduction and motivation
• Functional renormalization group and RG flow

equation
• Complex extension and RG flows on the

Riemann sphere
• Connection to large-flavor QCD



Introduction
• Inverse square potential is classically scale invariant

V (r) = − κ

r2

• Classical scattering is well defined if

b >

√

κ

E
for κ > 0

otherwise→ fall to the center

• QM estimate: particle confined to a small ball of radiusr0

E ≈ 1

r2
0

− κ

r2
0

• It is a border between regular and singular potentials



Introduction
• In QM a criticalκcr > 0 exists. Forκ > κcr the

Hamiltonian is unbounded from below→ problems

• Effective 1D Schrödinger equation
[

− d2

dr2
− κ

r2

]

ψ(r) = Eψ(r) E = −σ2 < 0

• Solution, which is well-behaved asr → ∞

ψ(r) =
√
rKν(σr) ν =

√

1/4 − κ
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Introduction
• In QM a criticalκcr > 0 exists. Forκ > κcr the

Hamiltonian is unbounded from below→ problems

• Effective 1D Schrödinger equation
[

− d2

dr2
− κ

r2

]

ψ(r) = Eψ(r) E = −σ2 < 0

• Solution, which is well-behaved asr → ∞

ψ(r) =
√
rKν(σr) ν =

√

1/4 − κ

• Infinity of nodes→ infinity of bound states forκ > κcr?

• Proper treatment: regularize around the origin and use RG

• A lot of previous RG studies
Beane et al. 01, Bawin&Coon 03, Barford&Birse 03 . . .



Motivation
• Efimov effect for three bosons interacting through a short

range attractive potential Efimov 70 . . .

At unitarity point→ effective 1D equation
[

− d2

dr2
− s2

0 + 1/4

r2

]

ψ(r) = Eψ(r), s0 ≈ 1.0062

Experimentally observed in cold atoms Kraemer et al. 06, . . .

• A neutral polar molecule interacts with an electron via

V (~r) ∼ cos θ

r2

can be reduced to the isotropic form Camblong et al. 01



Motivation
• Transition from the conformal (κ < κcr) to the

nonconformal (κ > κcr) regime resembles the BKT phase

transition in two dimensions Kaplan et al. 09

• Scalar field near the Reissner-Nordström black hole

background Camblong et al. 03

• AdS/CFT correspondence: scalar field in the anti-de Sitter

spacetimeAdSd+1

∂2
rφ− d− 1

r
∂rφ− m2

r2
φ− q2φ = 0, q2 = (q0)2 + ~q2

after change of fieldφ = r(d−1)/2ψ one gets

−∂2
rψ +

m2 + (d2 − 1)/4

r2
ψ = −q2ψ



Functional renormalization group
• Effective average actionΓk[φ] solves Wetterich 93

∂kΓk[φ] =
1

2
Tr

∂kRk

Γ
(2)
k [φ] +Rk

• RG flow in theory space

• Truncation needed to solve the flow equation



Model
• Our model in Euclidean QFT formulation

Γk[ψ,ψ
∗] =

∫

Q

ψ∗(Q)[iω + ~q2]ψ(Q)−

− κ

∫

Q1,...,Q4

Fd(l)ψ
∗(Q1)ψ(Q2)ψ∗(Q3)ψ(Q4)δ(−Q1 +Q2 −Q3 +Q4)

−
λψ

2

∫

Q1,...,Q4

ψ∗(Q1)ψ(Q2)ψ∗(Q3)ψ(Q4)δ(−Q1 +Q2 −Q3 +Q4),

with the Fourier transform of1/r2 potential ind dim

Fd(l) =
(4π)d/2Γ(d/2 − 1)|~l|2−d

4
d > 2

• λ is an emergent coupling generated by quantum loops
• We use sharp regulator

Rk(L) = (iω + l2)

(

1

θ(l2 − k2)
− 1

)



Flow equation
• The propagator is not renormalized in the nonrelativistic

vacuum

• The long-range potential couplingκ is not renormalized

• RG flow for the couplingλ

• λ is taken to be momentum-independent

• Flow equation for a rescaled dimensionlessλψR

∂tλψR = −λ2
ψR +

(

− 2κ

d− 2
+ d− 2

)

λψR − κ2

(d− 2)2



Solution of the flow equation
d

dt
λψR(t) = αλψR(t)2 + βλψR(t) + γ

• The solution is determined by the sign of the discriminant

D = β2 − 4αγ
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• κ < κcr → D > 0 → two fixed points (CFT)

• κ = κcr → D = 0 → single fixed point→ κcr = (d−2)2

4

• κ > κcr → D < 0 → no fixed points (limit cycle)



Complex extension– analytical treatment
• For a deeper mathematical understanding we perform a

complex extension

λ→ λ1 + iλ2

∂tλ = αλ2 + βλ+ γ →
{

∂tλ1 = αλ2
1 − αλ2

2 + βλ1 + γ

∂tλ2 = 2αλ1λ2 + βλ2

• The analytical solution is

λ(t) =
1

2α

(

−β −
√
D
e

√
Dt
2 − Ce−

√
Dt
2

e
√
Dt
2 + Ce−

√
Dt
2

)

• C determines initial condition forλ in complex plane

• RG trajectories have a constant positive curvature



Complex extension– numerical treatment
• D > 0: two real fixed points with real eigenvalues
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• Divergences are regularized→ metastable resonances

• Flow of the imaginary part determines the decay width



Complex extension– numerical treatment
• D < 0: two complex fixed points with imaginary

eigenvalues
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• ForD = 0 two fixed points merge

• Intuitive understanding of the transition



Complex extension– physical motivation
• Partial wave expansion for a scattering amplitude

f(p, θ) =
l=∞
∑

l=0

(2l + 1)fl(p)Pl(cos(θ))

• For short-range forces s-wave dominates at low energies

f0 =
1

g0(p2) − ip
≈ 1

−a−1 + 1
2
reffp2 − ip

• Complex scattering lengtha = α+ iβ opens an inelastic

scattering channel

• Bound states with finite decay width→ resonances



Riemann sphere
• The complex planeC can be extended by an additional

point∞
• The extended complex plane is mapped onto the Riemann

sphere via the stereographic projection Wikipedia



Flows on the Riemann sphere:D > 0

• Two fixed point on the great real circle



Flows on the Riemann sphere:D < 0

• Real flow forms an infinite limit cycle in the complex plane

with periodic discontinuities

• On the Riemann sphere the flow periodically traverses the
great real circle



Connection to large-flavor QCD
• FRG studies of conformal windows and chiral phase

transition in many flavor massless QCD Gies, Jaeckel 06

• RGβ-functions of the fermionic self-interactionsλi at a

fixed gauge couplingα

• β-function are similar to our problem

• However, gauge couplingα is running in QCD

• No limit cycles, but chiral symmetry breaking forα > αcr



Conclusions

• Nonrelativistic inverse square potential has different

physical applications

• It is a paradigm for nonrelativistic conformal symmetry and

scale anomaly

• It must be regularized at origin→ need for RG

• Complex extension provides a deeper mathematical

understanding and is physically motivated

• Geometric description→ flows on the Riemann sphere

More can be found in Annals of Physics325, 491 (2010)



Extra slides



Functional renormalization group
• We use quantum field theory methods to

investigate nonrelativistic1/r2 problem
• In quantum field theory in Euclidean formulation

eW [J ] =

∫

Dϕe−S[ϕ]+
∫

Jϕ

• FromW [J ] we can extract connected correlation
functions

⇓

scattering amplitudes, bound state energies

• However, the functional integral forW [J ] is
difficult to evaluate



Functional renormalization group
• Renormalization group idea- introduce regulator

eWk[J ] =

∫

Dϕ exp

(

−S[ϕ] − 1

2

∫

ϕRkϕ+

∫

Jϕ

)

and study sliding scalek dependence
• Effective average actionΓk[φ] is a Legandre

transform ofWk[J ]

• RegulatorRk introduces scheme dependence in
the problem

• Fork = 0 we recover the effective actionΓ[φ] ⇒
1PI vertices⇒ correlation functions



Solution of the flow equation
• D > 0 andλIRψR < λψR < λUVψR : smooth interpolation

between two fixed points

λψR(t) =
−β −

√
D tanh

[√
D
2

(t+ η)
]

2α

• D = 0: logarithmic running→ Landau pole

λψR(t) = λ∗ψR − 1

αt+ η
, λ∗ψR = − β

2α

• D < 0: periodic infinities→ geometric bound spectrum

λψR(t) =
−β +

√
−D tan

[√
−D
2

(t+ η)
]

2α
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