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Theme of the talk: improvement of approximations

• Physical quantities should not depend on the energy scale (usually
denoted µ) or the distance of reference (often denoted r0) used to
specify renormalized couplings.

• Physical quantities should not depend on the RG scale parameter (usually
denoted b or s) which expresses the lowering of the UV cutoff (Λ → Λ

b )
or equivalently the increase of the lattice spacing (a → ba).

• Unfortunately, due to approximations such as perturbative expansions
or local potential approximations, physical quantities become artificially
dependent on unphysical scale parameters.
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Approximations in need of improvement

The talk is divided into two parts:

1. Continuous scaling (with r0/a or µ). How to improve weak coupling
expansions in QCD? Expect digressions about large field contributions to
the partition function.

2. Discrete scaling (with b). Numerical calculations using the hierarchical
model (bD integer). Numerical instabilities encountered while attempting
to extend bD to non-integer values will be discussed by Yuzhi “Louis”
Liu. An important question not addressed in the talk: how to improve
the hierarchical and local potential approximations?
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Continuous scaling

• How does the mass gap depend on the bare coupling in 4D lattice gauge
theory and 2D O(N) sigma models ?

• Conjecture: in the infinite volume limit, the complex zeros of the
nonperturbative βCS function delimit the boundary of a region without
(Fisher’s) zeros of the partition function in the complex β = 2Nc/g2 .

• Haiyuan Zou will discuss finite volume aspects.

• For confining models, these zeros stay away from the real axis (in the
complex coupling plane).
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Discrete scaling

• Numerical block-spinning in configuration space can only be done for an
integer number of sites bD (hierarchical model, Migdal-Kadanoff).

• Attempts of continuations at non-integer bD lead to numerical instabilities
(Yuzhi “Louis” Liu’s talk).

• The discrete scaling allows (small, order 10−11 − 10−16 in 3D examples)
log-periodic corrections to the scaling laws which in principle conflict
with the continuum limit and are amplified in series expansions.

• Critical exponents have a (small, order 10−4 in 3D examples) b-
dependence connecting smoothly with the b → 1 limit (Wilson-Polchinski
equation in the local potential approximation (Litim, Bervilliers , ...)).
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Continuous scaling: µ-independence

Physical quantities such as renormalized n-point functions Γ(n) should not
depend on the scale µ used to define the renormalized coupling g. This
generates Callan-Symanzik equations

(µ
∂

∂µ
+ β(g)

∂

∂g
− nγ(g))Γ(n)(p, g, µ) = 0

Unfortunately, due to the truncation of perturbative series, significant µ
dependence is often observed in lowest order perturbative QCD calculations.
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Figure 1: From, ”NLO QCD Corrections to tt̄Z Production” Thomas
McElmurry et al., Loopfest VII and arXiv:0804.2220[hep-ph]
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Need for NLO, NNLO, NNNLO, .....

• Higher order corrections reduce the µ dependence.

• NNLO calculations are very time consuming.

• If Dyson’s argument for QED (loss of vacuum under e2 → −e2) applies
to perturbative QCD, the series are not supposed to converge, so the
long term prospective of the reduction of the µ-dependence is unclear
and requires some optimistic attitude.

• But with LHC data coming up, the short term needs are tremendous
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Figure 2: From, ”NLO QCD Corrections to tt̄Z Production” Thomas
McElmurry et al., Loopfest VII and arXiv:0804.2220[hep-ph]
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The force scale on the lattice

A slightly easier problem: how does the lattice spacing a expressed in
units of, for instance, r0 = 0.5fm depend on β ≡ 2Nc/g2? (Dimensional
transmutation)

Note: this β is not the βCS function nor 1/kTphys..

For the interval 5.7 < β < 6.92, in pure gauge SU(3), the following
empirical power series (Sommers and Necco) is obtained from Wilson loops
of various sizes

ln(a/r0) = −1.6804 − 1.7331 (β − 6)
+ 0.7849 (β − 6)2 − 0.4428 (β − 6)3 .
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Parametrization of the non-perturbative part

We proposed the following parametrization (PRD 74, 2006)

dln(a/r0)/dβ = −(4π2/33) + (51/121)β−1 + A1e
−A2β .

with A1 = −1.35 107 and A2 = 2.82 (the first two coefficients are universal)

The assumption of a2
pert. corrections (Allton) fixes A2 = 8π2/33 $ 2.4

which is close to the value 2.82 obtained above.

Can we extract A1 and A2 from (factorially diverging?) weak coupling
series for Wilson loops, or semi-classical arguments?
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The rule of thumb for divergent series

Drop the order with the smallest contribution (and all higher orders) in an
asymptotic series: A ∼

∑
k akλk.

Error at order k ≡ ∆k(λ) = Anumerical(λ) −
∑k

l=0 alλl. We assume that
∆k $ λk+1ak+1 (for λ small enough).

Large order behavior: |ak| ∼ |C1||C2|kΓ(k + C3).

The error is minimized for k" $ (λ|C2|)−1 − C3 − (1/2) + O(1/k").

Mink |∆k| $
√

2π|C1|(λ|C2|)1/2−C3e
− 1

|C2|λ (order independent) .
Sometimes C2 is related to a classical action (instantons ....).
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Lattice series show no sign of factorial growth
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Figure 4: ln( bk) for a dilogarithm model (power growth, solid line) and
an integral model (factorial growth, dashes). The dots up to order 10
are the known values (di Renzo et al.) for the 1x1 Wilson loop. More
recent calculations up to order 30 (Rakow, Perlt et al. arXiv:0910.2795) are
consistent with a power growth.
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Lattice series reflect the zeros of the partition function

The 1x1 Wilson loop (plaquette) P = − 1
V Z

d
dβZ.

Singularities can only come from (Fisher’s) zeros of Z.

Infinities on the real axis for the second derivatives requires long range
correlations (massless particles).

The existence of a mass gap (confinement) keeps the zeros away from the
real axis.

Confirmed by MC reweighting on a 44 lattice. Higher volume and SU(2)
require more systematic methods (density of states).
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Figure 5: Zeros of the real (crosses) and imaginary (circles) using MC for
SU(3) on a 44 lattice at β = 5.54. (see PRD 76 and Lattice 2007 for
details).
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Perturbation theory for a simple integral

∫ +∞

−∞
dφe−

1
2φ

2−λφ4
'=

∞∑

0

(−λ)l

l!

∫ +∞

−∞
dφe−

1
2φ

2
φ4l

The peak of the integrand of the r.h.s. moves too fast when the order
increases. On the other hand, if we introduce a field cutoff, the peak moves
outside of the integration range and

∫ +φmax

−φmax

dφe−
1
2φ

2−λφ4
=

∞∑

0

(−λ)l

l!

∫ +φmax

−φmax

dφe−
1
2φ

2
φ4l

General expectations: for a finite lattice, the partition function Z calculated
with a field cutoff is convergent and ln(Z) has a finite radius of convergence.
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Compact groups means no large field contribtions

Lattice gauge theories with a compact group (e.g., Wilson’s lattice QCD)
have a build-in large field cutoff: the group elements associated with the
links are integrated with dUl the compact Haar measure. The partition
function Z(β) is the Laplace transform of n(S), the density of states

Z(β) =

∫ Smax

0
dS n(S) e−βS ,

n(S) =
∏

links

∫
dUlδ(S −

∑

p

(1 − (1/N)ReTr(Up)))

ln(n(S)) is a ”color entropy” (∝ Np, extensive); n(S) = eNpf(S/Np)

Smax = 2Np for SU(2N), 3
2Np for SU(3); (Np : number of plaquettes)
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One plaquette (SU(2))

Z(β) =
∫ 2
0 dSn(S)e−βS = 2e−βI1(β)/β (analytical in the entire β plane)

n(S) = 2
π

√
S(2 − S) (invariant under S → 2 − S)

The large order of the weak coupling expansion β → ∞ is determined by
the behavior of n(S) near S = 2, itself probed when β → −∞ in agreement
with the common wisdom that the large order behavior of weak coupling
series can be understood in terms of the behavior at small negative coupling.
√

2 − S is easy to approximate near S = 0 (radius of convergence = 2)

Z(β) = (βπ)−3/221/2
∑∞

l=0(2β)−lΓ(l+1/2)
l!(1/2−l)

∫ 2β
0 dte−ttl+1/2 is convergent
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The crucial step

∫ 2β
0 dte−ttl+1/2 $

∫ ∞
0 dte−ttl+1/2 +O(e−2β) is responsible for the factorial

behavior

The peak of the integrand crosses the boundary near order 2β

Dropping higher order terms (than order $ 2β) agrees with the rule of
thumb (minimizing the first contribution dropped)

The non-perturbative part can be fully reconstructed (higher orders +
”tails”, PRD 74 096005)

For L4 lattices, the crossing is expected near order 2βNp. Non-perturbative
effects should be explainable by the contributions near Smax.
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More large field considerations

The RG has been designed to integrate progressively over large momenta
modes. Could we design a procedure to integrate progressively over large
field configurations?

MCRG for O(N) non-linear sigma models:

(n′
block =

∑
x∈block (nx

||
∑

x∈block (nx||

By design, ||(nblock|| = ||(nx|| = 1

Naively it looks like we can’t build large fields over large blocks (is there
some Jacobian compensating?)
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Numerical calculation of n(S) for SU(2)
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U(1) lattice gauge theory ( A. Bazavov)
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Figure 7: Density of states for U(1) on a 44 lattice by multicanonical
methods.
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Semi-classical calculations
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f”(s) = 0 means that Gaussianity breaks down.
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Poles of the average Plaquette = Fisher’s zeros

Z =
∑∞

n=0 znβn with |zn| < Sn
max/n!, so at finite volume, Z is an analytical

function, not only on the negative real axis, but over the entire β plane.

P = −(dZ/dβ)/Z, and the worse thing that can happen to P is that Z has
a zero of order k, say at β0. Then (dZ/dβ)/Z $ k/(β − β0) for β $ β0. If
we now integrate over a closed contour C,

(i2π)−1

∮

C
dβ(dZ/dβ)/Z =

∑

k

nk(C) ,

where nk(C) is the number of zeros of order k inside C . The fact that
the loop integral is an integer (no imaginary part) allows to monitor the
accuracy of the calculation.
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(i2π)−1

∮

C
dβ(dZ/dβ)/Z =

∑

k

nk(C) ,

where nk(C) is the number of zeros of order k inside C.

Near β = 0 everything is regular for (dZ/dβ)/Z (strong coupling).

At large β we have a regular perturbative series in 1/β and a non-
perturbative part which we assume to be an integer power of the mass gap
M2. As long as we don’t cross singular points where dβ/dM2 = 0 we can
change variable from β to M2 without running into a cut and the loop
integral is zero.

β = 2Nc/g2 and dβ/dM2 = (2Nc/g3)(1/M2)βCS(g) and so singular points
coincide with complex zeros of βCS(g) where M2 '= 0.

This sounds complicated but it works well for the 2D O(N) sigma models.
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Nonlinear O(N) sigma model on a square lattice (hep-lat
0907.2980; PRD80 054020)

Z =
∫ ∏

x dNφxδ( (φx
(φx − 1) e−(1/g2

0)E[{φ}]

with E[{φ}] =
∑

x,e(1 − (φx
(φx+e)

We assume a cubic lattice with an even number of sites in each directions
and periodic boundary conditions. Under these conditions (as for SU(2N)

LGT) Z[−g2
0] = e4DLD/g2

0Z[g2
0]

Gap equation:
∫ π
−π

dkD

(2π)D
1

2(
PD

j=1(1−cos(kj))+M2
= 1/λt ≡ b

λt = g2
0N kept constant as N becomes large.
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and 0.5 (brown)). Asymptotic limits are ±0.25 and represent the logarithmic
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Finite Volume Zeros (with Haiyuan Zou)

At finite volume, there are only L2 momenta for periodic boundary
conditions. To fix the ideas, for a square 4 × 4 lattice the gap equation is

b = (1/16)
(
1/M2+4/(2+M2)+6/(4+M2)+4/(6+M2)+1/(8+M2)

)

In general, after reducing to a common denominator, we obtain a rational
form b = Q(M2)/P (M2), where Q and P are polynomials of degrees q and
q + 1 respectively. The value of q depend on accidental degeneracies. In
the 4× 4 example, q = 4. For 8× 8, q = 12. The inversion M2(b) requires
a Riemann surface with q + 1 sheet.
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Fisher’s zeros stay away from the real axis
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Discrete Scaling: Dyson Hierarchical Model

2n sites Labeled with n indices xn, .....x1, each index being 0 or 1 (think
about a tree with n branching levels).

Kinetic term (sum over blocks of all 2l sizes; not renormalized):

S = −1

2

n∑

l=1

(
c

4
)l

∑

xn,...,xl+1

(
∑

xl,....,x1

φ(xn,....,x1))
2

If c = 2(D−2)/D, Gaussian fields scale like in D-dimensions

2
1
D : “linear” scale factor (block spin: 2 → 1). D = 3 hereafter

Exact RG transformation affects only the local potential
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Important facts about Dyson Hierarchical Model

• The LPA is exact

• It is a lattice model

• Its recursion formula is related to Wilson’s approximate recursion formula
(that allowed the first numerical RG calculations) but the exponents are
different. (JPA 29 L635, 1996)

• It is a model on the 2-adic line. The classification of the multiplicative
characters provides in principle a systematic method of improvement of
the hierarchical approximation (YM, Europhysics 93, hep-th/9307128).
This has a wavelet translation (Haar system). Analogous to the derivative
expansion. Never tried beyond one dimension.
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Recursion Formula

Initial local measure: W0(φ) = δ(φ2 − 1) (Ising) or W0(φ) = e−Aφ2−Bφ4

Block spin transformation:

Wn+1(φ) = Cn+1e
β
2 (c

4)
n+1φ2 ∫

dφ′Wn((φ−φ′)
2 )Wn((φ+φ′)

2 ) ,

Fourier Representation of the RG transformation (c = 21−1/D)

Rn+1(k) = Cn+1exp(−1
2β

∂2

∂k2)(Rn(
√

ck
2 ))2

Mn: the total field
∑

φx inside blocks of side 2n ; notice 1/(2q)!.

Rn(k) =
∑∞

q=0
(−ik)2q

(2q)!
<(Mn)2q>n

(4/c)qn Polynomial truncations of Rn(k): very
accurate in the symmetric phase
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Generalization to O(N) straightforward (PRD 73 047701 2006)

We can calculate very accurately the critical exponents and amplitudes

N γ ∆ βc/N
1 1.29914073 0.425946859 1.179030170
2 1.41644996 0.475380831 1.236763288
3 1.52227970 0.532691965 1.275794011

Using b = 1 + ε one recovers the Wilson-Polchinski equation in the LPA
approximation (See Felder CMP 111 101 1987):

u̇ =
2y

N
u′′ +

(
1 +

2

N
+ (2 − d)y − 2yu

)
u′ + (2 − u)u,

For N = 1, γWP= 1.299123547 (Litim, Bervillier,Juttner)
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Recursion formula with bD '= 2
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Figure 17: γ for integer values of bD, γWP was first calculated by Litim .
Work done with B. Oktay and Y. Liu.
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Linear analysis of instabilities for non-integer bD

bD = 2 + ζ with ζ small but continuous.

Rζ(k) the Fourier transform of the total field distribution.

FP: R"
ζ $ R"

0 + ζR"
1 and at first order in ζ: L[R"

1 + G] = R"
1

L is the linear operator for the ζ = 0 problem: L[δRn] = λnδRn

G = −(5/6)k2 ∂
∂k2R

"
0 + (1/2)R"

0 ∗ Log(R"
0)

Log(R"
0) is not analytical (R"

0 has zeros)

Expansions in eigenvectors of L do not converge (Y. Liu’ talk)

Need for an “extension” as in the case of 1/r2 potential.
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Consequences of discrete scaling

The magnetic susceptibility near criticality has the form:

χ = (βc − β)−γ(A0 + A1(βc − β)∆ + ....) , (1)

With discrete scaling, the constants A0 and A1 can be replaced by functions
A(βc − β) = A(λ(βc − β)) that can be expanded in integer powers of

(βc − β)
i2π

ln(λ) with λ the relevant eigenvalue. These amplitude “prevent”
continuous scaling(?)

ν = ln(b)/ln(λ) but ω = 2π/ln(λ) is obviously b-dependent

χ(β) = 1 + b1β + b2β2 + . . .
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rm = bm/bm−1, the ratio of two successive coefficients.

Sm = −m(m − 1)(rm − rm−1)/(mrm − (m − 1)rm−1)

Ŝm = mSm − (m − 1)Sm−1 $ γ − 1

(βc − β)z = βz
c

∞∑

m=0

( z
m

)
(−1)m( ββc

)m

( z
m

)
(−1)m = m−z−1

Γ(−z) × (1 + z+z2

2 m + . . . )

|Γ(γ + iω)| $
√

2πωγ−1/2e−ωπ/2; ω = 17.66 for the HM but about 6
for b = 2 (could this explain some oscillations observed in some MCRG
calculations?).
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Figure 18: Ŝm for the Ising model (crosses) and the Landau-Ginzburg model
with B = 1 (circles) and B = 0.1. (squares) (PRL 75, JSP 87)
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Conclusions

• There is support to the idea that the complex zeros of the β function
delimit the boundary of a region without Fisher’s zeros. (Universality?
complex RG flows?)

• The existence of log-periodic corrections in models with discrete scaling
is an obstruction to continuous blocking. b−independence may be a
guide for improving the hierarchical approximation.

• ∆β calculations in progress in O(N) models (INT preprints to come up!)

• Thanks!
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