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Motivation: QCD at LARGE N. and Nt
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Motivation: QCD at LARGE N. and Nt

3 o

Define x= N¢/N., treat as a continuous variable

asymptotic

freedom ~ conformal trivial
| - g
0 (PY)#0 11/2 X

gauge coupling: Xx

mality is lost?
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ONTLINE:

I. A mechanism for vanishing conformal invariance

II. The Berezinskii-Kosterlitz-Thouless (BKT) transition
III. A quantum mechanics model: the 1/r? potential

IV. AdS/CFT

V. Relativistic model: defect Yang-Mills

VI. QCD with many flavors? A partner theory QCD*
with a nontrivial UV fixed point?
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A theory with an infrared conformal fixed point at g=g« has
a zero in the beta function:

5(9)
B(g) = #g—z — % f i
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A theory with an infrared conformal fixed point at g=g« has
a zero in the beta function:

B(g)
B(g) = ug—z = % K i

Suppose the theory has another parameter K such
that the fixed point at g=g« vanishes for K>k«
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A theory with an infrared conformal fixed point at g=g« has
a zero in the beta function:

B(g)
B(g) = Mg—z = % /g*/( i

Suppose the theory has another parameter K such
that the fixed point at g=g« vanishes for K>Kx

Example: supersymmetric QCD is conformal for 3/2 < Nf/N¢ < 3
“K”=N¢N,, “Kx”=3/2,3

How is conformality lost?
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Three ways to lose an infrared fixed point:

#1: Fixed point runs to zero:

blg k) ‘\4://43</<a* g i(gm)r_/mwf*
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Three ways to lose an infrared fixed point:

#1: Fixed point runs to zero:

6(9;1%) .\4://<J</<a* . ﬁ}(ggli)/%>/{*

Example: Supersymmetric QCD at large Nc and Nt
—> Increasing flavors, leave conformal window. K=N¢/N¢, Kx=3
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Three ways to lose an infrared fixed point:

#1: Fixed point runs to zero:

blg k) .\4://1</<a* g i(gm)(_/mwf*

Example: Supersymmetric QCD at large Nc and Nt
—> Increasing flavors, leave conformal window. K=N¢/N¢, K«=3

N¢/Nc ¢ 3 = weak coupling Banks-Zaks conformal fixed point

Ne/Ne > 3 = trivial QED-like “free electric” theory

92

r2 In (T AU\/)

F ~

DAVID B. KAPLAN INT FEB. 22 , 2010

Monday, February 22, 2010



H2: Fixed point runs off to infinity:

]
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H2: Fixed point runs off to infinity:

]

B(g; @) K>k Blg;a)| Kk < Ky
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B(g; o)

R >K «

N

B(g; o)

#2: Fixed point runs off fo infinity:

Possible example? SQCD again => K=N¢/Nc, Kx=3/2

For k<kx get “free magnetic phase” [Seiberg]
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#2: Fixed point runs off fo infinity:

8(g; a) K>k Blg;a)| Kk < Ky
\// \/’j

Possible example? SQCD again => K=N¢/Nc, Kx=3/2

For k<kx get “free magnetic phase” [Seiberg]

» electric theory dual to a QED-like
magnetic theory:

2
9nr
7“2 111 (T AU\/)

N 92 In (7“ AU\/)

g
2

gu ~1/g

Fag ~
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#3: UV and IR fixed points annihilate:

A toy model:
B(g; k) = (K — Kx) — (9 — g4)°

K> Ke © 0+ = 0x TVE — Ky

UV, IR fixed points
K = Ky fixed points merge
K <K 4 conformality lost
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B(g; k)
A toy model:
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#3: UV and IR fixed points annihilate:
B(g; k)

A toy model:
B(g; k) = (k — Kx) = (9 — g4)°

B(g; k) K= Ky
K> Ke © 0+ = 0x TVE — Ky 0, g
UV, IR fixed points
K = Ky fixed points merge
K <K &
K <K 4 conformality lost Blg: %) ,
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What happens close to the fransition on the nonconformal side?

B(g; k)
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What happens close to the fransition on the nonconformal side?

B(g; k)

i. Start:g = guv < gxin the UV
ii. g grows, stalling near gx

iii. g strong at scale AR
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What happens close to the fransition on the nonconformal side?

B(g; k) i fuy
g
18UV
t=Inpu
i. Start:g = guv < gxin the UV )
_ g
ii. g grows, stalling near gx A = Agge J 5
iii. g strong at scale AR ___ =
= Ay€ Vi
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What happens close to the fransition on the nonconformal side?

HR tuv

B(g; k)

UV
t=Inpu
i. Start:g = guv < gxin the UV )
_ g
ii. g grows, stalling near gx A = Agge J 5
iii. g strong at scale AR ___ =
= Ay€ Vi

(Not like 2" order phase transition: A, ~ A,V |k — ksl )

IR
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Scaling behavior of toy model is reminiscent of the
Berezinskii-Kosterlitz-Thouless (BKT) transition
(an “infinite order” phase transition)
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Scaling behavior of toy model is reminiscent of the
Berezinskii-Kosterlitz-Thouless (BKT) transition
(an “infinite order” phase transition)

BKT: a classical phase transition in the 2-d XY-model
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box size R, vortex core size a:
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BKT: a classical phase transition in the 2-d XY-model

Vortices in XY model
box size R, vortex core size a:
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Scaling behavior of toy model is reminiscent of the
Berezinskii-Kosterlitz-Thouless (BKT) transition
(an “infinite order” phase transition)

BKT: a classical phase transition in the 2-d XY-model

Vortices in XY model
box size R, vortex core size a:

E=FEyinRja, S=2mnR/a
F=F-TS=((Ey—2T)InR/a

Vortices condense for T>T. = Eo/2 ; £~ q HIVTT:
can show correlation length forms: -
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RG analysis of the BKT transition

XY model = Coulomb gas
(vortices = point-like charges with In(r) Coulomb interaction):
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RG analysis of the BKT transition

XY model = Coulomb gas
(vortices = point-like charges with In(r) Coulomb interaction):

Sum over vortex
positions/numbers

fugacity
v

Z _N ZN+ZN_ IN—|— N_ d2 d2 D _fde%(v¢)2—|—’iZ- (Qﬁ(xz)—qb(yg))
B Z N,IN_! HH T Y; pe x

N+7N— 1=1 j:]_ / . j
Coulomb field vortices

anti-vortices
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RG analysis of the BKT transition

XY model = Coulomb gas
(vortices = point-like charges with In(r) Coulomb interaction):

Sum over vortex

fugacity positions/numbers
v | .
NN T 2. 72 J &2z Z (Vo) +i 3, (d(zi)—d(ys))
_ . . - Ty V2, i (P )= PLY;
4 3 I et oo TG
N_|_,N_ 7/:1]:1 . j
vortices

Coulomb field
anti-vortices

_ N/D¢ 6—fd2:13 [%(qu)Q—chos qb]
0 )

temp.  fugacity
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RG analysis of the BKT transition

XY model = Coulomb gas
(vortices = point-like charges with In(r) Coulomb interaction):

Sum over vortex

fugacity positions/numbers
D .
N_|_ZN_ + _

_ < 2. 32, — [ d?z T (Vo) +i Y, ((wi)—a(y;))
Z2=N 2>, v ) H 1 dnd yj/qu6 | y

N+7N— 1=1 j:]_ / . J
Coulomb field vortices

anti-vortices

_ N/D¢ 6—fd2:13 [%(qu)Q—chos qb]
0 )

temp.  fugacity

The XY model is equivalent to the Sine-Gordon model
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Classical XY model BKT transition = zero temperature quantum transition in

Sine-Gordon model: T 9
L= §(V¢) — 2z cos ¢
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Classical XY model BKT transition = zero temperature quantum transition in

Sine-Gordon model: T 9
L= §(V¢) — 2z cos ¢

1 22
New variables: u=1 ST U= T A2
Perturbative B-functions: By = —20)° : By = —2uv
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units of XY model interaction strength
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Classical XY model BKT transition = zero temperature quantum transition in

Sine-Gordon model: T 9
L= §(V¢) — 2z cos ¢

1 22
New variables: u=1 ST U= T A2
Perturbative B-functions: By = —20)° : By = —2uv

~ A\ = UV cutoff at vortex core 4

~ Dimensionful quantities in
units of XY model interaction strength

oT<T.
*bound vortices X

etrivially conformal
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Classical XY model BKT transition = zero temperature quantum transition in

Sine-Gordon model: T 9
L= E(qu) — 2z cos ¢

1 22
New variables: u=1 ST U= T A2
Perturbative B-functions: By = —20)° : By = —2uv

v

~ A\ = UV cutoff at vortex core
~ Dimensionful quantities in
units of XY model interaction strength

oT<T.
*bound vortices X

etrivially conformal
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1 1 2z ”
CTET T YT TAC K/T T
6’11, — _QUZ 9 6@ = —2uv
Newer variables: 1
T=(u+0v), k= (u® — v?)
Br =k — T° ; Br =0
P Nonperturbative
'y .
region
.
/ K >K « (T<Te)
K = Ky Ry = 0

K<k« (T>Te)
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B: Kk>0: Conformal
(bound vortices)

\ T

Correlation length in BKT transition:

For small negative K, assume
T small & positive in UV

k<O finite &
T blows up in RG time (unbound vortices)

dr T
t: p—

B(r)  2V-k
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B: Kk>0: Conformal
(bound vortices)

\ T

Correlation length in BKT transition:

For small negative K, assume
T small & positive in UV

k<O finite &
T blows up in RG time (unbound vortices)

dr T
t: p—

B(r)  2V-k

..giving rise to an IR scale (like Aqcp) which sets the scale for the finite
correlation length for o<O:

fBKT K
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So far:

® BKT transition = loss of conformality via fixed point merger

® Mechanism of fixed point merger in general gives rise to "BKT

. "
scaling:
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So far:
® BKT transition = loss of conformality via fixed point merger

® Mechanism of fixed point merger in general gives rise to "BKT
scaling”:

. s
~ A, e Viers

A

IR

Next: other examples:

® QM with 1/r? potential
® AdS/CFT

® Defect Yang-Mills

® QCD with many flavors
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Example: QM in d-dimensions with 1/r? potential

V(r)

—V2+V(r)—K]y=0, V()=
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Example: QM in d-dimensions with 1/r? potential

V(1)

—V2+V(r)—K]y=0, V()=

k=0 solutions: ¥ =c_r"— 4+ cyor’"

V:I:—(¥> + /K — ks . — (d;2>2
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Example: QM in d-dimensions with 1/r? potential

V(r)

—V2+V(r)—K]y=0, V()=

k=0 solutions: ¥ =c_r"— 4+ cyor’"

V:I:—(¥> + /K — ks . — (d;2>2

e valid for Ks < K < (Kx+1)

* K < K«: V+ complex, no ground state
®* K = Kx: Vy = V.

e K > (Ks+1): rV~ too singular to normalize
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V24 V() -Ky=0, V()=

k=0 solutions:

(

d— 2

2

)

P

K

72

=c_r’~ 4+cir’t

- VK — Ky /1*:—(

d —

2

2)2
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VPV -k =0, V(r)=-—

72

k=0 solutions: ¥ =c_r"— 4+ cor’"

vy = (d;2> I m*:—<d;2>2

* ¢, =0 or c.=0 are scale invariant solutions

o If c;.#0, Y — c,r¥* for large r (V. > V.)

e to make sense of BC at r=0, introduce 0-function:
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Vi V(r) -k =0, V()=

k=0 solutions: ¥ =c_r"— 4+ cor’"

vy = (d;Q) I m*:—<d;2)2

* ¢, =0 or c.=0 are scale invariant solutions

o If c;.#0, Y — c,r¥* for large r (V. > V.)

e to make sense of BC at r=0, introduce 0-function:
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Vi V(r) -k =0, V()=

k=0 solutions: ¥ =ec_r"| +|cpr’"

vy = (d;2> I m*:—(dQQ)Q

* ¢, =0 or c.=0 are scale invariant solutions

« If c,#0, P — c,r¥* for large r (V4 > V.)

e to make sense of BC at r=0, introduce 0-function:

e rV* dominates at large r -- corresponds to IR fixed point of g

e rV~ dominates at small r -- corresponds to UV fixed point of g
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. Non-perturbative RG treatment of 1/r? potential:

. vo &
regulate with square well: q &P
Oy,
2 | r
K/T r > 1T
v =" ot
—g/ry T >0 o/’

E=0 solution for r>ro: ¢ =c_r"~ + cyr’t
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|. Non-perturbative RG treatment of |/r? potential:
»

, V() 0\&0(
regulate with square well: 4
O,
2 | r
K/T r > 1T
V(’I“) — / 5 ~9/15 |
_g/ro T > TO /1/7“2

E=0 solution for r>ro: ¢ =c_r"~ + cyr’t

Solve for c+/c- (a physical dimensionful quantity)
and require invariance: d(c+/c-)/dro= 0:
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|. Non-perturbative RG treatment of |/r? potential:
»

. vo &
regulate with square well: 4
Oy,
2 I r
K/T T >T0
Vir) = / 5 —9/75
_g/TO T > TO /1/7“2

E=0 solution for r>ro: ¢ =c_r"~ + cyr’t

Solve for c+/c- (a physical dimensionful quantity)
and require invariance: d(c+/c-)/dro= 0:

Find exact B-function for g. Eg, for d=3: plg, @)

2,/9 (k + /g cot \/g — g cot® \/g)
—cot /g + /g csc? /g

K*=-|/4,g* ~ |.36

3 =
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Aside: Even better to define a modified coupling constant

' <f/i/12<(g)>

Condition d(c+/c.)/dro yields exact B-function in d-dimensions:

Oy 5 d—2
57_5_("3 Fa) — (7 — 74) % /Y*——Z

* Toy model is exact!

* Y is a periodic function of g, y=t 0
equivalent

* Aside: Limit cycle behavior for K<Kx:
describes “Efimov states”
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Il. Perturbative RG treatment of K/r? potential:
Kx = -(d-2)%/4 so work in d=2+¢
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Il. Perturbative RG treatment of K/r? potential:
Kx = -(d-2)%/4 so work in d=2+¢ 8-function

s = faatx (waw -+ Tyiytyy) €

2m
_ / dt dix dy o1 (¢, )01 (£, y) B(t,y)0(t, x)

(

IaY
x —y|?

propagator: —— p?/2m

contact vertex: ITGLL

2mik 1
€ |ql

“meson exchange”:
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Il. Perturbative RG treatment of K/r? potential:
Kx = -(d-2)%/4 so work in d=2+¢ 8-function

s = faatx (waw -+ Tyiytyy) €

2m
_ / dt dix dy o1 (¢, )01 (£, y) B(t,y)0(t, x)

K

x -y’
(
propagator: —— p?/2m Find g runs: E + ><><
2
contact vertex: ITGLL B(g; k) = ,ug—g = (/1 + %) — (g —€)?
v
5 L 2mik 1
meson exchange”: T
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Il. Perturbative RG treatment of K/r? potential:

Kx = -(d-2)%/4 so work in d=2+¢ §-function

2
5 — / dt d'x (z'w"atw v =gjww)</

K
- [dedtedty 6l 0u (1Y) Ut y) vl

1
propagator: s o Find g runs: E + XX

' —€ (99 62 9
contact vertex: 1TTgU B(g; k) = ’uﬁ_ — | Kk + 7)) (g —€)

v

“meson exchange”: 2”:“ |;|€ Same as toy model! Kx = -€%/4, gx=¢

Exact, €=1: Kx=-1/4, g*=|.36
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Il. Perturbative RG treatment of K/r? potential:

Kx = -(d-2)%/4 so work in d=2+¢ §-function

2
5 — / dt d'x (fzw“am v =gjwww)</

- [dedtedty 6l 0u (1Y) Ut y) vl
propagator: ;2 Jom Find g runs: E + ><><
contact vertex: Mg © B(g; k) = ug_i — (,.@ + %) — (g — 6)2
“meson exchange”: 2”:"‘ |;|€ Same as toy model! Kx= -€%/4, gx=¢

Exact, €=1: Kx=-1/4, g*=|.36

K>Kx:
>Kx: conformal o (AI2R> N <A3v> e ‘

K=Kx: crifical m m
K<Kx: g blows up in IR BKT scaling

bound state energ
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Conformal phases: measure correlations, not 3-functions!
Look at operator scaling dimensions:
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Conformal phases: measure correlations, not 3-functions!
Look at operator scaling dimensions:

From Nishida & Son, 2007:
e ReplaceV(ri-r2) = V(ri-r2) + Y2 w?|ri?+r?]
e Compute 2-particle ground state energy Eog

* Operator dimension of YY is Ayy =Eo/w
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Conformal phases: measure correlations, not 3-functions!
Look at operator scaling dimensions:

From Nishida & Son, 2007:
e Replace V(ri-r2) = V(ri-r2) + Y2 w?|ri?+r?
e Compute 2-particle ground state energy Eog
* Operator dimension of YY is Ayy =Eo/w

A\ 2-particle wave-

function at |r-r2|=0
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Conformal phases: measure correlations, not 3-functions!
Look at operator scaling dimensions:

From Nishida & Son, 2007:
e Replace V(ri-r2) = V(ri-r2) + Y2 w?|ri?+r?
e Compute 2-particle ground state energy Eg
* Operator dimension of YY is Ayy =Eo/w

L 2-particle wave-

function at |r-r2|=0

As the two conformal theories merge when K— k«, operator
dimensions in the two CFTs merge
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Conformal phases: measure correlations, not 3-functions!
Look at operator scaling dimensions:

From Nishida & Son, 2007:
e Replace V(ri-r2) = V(ri-r2) + Y2 w?|ri?+r?
e Compute 2-particle ground state energy Eg
* Operator dimension of YWY is Ayy =Eo/w

Q\ 2-particle wave-

function at |r-r2|=0

As the two conformal theories merge when K— k«, operator
dimensions in the two CFTs merge

For 1/r? potential -- find for the two conformal theories:

. d+ 2 "+“ = UV fixed point
. AL = (d — | —~— | £ AL N\ n .
[WW] + = (d+vs) ( 2 ) VR =K "-" = IR fixed point

Note: (A:+A.) = (d+2): scaling dimension of nonrelativistic spacetime.
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Analog in AdS/CFT:
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Analog in AdS/CFT:

d
1
AdS: ds® = > (dz2 + Z dxr?)
i=1
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Analog in AdS/CFT:

d
1
AdS:  ds® = ) (d2‘2 + Z dxf)

1=1

Massive scalar in the bulk
two solutions to eq. of motion, corresponding to two different CFTS:

o = C_|_ZA+—|-C_ZA_

- fme 4 (3)°

g::\/mQ—mz b~

Ay =

\VJISE
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Analog in AdS/CFT:

d
1
AdS:  ds® = ) (d22 + Z dCUzQ)

1=1

Massive scalar in the bulk
two solutions to eq. of motion, corresponding to two different CFTS:

o = c+zA+—|—c_zA—

e+ (3)
AdS

Ay =

N,

%::\/mQ—

e (A;+A.)=d= spacetime dim of CFT
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Analog in AdS/CFT:

d
1
AdS:  ds® = ) (d22 + Z da:f)

1=1

Massive scalar in the bulk
two solutions to eq. of motion, corresponding to two different CFTS:

o = c+zA+—|—c_zA—

e+ (3)
AdS

aXov awm

_ ope’

Ay =

N,

d 3 2 Dx
7 £ /m?—m]

QM

e (A;+A.)=d= spacetime dim of CFT

e when m? = m«2 = -d?/4 , A:=d/2
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Analog in AdS/CFT:

d
1
AdS:  ds® = ) (d2’2 + Z dazf)

1=1

Massive scalar in the bulk
two solutions to eq. of motion, corresponding to two different CFTS:

o = C_|_ZA+—|—C_ZA_

e+ (3)
AdS

Ay =

\VJISE

.\—’
%::\/m2—m2 bx
QM

e (A,+A)=d= spacetime dim of CFT |[* (A*yy+A yy)=(d+2)= conformal wt.
of nonrelativistic d-space+time

e when mé= m« = -d?/4 , A:=d/2 |[o kK = Kx = -(d-2)2/4 = A.=(d+2)/2

o Instability (no AdS or CFT) for e Conformality lost for K< K«
m?2 < m«2 (B-F bound)
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AdS/CFT contd:

As with QM example, 2 different solutions = 2 different CFTs
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AdS/CFT contd:

As with QM example, 2 different solutions = 2 different CFTs

A

Y = Fo< Zgrav. N ZCFT [SDO]
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AdS/CFT contd:

As with QM example, 2 different solutions = 2 different CFTs

A

Y = Fo< Zgrav. N ZCFT [900]

P ADez t

z—0
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AdS/CFT contd:

As with QM example, 2 different solutions = 2 different CFTs

Ay
P = ¥o~ i Zgrav. BN, ZCFT [SDO]
@j)@oZAJF t
¥ = JZA— : Zgrav. — ZCFT[J]
-\

= [ Do zerr fple 40
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AdS/CFT contd:

As with QM example, 2 different solutions = 2 different CFTs

Ay
P = ¥o~ i Zgrav. BN, ZCFT [SDO]
@ﬁSOOZAJF t
¥ = JZA_ : Zgrav. — ZCFT[J]
-\

= [ Do zerr fple 40

/\ﬁ

UV fine-tuning: m2pZ..adds OO operator. Eg: O=pyp, OO0 =PpYPyY
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AdS/CFT contd:

As with QM example, 2 different solutions = 2 different CFTs

Ay
¥ = Yo~ g Zgrav. R ZCFT [SOO]
SOTSOOZAJF t
g I o A / e
QO = JZA_ : Zgrav. — ZCFT[J]
{ _ Yo

= [ Do zerr fple 40

/\%

UV fine-tuning: m2pZ..adds OO operator. Eg: O=pyp, OO0 =PpYPyY
> = analog of d(r) in QM example tuned to unstable UV fixed pt.
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A relativistic example: defect Yang-Mills theory
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A relativistic example: defect Yang-Mills theory

~ spatial
dimensions

Charged relativistic fermions on a d-dimensional defect
+ 4D conformal gauge theory (eg, N=4 SYM)

- 1 a a, vV
S = /dde oy D) 12 /d4:13 o, FF
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A relativistic example: defect Yang-Mills theory

~ spatial
dimensions

Charged relativistic fermions on a d-dimensional defect
+ 4D conformal gauge theory (eg, N=4 SYM)

- 1 a a, vV
S = /dde oy D) 12 /d4:13 o, FF

R g doesn’t run
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g doesnt run by construction

Expect a phase transition as a function of g

(

- 0  9<g.
AL 9> 9
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g doesnt run by construction

Expect a phase transition as a function of g

(

" 0 g<g«
AL 9> 9

Add a contact interaction to the theory (as in QM & AdS/CFT
examples!) and study its running:

AS = / Az (—%(%ﬂﬁf)
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g doesnt run by construction

Expect a phase transition as a function of g

(

" 0 g<g«
AL 9> 9

Add a contact interaction to the theory (as in QM & AdS/CFT
examples!) and study its running:

AS::/J“%B(—§@W¢&¢V)

Phase transition is in perturbative regime for d=1+¢ (spatial
dimensions of "defect”): compute B-function
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S =

| /€ pole for d=(1+¢€)
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2 N
Bc) = gﬂ €c — 2—;02
1 [ 72 5 N, er \ 7
p— e _ — C_ -
2T N, g 2T N,
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2
_ 9 ~ Ne 5
6(6) - 27 € 27TC

1 e 5 Ne €m ?
o\ N )T \"T .
e Find BKT transition at g% = g«? = (&m)%/Nc

A ~ Auy €XP[-T|'/~/(92-9*2)]

e Schwinger-Dyson gap eq (rainbow approx) gives
qualitatively same results
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Back to QCD at LARGE N, and Ns:

asymptotic

freedom 4. conformal trivial
| - >
0 (YY) #0  x 11/2 X

gauge coupling: O(x

0-

Transition at x=x.?
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Back to QCD at LARGE N, and Ns:

asymptotic

freedom 4. conformal trivial
| - >
0 (YY) #0  x 11/2 X

gauge coupling: oix

0-

Transition at x=x.?

Schwinger-Dyson (rainbow approximation):
Miransky 1985

Appelquist, Terning, Wijerwardhana 1996

- -
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Back to QCD at LARGE N, and Ns:

asymptotic

freedom 4. conformal trivial
| - >
0 (YY) #0  x 11/2 X

gauge coupling: O(x

0-

Transition at x=x.?

Schwinger-Dyson (rainbow approximation):

Miransky 1985
g% Appelquist, Terning, Wijerwardhana 1996

Found: BKT scaling for <\pWs>...not rigorous, but qualitatively correct?
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Conjecture: loss of conformality for QCD at x. is of BKT type, due
to fixed point merger.
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Conjecture: loss of conformality for QCD at x. is of BKT type, due
to fixed point merger.

3
A”_~"QcDh
Apy 2- | A+ A= 42
ss~~ ~~~~~ QCD*
A- ~~~~~~~~~
1 N Xer X
=11/2

DAVID B. KAPLAN FEB. 22 , 2010

Monday, February 22, 2010



Conjecture: loss of conformality for QCD at x. is of BKT type, due
to fixed point merger.

3
A* QCD k-»Free fermions
Apy 2- | A* + A= 42
.. QCD*
A- ~~~~~~~~~
1 N Xer X
=11/2
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Conjecture: loss of conformality for QCD at x. is of BKT type, due
to fixed point merger.

3
A* QCD | & Free fermions
Ay 2- | A* + A= 42
... QCD*
N T K-Free boson
1 N Xer X
=11/2
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Conjecture: loss of conformality for QCD at x. is of BKT type, due
to fixed point merger.

3
A* QCD | & Free fermions
Ay 2- A* + A= 42
ss~~ ~~~~~ QCD*
N T K—Free boson
1 N Xer X
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Conjecture: loss of conformality for QCD at x. is of BKT type, due
to fixed point merger.

A* QCD | & Free fermions

Agy 2- | f A+ A = 42

S
~
~
~§
~

K-Free boson

~
~
~
~
~
~
~
~
~
..
—

Near Banks-Zaks (IR) fixed point:
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Conjecture: loss of conformality for QCD at x. is of BKT type, due
to fixed point merger.

A* QCD | & Free fermions

Agy 2- | f A+ A = 42

S
~
~
~§
~

K-Free boson

~
~
~
~
~
~
~
~
~
..
—

Near Banks-Zaks (IR) fixed point:
QCD:

A-I-LI)(D — 3 - #gch

(almost free quarks)
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Conjecture: loss of conformality for QCD at x. is of BKT type, due
to fixed point merger.

A* QCD | & Free fermions

Agy 2- | f A+ A = 42

S
~
~
~§
~

K-Free boson

1 ——— 3¢
Xpz

Near Banks-Zaks (IR) fixed point:

QCD: Partner theory QCD*:
+ - +
Nyp = 3 - # 2N, Ay = d-Ayi = 1+ # g?Nc
(almost free quarks) (almost free scalar?)
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o

; |
- WANTED
I'\ |Il
\] j

‘o (onformal theory
 defined at nontrivial
UV fixed point |

__—\\

oo

: |
- to merge with @D
it] at X=X,
’\ LAST SEEN WITH WEARLY
c, y

;’ GOUPLED SGALAR f
PSS —
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fﬁ.ﬁ_ - . |

Haven’t found a Lorentz invariant

|
WANTED  perturbative example

. with:

oo Conformal thery %
defined at nontrivial ) “eally coupled scalar;

‘ OV fixed point (i) full SU(Ng)xSU(Ny) chiral symmetry
Ir‘ {0 merge with @CD ! (iii) Matching anomalies
%51 at X=X,
© LAY SEIN WITH WEARLY
COUPLED SCALAR |
P S \
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Haven’t found a Lorentz invariant

WANTED  perturbative example

with:

'1

oo~ Gonformal theory
- tefined at nontrivial

UV fized point
S merge with @CD - (iii) Matching anomalies

| (i) weakly coupled scalar;

(ii) full SU(Nf)xSU(Ny) chiral symmetry

ll — _,.'i
at X i . Look for nonperturbative QCD* on the lattice?

LAST SEEN WITH WEAKLY One place to start: strong/weak transition for QCD
COUPLED SCALAR ' with Nrin conformal window?

| N—— e —— (A, HasenfratZ)

conformal phase strong coupling phase
—— < ] > >
sk
0 q- gy 9

QCD* possibly at g.*?
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Conclusions:
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Conclusions:

I. Fixed point annihilation appears to be a generic
mechanism for the loss of conformality
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Conclusions:

I. Fixed point annihilation appears to be a generic
mechanism for the loss of conformality

II. Leads to similar scaling as in the BKT transition:
AR ~ Auv e[-11/~(-K-Kx)]
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Conclusions:

I. Fixed point annihilation appears to be a generic
mechanism for the loss of conformality

II. Leads to similar scaling as in the BKT transition:
AR ~ Auv e[-11/~(-K-Kx)]

III. Both relativistic & non-relativistic examples
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Conclusions:

I. Fixed point annihilation appears to be a generic
mechanism for the loss of conformality

II. Leads to similar scaling as in the BKT transition:
AR ~ Auv e[-11/J/(-K-Kx)]

III. Both relativistic & non-relativistic examples

IV. Analog in AdS/CFT; implications for AdS below the
Breitenlohner-Freedman bound?
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Conclusions:

I. Fixed point annihilation appears to be a generic
mechanism for the loss of conformality

II. Leads to similar scaling as in the BKT transition:
A ~ Auv e[-11/J(-K-Kx)]

III. Both relativistic & non-relativistic examples

IV. Analog in AdS/CFT; implications for AdS below the
Breitenlohner-Freedman bound?

V. Implications for QCD with many flavors? 1Is there a pair
of conformal QCD theories? What is QCD*?
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Conclusions:

I. Fixed point annihilation appears to be a generic
mechanism for the loss of conformality

II. Leads to similar scaling as in the BKT transition:
A ~ Auv e[-11/J(-K-Kx)]

III. Both relativistic & non-relativistic examples

IV. Analog in AdS/CFT; implications for AdS below the
Breitenlohner-Freedman bound?

V. Implications for QCD with many flavors? 1Is there a pair
of conformal QCD theories? What is QCD*?

VI. Finding QCD* should be on field theory / lattice QCD
"to-do” list.
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