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The 2D Hubbard Model

H[aT, al = Z 5(p)a;§7oap,g + UZ ny(x)n_(x)

per* xelr
o=+

e no apparent dominant energy scale
e no apparent MF order
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The 2D Hubbard Model

n
H([al, a] = Z s(p)a“;ﬁap’a + UZ ny(x)n_(x) <T> tQ O

pe:r; xelr
e no apparent dominant energy scale @P\
e no apparent MF order <l> Q

e high- T, cuprates near half filling (?)
[Anderson 1987, Zhang and Rice 1988]
e van Hove filling: Ve = 0 on Fermi surface

o logarithmic divergence in density of states
® may increase T.
e interplay FM and SC
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The Functional Renormalization Group (or "exact")

Idea [Wilson, 1973]
Integrate all fluctuations systematically step by step. J

@ sort fluctuations by energy, inverse length, or temperature scale A
@® integrate fluctuations with scale > A

© calculate the change of the vertex functions as A decreases

O if A — 0 can be taken, obtain full vertex functions of the model
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The Functional Renormalization Group (or "exact")

Idea

[Wilson, 1973]
Integrate all fluctuations systematically step by step. J

@ sort fluctuations by energy, inverse length, or temperature scale A
@® integrate fluctuations with scale > A

© calculate the change of the vertex functions as A decreases
O if A — 0 can be taken, obtain full vertex functions of the model

Advantages
e manages to treat infrared (also UV) singularities
e does not depend on scaling Ansatzes

o allows to make controllable approximations [reidman, knsrrer, Trubowitz, Balaban, Gallavortti, Salmhofer]
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The Interaction Vertex

WA[V] = %/dpl...dpg,v/\(phpz,m) Z Eg(Pl)Ew(P2)¢o'(P3)¢a(P4)

e{+—1}
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The Interaction Vertex

Vo (P1) Y 51 (P2) Vo (P3) s (Pa)

.

d =
an
= + +
=Va(p1, p2, p3)

1
WAV] = 5/dpl...dp3V/\(,01aPz7P3) Z

o0’

e{+—-1}

e one—loop approximation

N
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The Interaction Vertex

Vo (P1) Y 51 (P2) Vo (P3) s (Pa)

.

d =
an
2 + +
=Vi(p1, P2, p3)

1
VA[\U] = E/dpl...dP3VA(P1aP27P3) Z

o0’

e{+ -}

e one—loop approximation

e 3 scale regimes of the RG flow Honerkamp and Salmhofer, 2001
| weak | instabilities | (possible) symmetry
! interaction ! emerge ! breaking A0
Mo Ac
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N—-Patch Schemes

e neglect frequency dependence
e divide momentum space into N patches

e solve ~ N3 ordinary differential equations

Zanchi and Schulz, 1998
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N—-Patch Schemes

e neglect frequency dependence

e divide momentum space into N patches

e solve ~ N3 ordinary differential equations

Tem peratu re RG Flow Honerkamp and Salmhofer, 2001
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Zanchi and Schulz, 1998

e instabilities at van Hove filling

o ferromagnetism not artifially
suppressed
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Parametrization of the Vertex Function

d A

& =
- 2 + +
=V(p1, p2, p3)

Observation:  The leading weak coupling instabilities are mainly
determined by the singular momentum and frequency
structure of the flow equation.
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Definition of 3 Channels

IR

&2 (p1, p3, p1 + p2)

N (p1, p2, 3 — p1)

X
|

[l
~
|
N
|
N

®N(p1, p2, P2 — p3) +

mit ORe = O = & =0
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Definition of 3 Channels

IR
|

TLYX

mit ORe = O = & =0

&2 (p1, p3, p1 + p2)

IR

®N(p1, p2, P2 — p3)

The vertex function
V(p1,p2,p3) = U — q’é\c(Pl, p3, p1+ p2) + q’G(Pl, P2, P3 — p1)

1 1
+5®u(pL, P2, p2 = P3) = SP(Pr, P2, P2 — P3)
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The Effective Two-Fermion Interaction

VALV = Vi [W] + VEIV] + VIIV] + V]

3

VA =~ [ dadq'di Oh(a.q'.1) Y (V@01 - 0)) ((@)ov(1 - )

J=0

"superconductivity"”
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The Effective Two-Fermion Interaction
VAIV] = Vi V] + VE[V] + VI [V] + VA V]

3

VAW = -1 /dqdq d/ ®(q,q Z( q)e (/- )) (\U(q')o(J)\U(I— q’))

J=0

"superconductivity”

ij

YA = — 2 /dqdq al ®MNa, q Yo Dw(q + /)) (\U( 7)o DV(q — /))

J:1

"magnetism”

VAWl =~ [ dadd'dr (.. (T(@w(a + ) (¥ )w(e' - 1)

"forward scattering”
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Decomposition of the Superconducting Channel

00(9,9' 1) =Y Drn(Dfm(3 — Q)fa(3 — @') + Rec(9, ', )

= % + Rsc(q,4', 1)
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Decomposition of the Superconducting Channel

Z Dmn m % - )fn(% - q,) + Rsc(q7 q/a /)

= %;7 + RSC(qa qla /)
that is,
Vs/é[w] ——Z/d/ Dpmn(1) Z/dq (J)\U(/ ))fm(é —q)
[ aq (W&o w0~ o))l — ) + Rl
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Decomposition of the Superconducting Channel

04(q,',1) =Y Drn(N)fin(3 — @)fa(3 — @) + Rec(a, 9", )

= L + Ric(g,q'.1)
For a curved and regular Fermi surface
e particle-hole graphs are marginal

e the most attractive eigenvalue of D(0) determines symmetry of the gap

e particle-hole graphs induce attractive eigenvalues of D(0)
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Magnetic and Forward Scattering Channel

O, q ) =D Mun(Dfm(a+ 3)fa(a’ = 3) + Ru(q. 4’ 1)

q){(\(q, q, ) = Z Kinn (1) fm(q + %)fn(q, - %) + Re(q, q, 1)

mn

= Y A + Rdaa)
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Channel Decomposition: Summary

bilinears:

Y = /dq ()0 (1~ q)fulf —q)

_QK— /dq U(q)o D W(q+1)fulg+ 5)
A - [aFora s+ b
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Channel Decomposition: Summary

= U { 3G+ ]
v3 P PR fem

b =

Remainder term R
e under control for curved and regular Fermi surfaces

e in general: choose f's such that they are "small”

. is dropped at first.
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The Boson Propagator Flow

e e (e
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The Boson Propagator Flow

2
VNG =P | O - ] -3 I+§E
three examples, how the square is taken:

OO0

(@)
o) ()
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The Boson Propagator Flow

e e (e
P—=-Ry 3>—<K+I-2+%I-%E
P Teg -1 4]
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Specific Set-up of the RG Flow

e RG scale A = Q is decreased in the flow

1 Pb
o)t i Rt

e treat scales Q > Qg by perturbation theory in Q%
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Specific Set-up of the RG Flow

RG scale A = Q is decreased in the flow

1 Pb
ipo—e(p) +p py+Q2

treat scales £ > €y by perturbation theory in Q%

form factors: only
filp)=1 (s-wave)
f(p) = cos px — cos py (di2—y2-wave)

boson propagators:

e neglect frequency dependence
e approximate momentum dependence numerically [step functions with high
accuracy for transfer momenta = (0, 0), (7, )]
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Instabilities at Van Hove Filling, U =3t, and T =0
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Instabilities at Van Hove

Filling, U =3t,and T =0
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Remainder Estimation . owos i, c. Honerkamp, w. saimhoter
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And Now?

The proposed parametrization of the vertex function
e allows to identify leading instabilities,
e shows that the vertex function is singular only at points, and

e allows Hubbard-Stratonovich transformations.
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And Now?
— Q0

The proposed parametrization of the vertex function

o allows to identify leading instabilities,
e shows that the vertex function is singular only at points, and

e allows Hubbard—Stratonovich transformations.

Continuation of the RG flow into an ordered phase

e fermions samhofer et al.

® bosoNS Metzner et al.
° fermions and bOSOﬂS Wetterich et al., Metzner et al., Kopietz et al.

Y
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Effective Model at Scale €,

eg. keep only d,>_,2-wave superconductivity
1 _
z= /D[\IJ] exp { = 5(V, G5 W) — (X, DuX) }
with

X() =5 [ daW(@F(1 - ) i} -0



Effective Model at Scale €,

eg. keep only d,>_,»-wave superconductivity

z= /D[\U] exp{ - %(w, G W) = (X, DuX) |

with

(b)

Ga(p) = 1 Q?
P oo —ep) 1 PR+ 2
/l\

suppresses all fermions
that have already been
integrated out
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Conclusion and Outlook

The proposed decomposition

preserves the essential structure of the one-loop RG,

e reduces computing cost, O(N3) — O(N) ODEs,

e reveals point-like singularities of the interaction vertex, and

e gives effective vertices near 2. that can be directly transformed into an
effective theory of order parameter fields.
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Conclusion and Outlook

The proposed decomposition
e preserves the essential structure of the one-loop RG,
e reduces computing cost, O(N3) — O(N) ODEs,
e reveals point-like singularities of the interaction vertex, and
e gives effective vertices near €2, that can be directly transformed into an
effective theory of order parameter fields.

Work in progress:
e adaptive flow of Q-dependent form factors
e frequency dependence of the boson propagators
o Q) < Q.: competition of superconductivity and ferromagnetism?
pseudo-gap phase?
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