Conformal or Walking? Monte Carlo Renormalization Group studies in technicolor-inspired models

RG Workshop, Seattle, Feb. 2010

Anna Hasenfratz University of Colorado

Beyond Standard Model physics on the lattice

Many of interesting candidates are fermion-gauge systems

In Euclidean space they can be discretized

- \rightarrow they turn into 4d statistical systems
- \rightarrow identifying phases, critical points, measuring critical exponents
 - can be done just like in a statistical physics

Dictionary:

m or m _q	1	fermion mass of N _f degenerate fermions
g	1	gauge coupling of SU(N _c) gauge system
eta	:	either β =2N/g ² or
		$\beta = \mu \text{ dg/d}\mu = -b_0 \text{ g}^3 - b_1 \text{ g}^5 + \dots$
		RG β function
γ_m	:	mass anomalous dimension, γ_m =y _m -1

If the system is asymptotically free it can be -confining and chirally broken (small N_f) or -conformal in the m_q=0 limit (increasing N_f) At large N_f asymptotic freedom is lost.

(arrows: UV to IR) **QCD** like Conformal confining confining m m **IRFP** bulk β=6/g² *β*=6/g²

We want to distinguish QCD-like and conformal systems:

Lattice simulations can connect the perturbative FP and strong coupling

- Found IRFP? Done 🖌
- No IRFP? Show that it is confining before a bulk transition is reached
- Strong lattice artifacts can interfere

Outline

- The bare step scaling function as an alternative to the RG β function
- Monte Carlo Renormalization Group method
 - The 2-lattice matching approach
 - Optimization
 - The role of different RG transformations
- Some results:
 - Pure gauge SU(3) testing case for MCRG
 - N_f=8,16,12 fundamental fermions, SU(3) gauge
 - The steps scaling function
 - The anomalous dimension of the mass

The step scaling function around a UVFP

I measure the bare differential step scaling function s_b (instead of the RG β function)

 $s_b(\beta) = \beta - \beta'$ where $\xi(\beta) = \xi(\beta')/2$ ($\beta = 2N_c/g_0^2$)

 $\boldsymbol{\xi}$ is the correlation length defined by some physical mass

- Can be measured directly or

RG flow lines along a relevant direction (UVFP):

 $\xi = \infty$

– do simulations at β and $\beta'(m=0)$

do RG blocking and compare the blocked actions

- if S($\beta^{(n)}$)= S($\beta^{(n-1)}$)--> a(β)=a($\beta^{(n-1)}$)/2

- the step scaling function is

s_b(β)=lim_{n_b $\rightarrow \infty$} (β - β ')

• The location of the FP on the critical surface depends on the RG transformation

• Tuning free parameters in the RG transformation can pull the FP and its RT close, reducing systematical errors

Along a relevant direction $s_b(K)$ is universal (up to lattice artifacts)

The step scaling function in a conformal system

In the chiral limit $\xi = \infty$ everywhere !

 $s_b(\beta)$ can be defined through the RG flow or the running coupling

$$\begin{split} s_{b}(\beta) &= \beta - \beta' \text{ where } S^{(n)}(\beta) = S^{(n-1)}(\beta') \\ \text{or} \\ g^{2}(\beta;L) &= g^{2}(\beta';L/2) \qquad (\beta = 2N_{c}/g_{0}^{2}) \end{split}$$

 $(g^{2}(\beta;L))$ can be defined via Schroedinger functional or other RG transformation)

RG flow lines around an IRFP

On the critical surface (m=0) around an IRFP the flows converge to the FP when $n_b {\rightarrow} \infty$

With finite n_b the flow picks up the slowest flowing operator

The step scaling function of a walking theory

What happens with a walking theory?

- It is QCD-like, ξ is defined, in the scaling region of the UVFP s_b(β) is universal (up to O(a²) corrections).
- The near-zero of the RG β function depends on the RG transformation. At that region $s_b(\beta)$ is RG dependent.

Can confinement and χ SB be established before lattice artifacts overwhelm the system?

Properties of the step scaling function

This is the bare differential step scaling function

- at a fixed point $s_b(\beta^*)=0$
- the value of s_b is related to the scaling dimension of the coupling
 - for AF models $s_b = 3 \ln(2)/(4\pi^2) b_0 + O(g^2)$
 - $s_b > 0$ where the RG β -function is $\beta(g) < 0$ (sorry)
 - s_b in the mass predicts the anomalous dimension of the mass $m = m' 2^{1/y}$

Calculating $s_b(\beta)$ with MCRG

Two actions are identical if all operator expectations values agree

The plaquette* after 1-4 levels of blocking $32^4 \rightarrow 16^4 \rightarrow 8^4 \rightarrow 4^4 \rightarrow 2^4$ (symbols) compare to $16^4 \rightarrow 8^4 \rightarrow 4^4 \rightarrow 2^4$ (lines)

Repeat with many different operators. If they all give the same result, we found matching

 $s_{b}(\beta=7.0) = \Delta\beta = \beta - \beta' = 7.0 - 6.49 = 0.51$

*plaquette: Tr(U_n)

Optimization of the RG transformations

 $\Delta\beta = \beta - \beta'$ at $\beta = 7.0$ as the function of the RG parameter

- Optimizing the RG transformation is essential α_{opt} =0.65
- Optimized RG gives the same matching value at each level, for each operator

 $a(\beta=7.0) = a(\beta'=6.49)/2$ $s_b = \beta - \beta' = 0.51$

SU(3) pure gauge

The bare step scaling function can be calculated in many ways

- Schrodinger fn; Wilson loop ratios,
- physical observables r_0 , T_c
- RG matching: $32^4 \rightarrow 16^4$ and $16^4 \rightarrow 8^4$

- \bullet Excellent agreement between $r_0,\,T_c$ and MCRG
- Both SF and MCRG approach the perturbative value
- Since at β =6 we can test confinement, we know there is no physical IRFP

Compare different RG transformations:

When the flow is governed by a UVFP, $s_b(\beta)$ is universal (up to lattice corrections).

Compare 3 different RG transformations:

Excellent agreement between the 3 RG blockings → attractive region of a UVFP

Why do we need different RG's ?

For matching the RG flow has to approach the renormalized trajectory

- The RT describes "perfect actions", i.e. no lattice artifacts
- A "good" RG should remove most of the UV modes
- A "good" RG will approach the RT faster

This is especially important towards strong coupling where UV fluctuations are large

The 3 Renormalization Group transformations

A real space block transformation averages out the short distance modes Many possibilities - I tried 3 types:

HYP2 like HYP, but with twice blocked links

Compare different RG transformations:

When the flow is governed by a UVFP, $s_b(\beta)$ is universal (up to lattice corrections).

Compare 3 different RG transformations:

Excellent agreement between the 3 RG blockings → attractive region of a UVFP

$N_f=8$ flavors

Expected to be QCD-like: analytical & numerical results

Compare the different RG transformations:


```
s<sub>b</sub>>0 everywhere - no IRFP
```

At β ~5.0 RG matching gets difficult, but by then confinement develops (string tension is a $\sqrt{\sigma}$ ~ 0.2)

Considerably larger difference between the 3 RG blockings non-QCD like behavior?

Look at the anomalous mass dimension

N_f=8 flavors, anomalous mass

4 different couplings (β =4.8,5.0,5.8,6.0), optimal RG from m=0 data

 $m_2 = m_1 2^{-1/y_m}$ $\gamma_m = y_m - 1$

All 3 couplings predict the same value $y_m = 1.02(5)$ close to free field exponent

MCRG optimizes the RG as the function of the bare coupling . Along an irrelevant Warning! direction

-it can pick a different RG at each coupling

-the β function it determines does not correspond to any "real" β function

But: a zero is a zero

N_f=16 flavors

$16^4 \rightarrow 8^4 \text{ MCRG}$

ORIG blocking shows $s_b(\beta)=0$ around $\beta=7.0$

HYP blocking has an IRFP around β =8.0

Different block transformations predict different $s_b(\beta)=0$ but they both show a positive RG β function

N_f=12 flavors

Some history:

- The analytic work of Appelquiest et al predicts N_f=12 is just above the conformal window
- Yale group found an IRFP at fairly strong coupling, using Schrodinger functional method
- Groningen group identified a bulk phase transition characteristic to a conformal system and claim chiral symmetry at weaker coupling
- Two groups (San Diego and Columbia) have studied the spectrum of the model with improved and unimproved actions. Both see QCD-like behavior, though at strong gauge couplings.

If N_f=12 is conformal,

the spectral measurements are in the strong coupling lattice artifact phase

If N_f=12 is QCD-like,

the unimproved actions used with Schrodinger functional are unreliable

N_f=12 flavors with MCRG

Use the same techniques as before; $16^4 \rightarrow 8^4$

- Orig/HYP blockings predicts different s_b(β) functions
- HYP2 hovers around 0 -- likely IRFP
- String tension remains zero at β =4.4 on 16⁴ volumes, but lattice artifacts are large

 N_f =12 could be walking between β =4 and 6 - but that would be strange, the least

N_f=12 - anomalous mass

 β=5.0,5.1 : both where s_b ~0; using optimal RG from m=0 data

Again, consistently

 $y_m = 1.06(3)$

for both couplings, masses

At a strongly coupled IRFP one expects a large y_m

Maybe it is not strongly coupled

Note:

SU(2) with adjoint fermions (DelDebbio et al) looks the same ; SU(3) with sextet (T. DeGrand) has $y_m \sim 1.5$

Summary: N_f=12 flavors

- It would be nice to firmly establish a back flow or confinement
 - Larger volume simulations
 - Different action
 - Different RG transformation
- For now, N_f=12 looks conformal, but with a trivial exponent

Summary: 2- lattice matching MCRG

- Can be optimized by tuning the free parameter(s) of the RG transformation
- Finite volume effects are largely controlled
- Requires relatively small statistics
- Has a lot of built-in consistency checks
 - compare several blocking levels
 - compare several operators
 - compare different RG transformations

Conclusion

MCRG is an effective alternative method to study the phase structure and scaling properties of lattice QFT's

- The method is very universal, straightforward to implement for any other system
- N_f =0-8,16 as expected. N_f =12 is difficult:

- y_m~ 1.0 for 12 flavors; far above the opening of the conformal window? What is next?

- Could the different groups come up with a consistent picture for $N_f=12$?
- N_f=10,(9,11?) would be very interesting
- SU(2) gauge, other fermion representations can be studied the same way

EXTRA SLIDES

MCRG to find the mass anomalous dimension

N_f=16 flavor SU(3) model

Matching in the mass at fixed β = 5.8

 $m_2 = m_1 2^{1/\nu}$

use the same gauge
observables (probably not the best choice)

-at α_{opt} both n_b=2(1) and 3(2) predicts the same matching pair

The critical exponent for the mass

At several couplings, mass values

 $m_2 = m_1 2^{1/\nu}$ $\nu = 1.0(1)$

Free field exponent (close to GFP)

Real space block transformation

The two systems have the same IR (as long as $\xi_l > 1$) K'_i(K_j) describes the evolution of the action (flow lines)

Optimization of the RG transformations

 $\Delta\beta=\beta-\beta'$ at $\beta=7.0$ with different RG paremeter, blocking levels, operators

- Optimizing the RG transformation is essential α_{opt} =0.65
- Optimized RG gives the same matching value at each level, for each operator

 $a(\beta=7.0) = a(\beta'=6.49)/2$ $s_b = \beta - \beta' = 0.51$

2- lattice matching MCRG - in practice:

Two actions are identical if every expectation value measured with the 2 actions are identical

MCRG identifies matched couplings (β , β ') by comparing expectation values after n_b (n_b -1) RG blocking steps.

Example: pure gauge SU(3)

The plaquette after 1-4 levels of blocking $32^4 \rightarrow 16^4 \rightarrow 8^4 \rightarrow 4^4 \rightarrow 2^4$ (symbols) (n_b 2 3 4) compared to $16^4 \rightarrow 8^4 \rightarrow 4^4 \rightarrow 2^4$ (lines) (n_b 1 2 3) $\Delta \beta = \beta - \beta$ ' = 0.51

Walking : not quite that simple....

The RG β function is scheme dependent: $\beta(g) = \mu (d g / d \mu) = -\beta_0 g^3 - \beta_1 g^5 + O(g^7)$ only β_0 , β_1 are universal Change $g \rightarrow g' = \Phi(g)$ $\beta(g) \rightarrow \beta'(g') = (d \Phi(g)/d g)\beta(g)$

Example from DelDebbio (Leiden workshop)

(this is $N_f=0 SU(3)$!)

One really needs to look at physical quantities

Why walking?

2 energy scales:

- weak scale v=250GeV : techni-pion decay constant $F_{\pi} \sim 250 \text{ GeV}$
- cut-off scale (extended technicolor symm. breaking) : Λ_{ETC}

Light fermion masses :
$$m_q(\Lambda_{ETC}) \sim \frac{\langle \bar{\psi}\psi \rangle_{ETC}}{\Lambda_{ETC}^2}$$

 $\begin{array}{ll} \mbox{Flavor changing neutral current limits require} & \Lambda_{ETC} > 10^3 \, {\rm TeV} \\ \rightarrow \mbox{large} & < \bar\psi\psi >_{ETC} \\ \mbox{while QCD like theories have} & < \bar\psi\psi >_{TC} \approx 4\pi F_\pi^3 \\ \rightarrow \mbox{small} & < \bar\psi\psi >_{TC} \\ \end{array}$

The problem can be solved if the running coupling and the anomalous mass remain strong across a large scale : the coupling walks

Lattice simulations can connect the perturbative FP and strong coupling

- Found IRFP? Done 🖌
- No IRFP? Show that it is confining before a bulk transition is reached
- Strong lattice artifacts can interfere

Calculating the step scaling function

- Schroedinger functional method:
 - generalization of the approach used to calculate the renormalized coupling in QCD
- 2-lattice matching Monte Carlo Renormalization Group method:
 - based on Wilson RG description to study critical behavior
 - has been used in QCD and statistical systems extensively
 - Has a lot of built-in checks and controls
 - works with bare quantities
 - could be used to calculate the renormalized coupling in QCD

