Conformal or Walking?
2 Carlo Renormalization Group studies ine
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Beyond Standard Model physics on the lattice

Many of interesting candidates are fermion-gauge systems
In Euclidean space they can be discretized
—> they turn into 4d statistical systems
—> identifying phases, critical points, measuring critical exponents
can be done just like in a statistical physics

Dictionary:
morm, fermion mass of N; degenerate fermions
g ; gauge coupling of SU(N.) gauge system
3 ; either 3=2N/g? or
B =pudgldu =-byg®—b, g°+....
RG ( function
o ; mass anomalous dimension, v, =Y~ 1

If the system is asymptotically free it can be
—confining and chirally broken (small N;) or
—conformal in the m_=0 limit (increasing N)



The lattice phase diagram
(arrows: UV to IR)
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At ® g=0, m=0, both couplings are relevant



The lattice phase diagram
(arrows: UV to IR)
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Existence of IRFP is universal;




We want to distinguish QCD-like and conformal systems:
(arrows: UV to IR)
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Lattice simulations can connect the perturbative FP and strong coupling
e Found IRFP ? Done V

K transition is rggghsg



Outline

« The bare step scaling function as an alternative to the RG 3 function
* Monte Carlo Renormalization Group method
— The 2-lattice matching approach
— Optimization
— The role of different RG transformations
« Some results:
— Pure gauge SU(3) — testing case for MCRG
— N~8,16,12 fundamental fermions, SU(3) gauge
» The steps scaling function
* The anomalous dimension of the mass




The step scaling function around a UVFP

| measure the bare differential step scaling function s,
(instead of the RG ( function)

sp(3) =05-06 where ¢(B) =£(5)/2 (6=2N/gy? )

¢ is the correlation length defined by some physical mass

— Can be measured directly or
— Use RG flow




RG flow lines along a relevant direction (UVFP):

=00

Bry

(4) RT
— do simulations at B and ’'(m=0)

— do RG blocking and compare the blocked
actions

~ifS( B )= S( P )-> a(B)=a(p')/2

— the step scaling function is

(B )=lim,, .. (B-B)

/"« The location of the FP on the critical surface depends on the RG )
transformation

e Tuning free parameters in the RG transformation can pull the FP
and its RT close, reducing systematical errors

to lattice artifacts

S——




The step scaling function in a conformal system

In the chiral limit £ = oo everywhere !

s, () can be defined through the RG flow or the running coupling

sp(8) =B- B where SM(g) = S)(F)

or
g4(B;L) = g (B;L/2) (8=2N//gy? )

(g%(B;L) can be defined via Schroedinger functional or other RG transformation)




RG flow lines around an IRFP

On the critical surface (m=0) around an IRFP the flows converge to the FP when

n,—00

With finite n, the flow picks up the slowest flowing operator

4—

fThe location of the IRFP depends\
on the RG transformation

s, (/) along an irrelevant direction
depends on the blocking (scheme

This is a signal for non-QCD-like
behavior




The step scaling function of a walking theory

What happens with a walking theory?
« |tis QCD-like, ¢ is defined, in the scaling region of the UVFP s, () is

universal (up to O(a?) corrections).

 The near-zero of the RG (3 function depends on the RG
transformation. At that region s, () is RG dependent.

B

Can confinement and xy SB be established before lattice artifacts

overwhelm the system?




Properties of the step scaling function

This is the bare differential step scaling function

« ata fixed point s, (5*)=0

« the value of s, is related to the scaling dimension of the coupling
— for AF models s, =3 In(2)/(47>) b, +O(g?)
— s, > 0 where the RG g-function is 3(g) < 0 (sorry)
— s, in the mass predicts the anomalous dimension of the mass
m=m’ 2




Calculating s,,(3) with MCRG

B, Two actions are identical if all
operator expectations values agree

FP:e

Match operators after several
blocking steps

Tests: SU(3) pure gauge (test system)

blocking: “Original”  —x - «« « + I I +
o, :optimization parameter




The plaquette* after 1-4 levels of blocking
324 - 164 —» 84 — 4% — 2% (symbols) compare to

164 - 8% — 44 — 24 (lines) g |

Repeat with many different operators. If they
all give the same result, we found matching

s,(8=7.0) = AB = 3-8 = 7.0-6.49 = 0.51




Optimization of the RG transformations

ApB=p-F at 5=7.0 as the function of the RG parameter

—_——r « Optimizing the RG
] transformation is essential
a ,=0.65

opt
* Optimized RG gives the same
matching value at each level,
for each operator

0.8 —

A

04—

o2 . a(8=7.0) = a(3'=6.49)/2
0.5 0.6 0.7 0.8 S, = 0-5'=0.51




SU(3) pure gauge

The bare step scaling function can be calculated in many ways
- Schrodinger fn; Wilson loop ratios,

- physical observables r,, T,
- RG matching: 324 —» 16% and 164 — 84
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- Excellent agreement between ry, T, and
MCRG

* Both SF and MCRG approach the
perturbative value

* Since at =6 we can test confinement,
we know there is no physical IRFP




Compare different RG transformations:

When the flow is governed by a UVFP, s, (/) is universal (up to lattice

corrections).
Compare 3 different RG transformations:

0.6 — e
A E °o T Excellent agreement between the
i % % T 3 RG blockings
Z % iz ’ - attractive region of a UVFP
0.4 — % 0: ORIG —
§ X: HYP
¥ s HYPR
| |
6 7 8




Why do we need different RG’s ? i

@ RT

\ 4

FPye

For matching the RG flow has to approach the renormalized trajectory
 The RT describes “perfect actions”, i.e. no lattice artifacts

A "good” RG should remove most of the UV modes

A “good” RG will approach the RT faster

This is especially important towards strong coupling where UV fluctuations
are large




The 3 Renormalization Group transformations

A real space block transformation averages out the short distance modes
Many possibilities - | tried 3 types:

Original — = X+ I I + f X o+ ...

(1-a) a/6 a/6
optimize with o
HYP Me—— = (e-@e-=))
== HYP link

optimize with o,
(play with «,,, a,)

HYPZ2 like HYP, but with twice blocked links




Compare different RG transformations:

When the flow is governed by a UVFP, s, (/) is universal (up to lattice

corrections).
Compare 3 different RG transformations:

0.6 — e
A E °o T Excellent agreement between the
i % % T 3 RG blockings
Z % iz ’ - attractive region of a UVFP
0.4 — % 0: ORIG —
§ X: HYP
¥ s HYPR
| |
6 7 8




N,=8 flavors
Expected to be QCD-like: analytical & numerical results

Compare the different RG transformations:

N I ISR R R s,>0 everywhere - no IRFP

. N;=8 d
0.4 — — At 5~5.0 RG matching gets difficult, but
! o: ORIG by then confinement develops (string
X: HYP . .
g o tension is aVo ~0.2 )
\E’? A 5 5 ¢ % ] Considerably larger difference between
2l s ‘+,.,+  the3RGblockings
x X | non-QCD like behavior?

.
¥ xx
T T Look at the anomalous mass dimension
|




N,=8 flavors, anomalous mass

4 different couplings (5=4.8,5.0,5.8,6.0), optimal RG from m=0 data

Ym=2

oo T T
oromn
oo
s s o W as)

0.00

0.20

m,=m, 2-¥m
V™ ym'1

All 3 couplings predict the
same value

y.,= 1.02(5)

close to free field exponent




N~16 flavors

MCRG optimizes the RG as the function of the bare coupling . Along an irrelevant

direction \,
. o | (i\ﬁg
-it can pick a different RG at each coupling @(

-the 3 function it determines does not correspond to any “real” § function

But: a zero is a zero

ble) b,y 123 ..n

e




N~16 flavors

16* — 8* MCRG

02 ———— T T

- : ORIG blocking shows s, (3)=0

- 0: ORIG 'R S around 5=7.0

| x: HYP l )
o OO N HYP blocking has an IRFP around
L Pt { | p=80
) pFox f |

] Different block transformations

—0.2 _ predict different s, (3)=0 but they
! -both.show.a.positive.RG.3.function
I . 1
5 6 7 8




N~=12 flavors

Some history:

e The analytic work of Appelquiest et al predicts N.=12 is just above the
conformal window

e Yale group found an IRFP at fairly strong coupling, using Schrodinger
functional method

e Groningen group identified a bulk phase transition characteristic to a
conformal system and claim chiral symmetry at weaker coupling

e Two groups (San Diego and Columbia) have studied the spectrum of the
model with improved and unimproved actions. Both see QCD-like
behavior, though at strong gauge couplings.

If N,=12 is conformal,
the spectral measurements are in the strong coupling lattice artifact phase

If N=12 is QCD-like,
the unimproved actions used with Schrodinger functional are unreliable




N~=12 flavors with MCRG

Use the same techniques as before; 164 — 84

0.4

N,=12

0: ORICG
x: HYP
i HYP2

0.2 —

sp(s=2)

» Orig/HYP blockings predicts different

s, () functions
* HYPZ2 hovers around 0O -- likely IRFP
 String tension remains zero at 3=4.4 on
164 volumes, but lattice artifacts are large




N~=12 - anomalous mass

 (3=5.0,5.1: both where s, ~0;
using optimal RG from m=0 data

0o———— T T 1 T T Again, consistently
: Nr=12 : =1.06(3
0.4:_ i Ym=1- ( )
- y for both couplings, masses
0.3 ~ - At a strongly coupled IRFP one expects
g [ i alargey,
- Q.- —
02 ¢ . Maybe it is not strongly coupled
0.1 o
[ & § i Note:
| | i SU(2) with adjoint fermions (DelDebbio et al)
°'°0'o — o1 — 02 — . looks the same ; SU(3) with sextet (T.

m, DeGrand) has y,,~1.5




Summary: N;=12 flavors

* |t would be nice to firmly establish a back flow or confinement
— Larger volume simulations
— Different action
— Different RG transformation

* For now, N:=12 looks conformal, but with a trivial exponent




Summary: 2- lattice matching MCRG

Can be optimized by tuning the free parameter(s) of the RG
transformation

Finite volume effects are largely controlled
ires relatively small statisti

Has a lot of built-in consistency checks
— compare several blocking levels

— compare several operators

— compare different RG transformation




Conclusion

MCRG is an effective alternative method to study the phase structure and

scaling properties of lattice QFT'’s

— The method is very universal, straightforward to implement for any other

system

N,=0-8,16 as expected. N=12 is difficult:

-y~ 1.0 for 12 flavors; far above the opening of the conformal window?
What is next?

— Could the different groups come up with a consistent picture for N=127

— N:=10,(9,117) would be very interesting

— SU(2) gauge, other fermion representations can be studied the same way




EXTRA SLIDES




MCRG to find the mass anomalous dimension

N~=16 flavor SU(3) model
Matching in the mass at fixed 3 = 5.8
m, =m, 2"

- use the same gauge
observables (probably not the
best choice)

-at o, both n,;=2(1) and 3(2)
predicts the same matching pair

plaq




The critical exponent for the mass

At several couplings, mass values

0.5_ T T
m, =m, 2"
v=1.0(1)

0.3 - — Free field exponent (close to GFP)

0.4 — —

0.2 i ]

0.1 o =5.8 —
3 B=6.6

0.0 0.1 0.2 0.3




Real space block transformation

-----
""" = <s(0)s(x> e
_____ (D e

''''' SRR SN SSSNNE SSN ) SO SN
< >
3
Original : Blocked in (b=2)¢
variables : s(x) s’(x) = (average of s(x) in block)
lattice spacing: a a'=2a
correlation length: £=14 @ €1.=6,,12, (but & =€ 1)
Action: {K} {K’}

The two systems have the same IR (as long as ¢, >1)
K'.(K;) describes the evolution of the action (flow lines

)




Optimization of the RG transformations

Ap=06-3 at 5=7.0 with different RG paremeter, blocking levels,
operators

* Optimizing the RG
transformation is essential
a ,=0.65

opt
* Optimized RG gives the same
matching value at each level,
for each operator

0.8 —

A

04—

o2 . a(4=7.0) = a(3'=6.49)/2
0.5 0.6 0.7 0.8 S, = 0-5=0.51




2- lattice matching MCRG - in practice:

Two actions are identical if every expectation value measured with the 2
actions are identical

MCRG identifies matched couplings (6,5’) by comparing expectation
values after n, (n, -1) RG blocking steps.

Example: pure gauge SU(3)

The plaquette after 1-4 levels of blocking

324 —» 16* — 8% — 44 — 24 (symbols)

(n, 2 3 4)

compared to

16* — 8% — 44 — 24 (lines)

(ng, 1 2 3)
ApB=p3-0"'=0.51




Walking : not quite that simple....

The RG g function is scheme dependent:

B(9) =p (dg/d u)=-8,9°-8, g°> +O(g")
only 3, 8, are universal
Change g — g’=9(9)

6(g) — £'(g') = (d ¢(g)/d 9)B(9)

Example from DelDebbio (Leiden workshon)
Bl2)

o 05 10 \ 0 30 35
141

124

104

08t

-10} \

(this is N,=0 SU(3) !)
One really needs to look at physical quantities




Why walking?

2 energy scales:
- weak scale v=250GeV : techni-pion decay constant F_~ 250 GeV
- cut-off scale (extended technicolor symm. breaking) : A,

Light fermion masses : mq(AgTc) ~ <‘ZA¢2>ETC

ETC

Flavor changing neutral current limits require A, > 10° TeV
—large < YY >prC

while QCD like theories have < ) >Sror 47TF7§
—small <Yy >r¢ 8

The problem can be solved if the running coupling 2o
and the anomalous mass remain strong across
a large scale : the coupling walks

W

W

W



The lattice phase diagram
(arrows: UV to IR)
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3=6/g? =6/g°

Lattice simulations can connect the perturbative FP and strong coupling
e Found IRFP ? Done t/
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Calculating the step scaling function

» Schroedinger functional method:

— generalization of the approach used to calculate the renormalized
coupling in QCD

« 2-lattice matching Monte Carlo Renormalization Group method:

— based on Wilson RG description to study critical behavior

— has ' istical systems extensively

— Has a lot of built-in checks and controls

orks with bare quantities

— could be used to calculate the renormalized coupling in QCD




