Conformal or Walking? Monte Carlo Renormalization Group studies in technicolor-inspired models

RG Workshop, Seattle, Feb. 2010

Anna Hasenfratz University of Colorado

Beyond Standard Model physics on the lattice

Many of interesting candidates are fermion-gauge systems In Euclidean space they can be discretized

- \rightarrow they turn into 4d statistical systems
- \rightarrow identifying phases, critical points, measuring critical exponents
	- can be done just like in a statistical physics

Dictionary:

If the system is asymptotically free it can be –confining and chirally broken (small N_f) or –conformal in the m_q=0 limit (increasing N_f) At large N_f asymptotic freedom is lost.

m QCD like m Conformal $\beta = 6/g^2$ $\beta = 6/g^2$ confining and the confining confining to the confining confining IRFP (arrows: UV to IR) bulk

We want to distinguish QCD-like and conformal systems:

Lattice simulations can connect the perturbative FP and strong coupling

- Found IRFP ? Done \checkmark
- No IRFP? Show that it is confining before a bulk transition is reached
- Strong lattice artifacts can interfere

Outline

- The bare step scaling function as an alternative to the RG β function
- Monte Carlo Renormalization Group method
	- The 2-lattice matching approach
	- Optimization
	- The role of different RG transformations
- Some results:
	- Pure gauge SU(3) testing case for MCRG
	- N_f=8,16,12 fundamental fermions, SU(3) gauge
		- The steps scaling function
		- The anomalous dimension of the mass

The step scaling function around a UVFP

I measure the bare differential step scaling function s_b (instead of the RG β function)

 $s_{b}(\beta) = \beta - \beta'$ where $\xi(\beta) = \xi(\beta')/2$ ($\beta=2N_{c}/g_{0}^{2}$)

 ξ is the correlation length defined by some physical mass

- Can be measured directly or
- Use RG flow

RG flow lines along a relevant direction (UVFP):

 $\xi = \infty$

– do simulations at β and β' (m=0)

– do RG blocking and compare the blocked actions

– if S(β(n))= S(β**'**(n-1))--> a**(**β**)**=a(β')/2

– the step scaling function is

 $s_b(\beta)$ =lim_{n_b → ∞} (β - β ')

• The location of the FP on the critical surface depends on the RG transformation

• Tuning free parameters in the RG transformation can pull the FP and its RT close, reducing systematical errors

Along a relevant direction $s_b(K)$ is universal (up to lattice artifacts)

The step scaling function in a conformal system

In the chiral limit $\xi = \infty$ everywhere !

 $s_b(\beta)$ can be defined through the RG flow or the running coupling

$$
s_b(\beta) = \beta - \beta' \text{ where } S^{(n)}(\beta) = S^{(n-1)}(\beta')
$$

or

$$
g^2(\beta; L) = g^2(\beta; L/2) \qquad (\beta = 2N_c/g_0^2)
$$

 $(g^2(\beta; L)$ can be defined via Schroedinger functional or other RG transformation)

RG flow lines around an IRFP

On the critical surface (m=0) around an IRFP the flows converge to the FP when $n_h \rightarrow \infty$

With finite n_b the flow picks up the slowest flowing operator

The step scaling function of a walking theory

What happens with a walking theory?

- It is QCD-like, ξ is defined, in the scaling region of the UVFP $s_{b}(\beta)$ is universal (up to $O(a^2)$ corrections).
- The near-zero of the RG β function depends on the RG transformation. At that region $s_b(\beta)$ is RG dependent.

Can confinement and χ SB be established before lattice artifacts overwhelm the system?

Properties of the step scaling function

This is the bare differential step scaling function

- at a fixed point $s_{b}(\beta^{*})=0$
- the value of s_b is related to the scaling dimension of the coupling
	- for AF models $s_b = 3 \ln(2)/(4\pi^2) b_0 + O(g^2)$
	- $-$ s_b > 0 where the RG β -function is $\beta(g)$ < 0 (sorry)
	- $-$ s_b in the mass predicts the anomalous dimension of the mass $m = m' 2^{1/y}$

Calculating $s_b(\beta)$ with MCRG

Two actions are identical if all operator expectations values agree Match operators after several blocking steps

The plaquette* after 1-4 levels of blocking $32^4 \rightarrow 16^4 \rightarrow 8^4 \rightarrow 4^4 \rightarrow 2^4$ (symbols) compare to $16^4 \rightarrow 8^4 \rightarrow 4^4 \rightarrow 2^4$ (lines)

Repeat with many different operators. If they all give the same result, we found matching

 $s_{\rm b}(\beta=7.0) = \Delta \beta = \beta - \beta' = 7.0 - 6.49 = 0.51$

*plaquette: $Tr(U_{\Pi})$

Optimization of the RG transformations

 $\Delta \beta = \beta - \beta'$ at $\beta = 7.0$ as the function of the RG parameter

- Optimizing the RG transformation is essential α_{opt} =0.65
- Optimized RG gives the same matching value at each level, for each operator

 $a(\beta=7.0) = a(\beta'=6.49)/2$ $s_b = \beta - \beta' = 0.51$

SU(3) pure gauge

The bare step scaling function can be calculated in many ways

- Schrodinger fn; Wilson loop ratios,
- physical observables r_0 , T_c
- RG matching: $32^4 \rightarrow 16^4$ and $16^4 \rightarrow 8^4$

• Excellent agreement between r_0 , T_c and **MCRG**

- Both SF and MCRG approach the perturbative value
- Since at β =6 we can test confinement, we know there is no physical IRFP

Compare different RG transformations:

When the flow is governed by a UVFP, $s_b(\beta)$ is universal (up to lattice corrections).

Compare 3 different RG transformations:

Excellent agreement between the 3 RG blockings \rightarrow attractive region of a UVFP

Why do we need different RG's ?

For matching the RG flow has to approach the renormalized trajectory

- The RT describes "perfect actions", i.e. no lattice artifacts
- A "good" RG should remove most of the UV modes
- A "good" RG will approach the RT faster

This is especially important towards strong coupling where UV fluctuations are large

The 3 Renormalization Group transformations

A real space block transformation averages out the short distance modes Many possibilities - I tried 3 types:

HYP2 like HYP, but with twice blocked links

Compare different RG transformations:

When the flow is governed by a UVFP, $s_b(\beta)$ is universal (up to lattice corrections).

Compare 3 different RG transformations:

Excellent agreement between the 3 RG blockings \rightarrow attractive region of a UVFP

N_f=8 flavors

Expected to be QCD-like: analytical & numerical results

Compare the different RG transformations:

 s_b >0 everywhere - no IRFP

At β ~5.0 RG matching gets difficult, but by then confinement develops (string tension is $a\sqrt{\sigma} \sim 0.2$)

Considerably larger difference between the 3 RG blockings non-QCD like behavior?

Look at the anomalous mass dimension

N_f=8 flavors, anomalous mass

4 different couplings (β =4.8,5.0,5.8,6.0), optimal RG from m=0 data

 m_2 =m₁ 2^{-1/ym} γ_m = y_m-1

All 3 couplings predict the same value y_m = 1.02(5) close to free field exponent

MCRG optimizes the RG as the function of the bare coupling . Along an irrelevant direction **Warning!**

-it can pick a different RG at each coupling

-the β function it determines does not correspond to any "real" β function

But: a zero is a zero

$N_f = 16$ flavors

$16^4 \rightarrow 8^4$ MCRG

ORIG blocking shows $s_b(\beta)=0$ around β =7.0

HYP blocking has an IRFP around $\beta = 8.0$

Different block transformations predict different $s_b(\beta)=0$ but they both show a positive RG β function

N_f =12 flavors

Some history:

- The analytic work of Appelquiest et al predicts N_f =12 is just above the conformal window
- Yale group found an IRFP at fairly strong coupling, using Schrodinger functional method
- Groningen group identified a bulk phase transition characteristic to a conformal system and claim chiral symmetry at weaker coupling
- Two groups (San Diego and Columbia) have studied the spectrum of the model with improved and unimproved actions. Both see QCD-like behavior, though at strong gauge couplings.

If N_f =12 is conformal,

the spectral measurements are in the strong coupling lattice artifact phase

If N_f =12 is QCD-like,

the unimproved actions used with Schrodinger functional are unreliable

N_f =12 flavors with MCRG

Use the same techniques as before; $16^4 \rightarrow 8^4$

- Orig/HYP blockings predicts different $s_{b}(\beta)$ functions
- HYP2 hovers around 0 -- likely IRFP
- String tension remains zero at β =4.4 on 164 volumes, but lattice artifacts are large

N_f=12 could be walking between β =4 and 6 - but that would be strange, the least

$N_f = 12$ - anomalous mass

 β =5.0,5.1 : both where s_b ~0; using optimal RG from m=0 data

Again, consistently

 y_m =1.06(3)

for both couplings, masses

At a strongly coupled IRFP one expects a large y_m

Maybe it is not strongly coupled

Note:

SU(2) with adjoint fermions (DelDebbio et al) looks the same ; SU(3) with sextet (T. DeGrand) has y_m ~1.5

Summary: N_f=12 flavors

- It would be nice to firmly establish a back flow or confinement
	- Larger volume simulations
	- Different action
	- Different RG transformation
- For now, N_f =12 looks conformal, but with a trivial exponent

Summary: 2- lattice matching MCRG

- Can be optimized by tuning the free parameter(s) of the RG transformation
- Finite volume effects are largely controlled
- Requires relatively small statistics
- Has a lot of built-in consistency checks
	- compare several blocking levels
	- compare several operators
	- compare different RG transformations

Conclusion

MCRG is an effective alternative method to study the phase structure and scaling properties of lattice QFT's

- The method is very universal, straightforward to implement for any other system
- N_f =0-8,16 as expected. N_f =12 is difficult:

 $-$ y_m \sim 1.0 for 12 flavors; far above the opening of the conformal window? What is next?

- Could the different groups come up with a consistent picture for $N_f = 12$?
- $N_f = 10$, (9,11?) would be very interesting
- SU(2) gauge, other fermion representations can be studied the same way

EXTRA SLIDES

MCRG to find the mass anomalous dimension

N_f=16 flavor SU(3) model

Matching in the mass at fixed β = 5.8

 $m_2 = m_1 2^{1/\nu}$

- use the same gauge observables (probably not the best choice)

-at α_{opt} both $n_b=2(1)$ and 3(2) predicts the same matching pair The critical exponent for the mass

At several couplings, mass values

 $m_2 = m_1 2^{1/\nu}$ $\nu=1.0(1)$

Free field exponent (close to GFP)

Real space block transformation

The two systems have the same IR (as long as ξ_l >1) $\mathsf{K}'_{\mathsf{i}}(\mathsf{K}_{\mathsf{j}})$ describes the evolution of the action (flow lines)

Optimization of the RG transformations

 $\Delta \beta = \beta - \beta'$ at $\beta = 7.0$ with different RG paremeter, blocking levels, operators

- Optimizing the RG transformation is essential α_{opt} =0.65
- Optimized RG gives the same matching value at each level, for each operator

 $a(\beta=7.0) = a(\beta'=6.49)/2$ $s_b = \beta - \beta' = 0.51$

2- lattice matching MCRG - in practice:

Two actions are identical if every expectation value measured with the 2 actions are identical

MCRG identifies matched couplings (β,β') by comparing expectation values after n_b (n_b -1) RG blocking steps.

Example: pure gauge SU(3)

The plaquette after 1-4 levels of blocking $32^4 \rightarrow 16^4 \rightarrow 8^4 \rightarrow 4^4 \rightarrow 2^4$ (symbols) $(n_h$ 2 3 4) compared to $16^4 \rightarrow 8^4 \rightarrow 4^4 \rightarrow 2^4$ (lines) $(n_b$ 1 2 3) $\Delta \beta = \beta - \beta' = 0.51$

ß

Walking : not quite that simple....

The RG β function is scheme dependent: $\beta(g) = \mu$ (d g /d μ)= $-\beta_0$ g³ - β_1 g⁵ +O(g⁷) only β_{0} , β_{1} are universal Change $g \rightarrow g' = \Phi(g)$ $\beta(g) \rightarrow \beta'(g') = (d \Phi(g)/d g)\beta(g)$

Example from DelDebbio (Leiden workshop)

 $(\text{this is N}_f = 0 \text{ SU}(3))$

One really needs to look at physical quantities

Why walking?

2 energy scales:

- weak scale v=250GeV : techni-pion decay constant $F_\pi \sim 250$ GeV
- cut-off scale (extended technicolor symm. breaking) : A_{ETC}

Light fermion masses :
$$
m_q(\Lambda_{ETC}) \sim \frac{\langle \bar{\psi} \psi \rangle_{ETC}}{\Lambda_{ETC}^2}
$$

Flavor changing neutral current limits require A_{ETC} > 10³ TeV \rightarrow large $\langle \bar{\psi}\psi \rangle_{ETC}$ while QCD like theories have $\langle \bar{\psi}\psi\rangle_{TC} \approx 4\pi F_\pi^3$ \rightarrow small $\langle \psi \psi \rangle_{TC}$ β

The problem can be solved if the running coupling and the anomalous mass remain strong across a large scale : the coupling walks

Lattice simulations can connect the perturbative FP and strong coupling

- Found IRFP ? Done \checkmark
- No IRFP? Show that it is confining before a bulk transition is reached
- Strong lattice artifacts can interfere

Calculating the step scaling function

- Schroedinger functional method:
	- generalization of the approach used to calculate the renormalized coupling in QCD
- 2-lattice matching Monte Carlo Renormalization Group method:
	- based on Wilson RG description to study critical behavior
	- has been used in QCD and statistical systems extensively
	- Has a lot of built-in checks and controls
		- works with bare quantities
		- could be used to calculate the renormalized coupling in QCD

