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Summary

Renormalization and the renormalization group (RG) were originally
developed by physicists attempting to understand the divergent terms
in perturbation theory and the short distance behaviour of quantum
electrodynamics. During the last twenty years, these methods have
been used to unify the construction of global approximations to
ordinary and partial differential equations. Early examples included
similarity solutions and travelling waves, which exhibit the same
anomalous scaling properties found in quantum field theories, but here
manifested in such problems as flow in porous media, the propagation
of turbulence and the spread of advantageous genes. Fifteen years
ago, these methods were extended to asymptotic problems with no
special power-law scaling structure, enabling a vast generalization that
includes and unifies all known smgular perturbation theory methods,
but with greater accuracy and calculational efficiency. Applications
range from cosmology to viscous hydrodynamics.

In this work, RG is applied to differential equations, not field
theories. The problems have no stochastic component nor
necessarily scale-invariance.



Some uses of RG In
applied mathematics

1 Self-similarity, incomplete similarity and asymptotics of nonlinear PDEs

Dimensional analysis; extended dimensional analysis and anomalous exponents
in the long-time behaviour of PDEs; modified porous medium equation;
propagation of turbulence.

2 Singular perturbations: uniformly valid approximations from RG

Perturbed oscillators, boundary layer problems with log e terms, WKB with
turning points, switchback problems; spatially-extended systems and the
derivation of amplitude and phase equations near and far from bifurcations.

3 Numerical methods and under-resolved computation

Similarity solutions are fixed points of RG transformations; velocity selection,
structural stability and the Kolmogorov-Petrovsky-Piscunov problem; universal
scaling phenomena in stochastic PDES; perfect operators.

Note: large and still growing mathematics literature proving rigorous and
formal results about these techniques. Ziane, Temam, DeVille, O'Malley,
Kirkinis and many others ...



Motivation: Why RG for PDES?

We have written the equations of water flow. From experiment, we find a set
of concepts and approximations to use to discuss the solution—vortex streets,
turbulent wakes, boundary layers. When we have similar equations in a less
familiar situation, and one for which we cannot yet experiment, we try to solve
the equations in a primitive, halting, and coafused way to try to determine what
new qualitative features may come out, or what new qualitative forms are a con-
sequence of the equations. Our equations for the sun, for example, as a ball of
hydrogen gas, describe a sun without sunspots, without the rice-grain structure of
the surface, without prominences, without coronas. Yet, all of these are really
in the equations; we just haven’t found the way to get them out.

1e next great era of awakening of human inte well produce a method
of understanding the qualitative content of equations. Todgy we cannot. Today
of see that the water flow equations contai things as the barber pole

structure of turbulence that one sees between rotating cylinders. Today we cannot
seec whether Schrodinger’s equation contains frogs, musical composers, or morality
—or whether it does not. We cannot say whether something beyond it like God
is needed, or not. And so we can all hold strong opinions either way.

Feynman Lectures on Physics, vol 2, chapter 41
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Fig. 6.1a-d. Photographs of the flow between concentric cylinders with the inner cylinder rotating. (The radius ratio is 0.?.)(-) R=~R_; Taylor vortex flow
[6.5]. (b) R/R =10.4; wavy vortex flow [Ref. 6.6, Fig. 19d]. (c) R/R,=12.3; the “first appearance of randomness” in wavy vortex flow [Ref. 6.6, Fig. 19¢]. (d)
R/R ,=23.5; the azimuthal waves have disappeared and the flow is turbulent, although the axial periodicity remains [Ref. 6.7, Fig. 1d]. The visualization of
the flow in these experiments was achieved by suspending small flat flakes in the fluid ; the flakes align with the flow. and variations in their orientation are

observed as variations in the transmitted or reflected intensity

d

ol

fauumg 7 Aoy pue pwlid iqd O Y



CORKSCREW/

2000 + - WAVELETS
T RIPPLE (\WAVY VORTICES
. FEATURELESS TURBULENCE | WAVY INFLOW
T s TURBULENT ] | WAVY /.
< TAYLOR INFLOW
VORTICES | . + TWISTS,
g R /
= MODULATED ‘
- SPIRAL TURBULENCE WAVES WAVY TWISTS
< OUTFLOW
1000 . - -
< /
2 \ o\
z INTERMITTENCY ) FLOW
S“. TAYLOR
J VORTEX
- INTERPENETRATING SPIRALS | [ FLow .
o
e
g SPIRALS
2 COUETTE
COUETTE FLOW FLOW
0 I l ] !
-4000 =3000 =2000 g -1000 0 1000
OUTER CYLINDER RATATION’ RATE —
Fig. 10.1. Flow regimes observed in flow between independently rotating cylinders with radius ratio
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Development of RG methods
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Anomalous dimensions In
partial differential equations
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El_'_'\lLARlTY SoLuTioNS _

IN NON- EQUILIBRIVM PROBLEMS, WE ARG
OFTEN INTERESTED IN SIMILARITY SoLuTions
Wty = £ F(xth)
OoR TRAVELLING WAVES
wix,€) = F(x-vt)

REASON: “THESE SoLuTioNS OFTEN DESCRIBE
LONG TiIME REMAVIOUR

GOoAL : CoMPUTE EXPONENTS &, @
VELOC\TY V
SCALING FUNCTION £

SUEFICES TO ConNSIBER SWUILARITY SoluTies:
ONLY SUBSTITUTION x.=loax ‘E’loa-r
CONVERTS

;F(x-vt) —_> F( zi(_\,)

TRAVELLIN G WAVE SIMILARITY SoLvTioN




DIFFUSION EQUATION

T w(ix,0)

INITIAL VALUE PROBLEM:

2
Qtu = Jz-a‘“,

EAUSSIAN OF WidTH £ 4AnND

MASS m
Lt ~cm
-Xfagrenry |4 P 4 L L7%,
u.(x,t) =me Coet )
(AT (6+LY)
LONG TiME BEHAVIOUR: "
- x /2%
me
Uix,t) = i .
t?:x:l vawt
OR EQUIVALENTLY
-/
w(x,€) -» me
v A— 0 -

t fixed

1.e. ASYMPTOTIC REHAVIOUR OF INITIAL VALVE
PROBLEM GIVEN RBY SIMILARITY SoLUTION

= THE SowoTioN CORRESPONDING To
DELTA FUNCTION INITIAL CONDITION.



DIMENSIONAL ANALYSIS

DIFFUSION EQUATION ExaMmPLE OF CoMMoN  PHENOMENDON

N PHYSICS.,

ExpRrELS PHYSICAL PROBLEM N DIMENSIONLESS

VARIABLES Wy Wau Moy Wa . s M

THEN SoLUTION IS of ForM

m = 5(“03“13'"‘1.""1-"")

IF ONE VARIABLE (e-g.) TTe IS SMALL, THEN

USVALLY SET T,=0.

I-e,

charackrishe dimension of apparabus

T =0
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DIMENSIoNAL ANALYSIS (2)

WE MADE A STRONG ASSUMPTION THAT THe LT

W, =0 EXISTS.  BARENALATT HAS GINEN SBUERAL

EXAMPLES WHERE THIS ASSUMPTION BREAKS DowWN .

CLASSIFY ASYMPToTwCS:

case 1: |17 ~ f(o,mm,, M)  esT, =0 |
CoMMONPLACE (BY CONSTRUCTION)

-
cask 2 s | TT~TI, 3( :TFL. T ;1:'%‘") as'l'l'.-bo

-]
PRESENTS PROBLEMS WHEN 'T OCCURS, FUNCTIN 9 AND
THE EXPONENTS &, o,... &,

MUST B8E DETERMINED,

CASE 3 : NONE OF THE ABOVE

CASE & ERAMPLES IN FLUID MECHANICS,

CRITICAL PHENOMENA, ELECTROMAGNETWM,......
THESE PROBLEMS CAN BE ANALYSED USING

THE RENOCARMALISATION GROUP,



RARENGLATT EQUATION

SEEMINGLY INNOCUOUS MODIAICATION To DIFFUSION EQN,
t ;x‘ w >0
+(1+¢) u<O

dmw =Ddhu D= (®

DESCRIBES PRESSURE IN A FLUID PASSING
THROUGH A PofRouS MediuM WHICH CAN EXPAND AND
ConTRACT IRREVERSIBLY (PRc2E),

PARAMETER € DEPENDS UPON ELASTIC CONSTANTS

OF FLUID, PoReuS MEDIVM,

-t, u <o

(B) IS NOT DERIVABLE FROM CoNTINUITY EGN
ow + ¥-) =0

SO MASS oF DISTRIBLVTION MNOT CoNSERNVNED:

Mm(€t) %= m(0)




BARENRLATT EFan (2)

&~ WHAT 15 LONG TiMG BEWAVIOUR OF (®) (4
A

Fwine) —me— (&)

NO !
w
|'-D'-"i‘(|*6) ® SUBSTITUTE PROPOSED

FoRM INTO (8B),

@ GWES TwWO ORE’s

; D=2 «® CANNOT MATCH 154,24
X(t) DEAVATIVES AT X(t)

BUT  THERE EXISTS A UNIQUE SewwTion
OF THE INITIAL VALUE PRo8LEM WiTH ConTINUOUS

SECOND DERWATIVES (KanenomosTSKAYA 145%)

WE WILL SEE THAT LONG TiIME BEHAVIOUR 1S

Uixe) -},—»ao tb- 4 f (\l—' ? E)

m\omlm dimension,
=x(€)




HEVRISTIC DERWATION

WRITE SOLUTION AS
m (&) - XAk eay)

e
J 2w (t+L°)

\F € 1S SMALL, REmoVAL OF MASS occu®$

Ww (xt'h) =

‘SLONI—‘I. AND DISTRIBOTION ADIABATICALLY ADTULTS
To THE GAUSSIAN FofM ABOVE ((STRICTLY VAL F:.Re:-.o)'
EQuATioN OF MoTioN FoR ™M(+):
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D(») 4
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HEVRISTIC  DerivATION (2)

SoLUTION IN FOoRM

S
= L B
wixa) = _MES o ¥lacaear)
J*ﬂt-l-&')
TiME VARIATION OF MASS
(£-)) -'.v‘ -(:—‘
= m
™ L&) Gy /e
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ax - X /a(6+LY)
wixe) = ML . e

(b0 BT

® MORE CAREFUL RENORMALISATION GrRouf
ANALY SIS SHOWS THAT

X = £ - ol01-€ + O(€)
vane
AND FoRm OF WU(X/t) CoRRECT To O(E),
® EXPANSION FoR o (6) 1S ANALYTIC (Afewon wVasauea)

® LiMiT J=0 SInNGULAR

o NO NOISE IN QARENGLATT £aN OR PARTITion FncTion



INTERPRETATION

€=0 MEASUREMENT AT LONG TIMES OF m(t)
IMPLIES KNOWLEDGE OF INTWAL VALUE m(o)
[{] L) |
(>0 LIMmIT 0.k. SYSTEM FORGETS

INITIAL CONDITION AFTER SUFRICIENTLY

NG TIME Wby — 1»_%_4;{&
Lo IME. T‘i“’” @)
€50 AT LATE TWMES CANNOT INFER ™M(e)

FRoM m™M(t) ALONE. INDEED, ONE -CANNOT
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=0 LIMIT SINGULAR. SYSTEM "REMEMRERS
EXISTENCE OF INITIAL CONDITION WITH NON-ZERO

WIDTH. BUT [AnoMALoVS DIMENSION 1S X?
Tt L
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ANomaLovs Dimengiont AT ChiTeAl fowrs

Two POINT CORRELATION FUNCTION

Glx—4) = &%) L)

.\
ORDER PARAMETER

AT T=T.
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PERTURBATIVE RENORMALISATION

-

JNRITE BARENBLATT EQUATION A

= (

[0e— %32 Juened = § O(X0e)- 1) Dt
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PERTuRBATIVG RenormALSATON(2)

2= |+ "Z_.a.cllﬁ)e"

ChoSE O, ORDER BY OROER IN € So TwAT WGxeE) s AMTE
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m ,/ At d “ J

1€
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PerTuR@BTIVE RenormaLsATon (3)

m LIMINATE LOG TErRM BY SUI\TABLE CHOKE OF "{

- X1k
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ANOMALOUS Dmmslous (5)

(d) CHOSE ONE FRoM FAMILY OF SOLUTIONS

THIS DETERMINES el TiME
Q)
By s /\
, o

(o]

—
Ug (x,8) = Q) [E e *2[) - & ( O(e
wlx®) = Q) L e [|Jz'ﬁ|“+.'+()
THIS PERTURBATIVE SOLUTION VALID FoR trut’

(@) BT wHAve not veT seEciFiED &, Q(t")

QL) oIF £=§ me PT poor for
" T PERTURBATION & = 10° secs,
Q-+ & THEORY VALID ¢ IF WE kNeW Q(E™), WITH
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2 CHOSE "= 14d0°secs. BUT INSIST THAT Ug STAYS
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ANOMALLS DINENSINS (€))

(£) GELLMmN—Low TRICK:

Ug (X,£) 1S INDEPENDENT OF t.

3 [Ue E_d_Q_ =0
ot °0Q dt*

* dUp

P(Q) t JE" = =t Y
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°oQ

pa) = - Q["‘+—-+O( ")

(9) INTEGRATE B - FUNCTLON
¢ +0(¢%)
Qe = (apy) L me ol
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- =X/t 2
Up (x8) = :w e "1+ o)
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RG and singular perturbations

PDEs with no scale invariance



MoTiIVATION
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ResvLTs

RG IS A METHOD TO EXTRACT STRUCTURALLY STABLE

FEATURGY OF MoD#LY oR EFQVATIONS

® Ex: AMPLiTudE EanS  NEs. BiFURCATION PoinTR
RENORMALISATION REMoVES DIVERGENCES IN PERTVREATION

ThRéoRY
@ Ex: SecuLarR TerRMS
RG- VUSES NAIVE PERTURAATIN) THEoRY ONLY,

q
@ Do wNoT ween To Guess € , log6 Terms e

RG- GENGRATES PrOBLEM- SPECIFIC ASTMPTOTIC SEFQVENCE

@ PRACTICALLY SUPERIR. To CoavenTiomAL EWANSION

@ TrP\cALLY AS INTEGRAL REPRESENTATIONS  wikch CAN BE
EXPANDED To REPRODUCE , IF DESIRED, CoNVENTIONAL
EXPANSIONS WITH AL FRACTIANAL PaweRS, LO0GS ETC,

RG ULSES ONLY INNER EXpPAnSION

(4] NO AS_‘Q-!G_’_‘I_'GT:C_ MATCHING NEEDED



BovmDARY LAYER PROARLEMS

® SIMPLE LINEAR. PROBLEM

@ SIMPLE L INERR. PROBLeEM. DoNE
BY WILSoAN | TERATED MAP RG

CDmm;r_n. SvTem™m quuuk‘nou)

® ExAMPLE WITH LOGE GenewraAleDd

BY mwNerR. ExpPANSLON
CTRickY To Do BY MATCHED ASYMP’FoﬂCS)

@ NInLineRR  PRoBLeEM

@ MULTIPLE BounaARY LAYERS



SIMPLE LINEARR BOUNDARY LAYER

ey kS c.,' kY D = O e « 1
DoMwan T
BALANCE BoundARY LAYER OF THICKNESS S=O(G)
AT €=0
RescaLe To &E = 7T

INNER. CoolPMATE

3"4-5 +£J=0

NAIVE EXPANSION yle) = A+ 8B, e Y & G[—A. (T-Ce) O-B.(t't,,)c-‘j
+0(¢€)
S~ TERMS REGAAR AS T-T,»®
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YRy = ALY - 6A(R) (1) + [8(K) +eB(k)(z-1)] € o9

RG €EanN %& +r €A + [%;E '53] e’ +0(*) =0

Va9 :—-:-rea-ocz*)j %=53+o(e‘3

0(e*) RG Ean .3-1'. =-(en+ en) +0(ed)
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a8 = e + e's +O(.€‘
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Simere BL (20

Sorye RG €Eans
To O(eY); m=t
t:t/e

CommenT

® ReProDvcES STANDARD ReESULT

@ Noe MATLHING- REQUIRED



BL PRoBLEM wytu LOGS

eto" + .x.:,' —xy =0 9 =0 y==¢e

DominanT BauancE BL of Tmekness § = OCE™) ar x=0

RASERHE x= ¢"X V()= y(~)
RenorMpLITED

PERTURGATIeN Y(x) = {Au-)+ e A(X-p) + & ALXRY g
SxpaSion
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-e(Ea +ﬁ) 1‘3(—'&‘)3 j;xds oS

UnIFORMLY  VAWD

Fuwht RESWLT Yx) = e. x {I- J_ dse.

CoMMENT

® ExPpnOinG RG RESULT IN &  YIELDS eloge TermsS

FRoMm X‘e i THESE TERMS WNESODED _Ad HoOC To
Suce ERFul,y Do ASYmMPTeTL MATCHING

@ RG-  APPROACH MECHANMCAL — NO  INSGHT NEeedeDd !



SwitenBAaCK PRoBLEMS

® CEMGEGRGENDCE OF Teus 3vcn AS
= lo3 & ETC
® SoMETIMES NEFD To CAMLULATE

INFINITE NUMBER. oF TewMd Te

PCrRFolkm Bven) FIRST ORDER MATCLHING



DRAG ON A Sryepe AT Low REYNOLDS
NUMBER
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- 9.3 Drag on a sphere at low Reynolds numbers. Experimental points from
. [248](x) and [336](®), both using the falling sphere method. The line
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DReG- o A CYLINDER AT LOW REYNOLDS NUMRER
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SWITCHBACK PROBLEM
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Fig. 41-4. The drag coefficient Cp of a circular cylinder as a function of the Reynolds number.

Feynman Lectures on Physics, vol 2, chapter 41



Why use RG to solve singular PDES?

» Do not need to guess how characteristic lengths or
times scale with the small parameter

— method is reasonably mechanical: even a physicist can do it!

e Result is practically superior to standard matched
asymptotics, boundary layer, multiple scales analysis
methods

— RG approximant reveals the source of the weird non-
analyticities that plague traditional methods

e RG automatically preserves symmetries of underlying
eguations

— Important in deriving amplitude equations near bifurcations
In spatially-extended (i.e. pattern forming) dynamical
systems in hydrodynamics and materials science



Efimov states In low Reynolds
number fluid dynamics

K. Moffatt, Viscous and resistive eddies near a sharp
corner, J. Fluid Mech. 18, 1 (1964)

S. Taneda, Visualization of separating Stokes flows, J.
Phys. Soc. Jpn. 46, 1935 (1979)



Similarity solutions with complex
exponents

e PDEs sometimes have similarity solutions with
complex exponents

— corresponds to discrete scale invariance

e Examples include:

— scalar field collapse in general relativity (Choptuik
1993)

— Low Reynolds number fluid dynamics: Stokes flow
In wedge geometry



The interesting feature of the solution that is implied by the complex exponent
is the sequence of eddies that must be induced near the origin. To see this it is
simply necessary to write the asymptotic stream function in the form

i ~ (A cos A, 0+ Ccos (A, —2)6)
A
=4’ (;.) [cos A, 0 cos (A; — 2) & — cos (A, — 2) 8 cos A, ], (3.9)
0
™~

(&)

Ficure 6. Sketch of streamlines in corner eddies (a) for 22 = 60°, (b) for 2o = 20°; the
relative dimensions of these eddies are approximately correct, and the relative intensities
are as indicated.

K. Moffatt, Viscous and resistive eddies near a
sharp corner, J. Fluid Mech. 18, 1 (1964)



S. Taneda, Visualization of
separating Stokes flows, J.
Phys. Soc. Jpn. 46, 1935
(1979)

Fig. 19. Streamline pattern in a wedge-shaped region
(Reynolds number 1.7 x10~1).
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Summary

Renormalization and the renormalization group (RG) were originally
developed by physicists attempting to understand the divergent terms
in perturbation theory and the short distance behaviour of quantum
electrodynamics. During the last twenty years, these methods have
been used to unify the construction of global approximations to
ordinary and partial differential equations. Early examples included
similarity solutions and travelling waves, which exhibit the same
anomalous scaling properties found in quantum field theories, but here
manifested in such problems as flow in porous media, the propagation
of turbulence and the spread of advantageous genes. Fifteen years
ago, these methods were extended to asymptotic problems with no
special power-law scaling structure, enabling a vast generalization that
includes and unifies all known smgular perturbation theory methods,
but with greater accuracy and calculational efficiency. Applications
range from cosmology to viscous hydrodynamics.

In this work, RG is applied to differential equations, not field
theories. The problems have no stochastic component nor
necessarily scale-invariance.
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