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Summary
Renormalization and the renormalization group (RG) were originally 
developed by physicists attempting to understand the divergent terms 
in perturbation theory and the short distance behaviour of quantum 
electrodynamics. During the last twenty years, these methods have 
been used to unify the construction of global approximations to 
ordinary and partial differential equations. Early examples included 
similarity solutions and travelling waves, which exhibit the same 
anomalous scaling properties found in quantum field theories, but here 
manifested in such problems as flow in porous media, the propagation 
of turbulence and the spread of advantageous genes. Fifteen years 
ago, these methods were extended to asymptotic problems with no 
special power-law scaling structure, enabling a vast generalization that 
includes and unifies all known singular perturbation theory methods, 
but with greater accuracy and calculational efficiency. Applications 
range from cosmology to viscous hydrodynamics. 

In this work, RG is applied to differential equations, not field 
theories.  The problems have no stochastic component nor 
necessarily scale-invariance.



Some uses of RG in 
applied mathematics

1 Self-similarity, incomplete similarity and asymptotics of nonlinear PDEs
Dimensional analysis; extended dimensional analysis and anomalous exponents 
in the long-time behaviour of PDEs; modified porous medium equation; 
propagation of turbulence.

2 Singular perturbations: uniformly valid approximations from RG
Perturbed  oscillators, boundary layer problems with log e terms, WKB with 
turning points, switchback problems; spatially-extended systems and the 
derivation of amplitude and phase equations near and far from bifurcations.

3 Numerical methods and under-resolved computation
Similarity solutions are fixed points of RG transformations; velocity selection, 
structural stability and the Kolmogorov-Petrovsky-Piscunov problem; universal 
scaling phenomena in stochastic PDEs; perfect operators.

Note: large and still growing mathematics literature proving rigorous and 
formal results about these techniques.  Ziane, Temam, DeVille, O’Malley, 
Kirkinis and many others …



Feynman Lectures on Physics, vol 2, chapter 41

Motivation: Why RG for PDEs?







Development of RG methods 
at Illinois 1989-present

Historical overview





Anomalous dimensions in 
partial differential equations





































RG and singular perturbations

PDEs with no scale invariance

























Feynman Lectures on Physics, vol 2, chapter 41

Understood using RG on Navier-Stokes

Partially understood as a non- 
equilibrium critical point using RG



Why use RG to solve singular PDEs?

• Do not need to guess how characteristic lengths or 
times scale with the small parameter
– method is reasonably mechanical: even a physicist can do it!

• Result is practically superior to standard matched 
asymptotics, boundary layer, multiple scales analysis 
methods
– RG approximant reveals the source of the weird non- 

analyticities that plague traditional methods

• RG automatically preserves symmetries of underlying 
equations
– Important in deriving amplitude equations near bifurcations 

in spatially-extended (i.e. pattern forming) dynamical 
systems in hydrodynamics and materials science



Efimov states in low Reynolds 
number fluid dynamics

K. Moffatt, Viscous and resistive eddies near a sharp 
corner, J. Fluid Mech. 18, 1 (1964)

S. Taneda, Visualization of separating Stokes flows, J. 
Phys. Soc. Jpn. 46, 1935 (1979)



Similarity solutions with complex 
exponents

• PDEs sometimes have similarity solutions with 
complex exponents
– corresponds to discrete scale invariance

• Examples include:
– scalar field collapse in general relativity (Choptuik 

1993)
– Low Reynolds number fluid dynamics: Stokes flow 

in wedge geometry
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All my RG papers can be obtained in reprint form from 
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