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Prelude Context 3NF Questions

Outline

Prelude: Many-body operators from SRG

Context: Nuclear physics and three-body forces

Explicit running of three-body (and higher) interactions

Open questions and issues
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Prelude Context 3NF Questions Flow Run 3NF

Recap: SRG flow equations [arXiv:0912.3688]

Transform an initial hamiltonian, H = T + V :

Hs = UsHU†s ≡ T + Vs ,

where s is the flow parameter. Differentiating wrt s:

dHs

ds
= [ηs,Hs] with ηs ≡

dUs

ds
U†s = −η†s .

ηs is specified by the commutator with “generator” Gs:

ηs = [Gs,Hs] ,

which yields the flow equation (T held fixed),

dHs

ds
=

dVs

ds
= [[Gs,Hs],Hs] .

Gs determines flow =⇒ many choices (T , HD, HBD . . . )
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Prelude Context 3NF Questions Flow Run 3NF

Recap: SRG flow equations [arXiv:0912.3688]

Implementation issues
choosing Gs

choosing a basis

Features evident from two-body system
decoupling of low-energy from high-energy
evolves toward universal low-k interactions in free space
consistent evolution of operators

What about applications to few- or many-body systems?
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Prelude Context 3NF Questions Flow Run 3NF

Flow in momentum basis with η(s) = [T ,Hs]

For NN only, project onto relative momentum states |k〉
dVs

ds
= [[Trel,Vs],Hs] with Trel|k〉 = |εk 〉 and λ2 = 1/

√
s

dVλ
dλ

(k , k ′) ∝ −(εk − εk ′)2Vλ(k , k ′)+
∑

q

(εk + εk ′ − 2εq)Vλ(k ,q)Vλ(q, k ′)

Vλ=2.5(k , k ′) 1st term 2nd term Vλ=2.0(k , k ′)

First term drives Vλ toward diagonal:

Vλ(k , k ′) = Vλ=∞(k , k ′) e−[(εk − εk ′)/λ2]2 + · · ·
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Prelude Context 3NF Questions Flow Run 3NF

Variational Calculations in Three-Nucleon Systems

Triton ground-state energy
vs. size of harmonic oscillator
basis (Nmax~ω excitations)

Rapid convergence as
λ decreases

Different binding energies
=⇒ 3-body contribution
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Prelude Context 3NF Questions Flow Run 3NF

Running of Egs with two-body interaction (NN) only
Not unitary for A ≥ 3 =⇒ ground-state energy depends on λ
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Same qualitative behavior (from NN repulsion/attraction)

Gives running of net three–body contribution

Error bars are from extrapolated results (not converged)
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Prelude Context 3NF Questions Flow Run 3NF

Flow equations lead to many-body forces
Schematically:

dVs

ds
=
[[∑

a†a,
∑

a†a†aa︸ ︷︷ ︸
2-body

]
,
∑

a†a†aa︸ ︷︷ ︸
2-body

]
= · · ·+

∑
a†a†a†aaa︸ ︷︷ ︸

3-body!

+ · · ·

so there will be A-body forces generated
Is this a problem?

Normal ordering and truncation at NN may be sufficient [Achim]
Ok if “induced” many-body forces are same size as natural ones

Nuclear 3-body forces already needed in unevolved potential
In fact, there are A-body forces initially
Natural hierarchy from chiral EFT

=⇒ stop flow equations before unnatural 3-body size
Many-body methods must deal with them!

SRG is a tractable method to evolve many-body operators
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Prelude Context 3NF Questions GFMC 3NF χEFT NM

Degrees of Freedom: From QCD to Nuclei

Lattice

QCD

QCD

Lagrangian

Exact methods A!12

GFMC, NCSM

Chiral EFT interactions

(low-energy theory of QCD)

Coupled Cluster, Shell Model

A<100

Low-mom.

interactions

Density Functional Theory A>100

RG =⇒ make nuclear structure look more like quantum chemistry
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Prelude Context 3NF Questions GFMC 3NF χEFT NM

Light nuclei: Pieper/Wiringa (Bonner Prize!)

Three-body forces needed for energies, splittings, . . .
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Prelude Context 3NF Questions GFMC 3NF χEFT NM

Atomic 3-body forces: Axilrod-Teller term (1943)
Three-body potential for atoms/molecules from triple-dipole
mutual polarization (3rd-order perturbation correction)

V (i , j , k) =
ν(1 + 3 cos θi cos θj cos θk )

(rij rik rjk )3

Usually negligible in metals and semiconductors

Can be important for ground-state energy of solids bound
by van der Waals potentials

Bell and Zuker (1976): 10% of energy in solid xenon
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Prelude Context 3NF Questions GFMC 3NF χEFT NM

Observations on three-body forces
Three-body forces arise from
eliminating dof’s

excited states of nucleon
relativistic effects
high-momentum
intermediate states

Omitting 3-body forces leads
to model dependence

observables depend on Λ/λ

e.g., Tjon line

NNN at different Λ/λ can be
fit to χEFT or evolved

how large is 4-body?

saturation of nuclear matter
cutoff dependence as tool
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Prelude Context 3NF Questions GFMC 3NF χEFT NM

Chiral EFT hierarchy

Power counting still unsettled

But many-body hierarchy
consistent with calculations
in few-body systems

3-body at N2LO without ∆
and NLO with ∆

4-body at N3LO
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Nuclear matter with RG-evolved NN plus fit NNN
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At low resolution, nuclear saturation driven by NNN

Can we validate use of the chiral EFT operator basis?

Dick Furnstahl SRG and Many-Body Operators



Prelude Context 3NF Questions Diagrams Embed 3D Tjon 1D Analysis

Outline

Prelude: Many-body operators from SRG

Context: Nuclear physics and three-body forces

Explicit running of three-body (and higher) interactions

Open questions and issues
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Prelude Context 3NF Questions Diagrams Embed 3D Tjon 1D Analysis

SRG with normal-ordering in the vacuum
SRG flow equation dHs

ds = [[Gs,Hs],Hs], e.g., Gs = Trel

Right side evaluated w/o solving bound-state or scattering eqs.
Can be applied directly in three-particle space

A-body operators completely fixed in A-particle subspace
What about spectator nucleons?

Decoupling of 3N part in momentum space

dVs

ds
=

dV12

ds
+

dV13

ds
+

dV23

ds
+

dV123

ds
= [[Trel,Vs],Hs] ,

=⇒ dV123

ds
= [[T12,V12], (T3 + V13 + V23 + V123)] + {123→ 132}

+ {123→ 231}+ [[Trel,V123],Hs]

No “multi-valued” two-body interactions (dependence on
excitation energy of unlinked spectators)
Or, direct solution in discrete harmonic oscillator basis

Dick Furnstahl SRG and Many-Body Operators



Prelude Context 3NF Questions Diagrams Embed 3D Tjon 1D Analysis

Diagrams for SRG =⇒ Disconnected cancels

V (2)
s = [T, V (2)

s ] = [[T, V (2)
s ], T ] =

V (3)
s = [T, V (3)

s ] = [[T, V (3)
s ], T ] =

dV (2)
s (a, b)

ds
= ba + bca − bca

−(εa−εb)
2 V (2)

s (a, b)
∑

c
[(εa−εc)−(εc−εb)] V

(2)
s (a, c) V (2)

s (c, b)

dV (3)
s

ds
= + + + + · · ·
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Embedding: Initial potential
Symmetrized Jacobi oscillator basis (here: 1D bosons)

V (p,p′) −→ V (N2,N ′2) −→ V (N3,N ′3)

Diagonalize symmetrizer⇒ 〈NA||NA−1; nA−1〉; use recursively

Embedding is everything, SRG coding is trivial

3D: Use Navratil et al. technology for NCSM
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Prelude Context 3NF Questions Diagrams Embed 3D Tjon 1D Analysis

Embedding: SRG evolved potential at λ = 2
Symmetrized Jacobi oscillator basis (here: bosons)

V (p,p′) −→ V (N2,N ′2) −→ V (N3,N ′3)

Diagonalize symmetrizer⇒ 〈NA||NA−1; nA−1〉; use recursively

Embedding is everything, SRG coding is trivial

3D: Use Navratil et al. technology for NCSM
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Few-Body Embedding

Legend: Embedding, Evolving, BE calculation, Initial 3NF
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3Nosc . . .
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3D SRG Evolution with Trel in a Jacobi HO Basis
Evolve in any basis [momentum space in progress by L. Platter]

Here: use anti-symmetric Jacobi HO basis from NCSM
directly obtain SRG matrix elements in HO basis
separate 3-body evolution not needed

Compare 2-body only to full 2 + 3-body evolution:
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3D SRG Evolution with Trel in a Jacobi HO Basis
Good convergence properties independent of 3-body:
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HO matrix elements (to be) available for NCFC, CC, . . .

Challenge: efficient (on-the-fly) conversion to m-scheme

Dick Furnstahl SRG and Many-Body Operators



Prelude Context 3NF Questions Diagrams Embed 3D Tjon 1D Analysis

3D SRG Evolution with Trel in a Jacobi HO Basis
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Tjon line revisited
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Explore Using a One-Dimensional Model

1-D model [Negele et al.: Phys.Rev.C 39 1076 (1989)]:

V (2)(x) =
V1

σ1
√
π

e−x2/σ2
1 +

V2

σ2
√
π

e−x2/σ2
2

λ =∞ λ = 5 λ = 3 λ = 2

Same features as in 3D, but much easier!

See E. Jurgenson, rjf, arXiv:0809.4199 for details
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Induced Many-Body Forces: A = 3
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Basis independent: same evolution in k or HO basis
Black: Same evolution pattern for 2-body-only as 3D NN-only

Red: Includes induced 3NF - Unitary!
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Induced Many-Body Forces: A = 3
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Induced Many-Body Forces: A = 3
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Red: Includes induced 3NF - Unitary!
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Induced Many-Body Forces: A = 4

V (3)(p,q,p′,q′) = cEe−((p′2+q′2)/Λ2)n
e−((p2+q2)/Λ2)n

(Λ = 2 n = 4)
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Induced Many-Body Forces: A = 4
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Induced Many-Body Forces: A = 5
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V (3) analysis
d
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>

Dick Furnstahl SRG and Many-Body Operators



Prelude Context 3NF Questions Diagrams Embed 3D Tjon 1D Analysis

V (4) analysis in A = 4
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,V (2)] =⇒ Induced 4-body is small!

Initial hierarchy of few-body forces is maintained
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Outline

Prelude: Many-body operators from SRG

Context: Nuclear physics and three-body forces

Explicit running of three-body (and higher) interactions

Open questions and issues
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Run to Lower λ via SRG =⇒ ≈Universal
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Will evolved NNN interactions be universal?
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Every operator flows

Evolution with s of any
operator O is given by:

Os = UsOU†s

so Os evolves via

dOs

ds
= [[Gs,Hs],Os]

Us =
∑

i |ψ(0)i〉〈ψ(s)i |
Matrix elements of evolved
operators are unchanged

Consider momentum
distribution < ψd |a†qaq|ψd >

at q = 4.5 fm−1
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3 ]

AV18
Vs at λ = 2 fm

−1

Vs at λ = 1.5 fm
−1

CD-Bonn

Dick Furnstahl SRG and Many-Body Operators



Prelude Context 3NF Questions Universality Ops Factorization HO Summary

Integrand of < ψd |Ua†qaqU†|ψd > at q = 4.5 fm−1

Flow of deuteron matrix element integrand is toward low k
Simple variational ansatz works well =⇒ No fine-tuning
Factorization: U(k ,q) −→ K (k)Q(q) for k ≤ λ, q � λ
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High and low momentum operators in deuteron
Integrand of 〈ψd | (Ua†qaqU†) |ψd〉 for q = 0.34 fm−1

Integrand for q = 3.02 fm−1

Momentum
distribution
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a
=

q
a

qdeuteron

Decoupling =⇒ High momentum components suppressed

Integrated value does not change, but nature of operator does

Similar for other operators:
〈
r2
〉
, 〈Qd 〉, 〈1/r〉
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High and low momentum operators in deuteron
Integrand of 〈ψd | (Ua†qaqU†) |ψd〉 for q = 0.34 fm−1

Integrand for q = 3.02 fm−1

Momentum
distribution

0 1 2 3 4

q [fm
−1

]

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

4
π

 [
u
(q

)2
+

 w
(q

)2
] 

 [
fm

3
]

N
3
LO unevolved

Vs at λ = 2.0 fm
−1

Vs at λ = 1.5 fm
−1

a
=

q
a

qdeuteron

Decoupling =⇒ High momentum components suppressed

Integrated value does not change, but nature of operator does

Similar for other operators:
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, 〈Qd 〉, 〈1/r〉

Dick Furnstahl SRG and Many-Body Operators



Prelude Context 3NF Questions Universality Ops Factorization HO Summary

Decoupling in operator expectation values
Evolve to λ in full space→ TRUNCATE at Λ = 2.5 fm−1:

0 1 2 3 4 5

10
−5

10
0

q (fm
−1

)

a
+
a

 

 

Evolved to  λ=6.0, 

      Truncated at  Λ=2.5      

Unevolved

SRG Evolved

λ = 6 fm−1

Here: momentum distribution a†qaq

Decoupling for all q works when λ < Λ
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Decoupling in operator expectation values
Evolve to λ in full space→ TRUNCATE at Λ = 2.5 fm−1:
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     Truncated at  Λ=2.5      

Unevolved

SRG Evolved

λ = 3 fm−1

Here: momentum distribution a†qaq

Decoupling for all q works when λ < Λ
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Decoupling in operator expectation values
Evolve to λ in full space→ TRUNCATE at Λ = 2.5 fm−1:
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Here: momentum distribution a†qaq

Decoupling for all q works when λ < Λ
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Factorization
If k < λ and q � λ =⇒ factorization: Uλ(k ,q)→ Kλ(k)Qλ(q)?

Operator product expansion for nonrelativistic wf’s (Lepage)

Ψtrue(r) = γ(r)

Z
dr ′Ψeff δa(r ′) + n(r)a2

Z
dr ′Ψeff∇2δa(r ′) +O(a4)

Similarly, in momentum space

Ψ∞α (q) ≈ γλ(q)

Z λ

0
p2dp Z (λ)Ψλ

α(p) + ηλ(q)

Z λ

0
p2dp p2 Z (λ) Ψλ

α(p) + · · ·

By projecting potential in momentum subspace, recover OPE via:

γλ(q) ≡ −
Z ∞

λ

q′2dq′ 〈q| 1bQλH∞ bQλ

|q′〉V∞(q′, 0)

ηλ(q) ≡ −
Z ∞

λ

q′2dq′ 〈q| 1bQλH∞ bQλ

|q′〉 ∂
2

∂p2 V∞(q′, p)|p2=0

Construct unitary transformation to get Uλ(k ,q) ≈ Kλ(k)Qλ(q)

Uλ(k , q) =
X

α

〈k |ψλ
α〉〈ψ∞α |q〉 →

hαlowX
α

〈k |ψλ
α〉
Z λ

0
p2dp Z (λ)Ψλ

α(p)
i
γλ(q) + · · ·
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Numerical Factorization
Test of factorization of U:

Uλ(ki , q)

Uλ(k0, q)
→ Kλ(ki )Qλ(q)

Kλ(k0)Qλ(q)
,

so for q � λ⇒ Kλ(ki )
Kλ(k0) .

Look for plateaus for q & 2fm−1

Singular value decomposition
quantitatively analyze the
extent to which U factorizes
outer product expansion

G =
rX
i

diuivt
i

where r is the rank and the di
are decreasing singular
values

Example: results for λ = 2 fm−1,
for q > λ and k < λ

1S0
Potential d1 d2 d3

AV18 0.763 0.033 0.007
N3LO 500 MeV 1.423 0.221 0.015

N3LO 550/600 MeV 3.074 0.380 0.061
3S1–3S1

AV18 0.671 0.015 0.008
N3LO 500 MeV 1.873 0.225 0.044

N3LO 550/600 MeV 4.195 0.587 0.089
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Practical use of factorization
Decoupling implies

〈ψλ|Uλ
bO U†λ |ψλ〉 ∼=

Z λ

0
dk ′
Z ∞

0
dq′
Z ∞

0
dq
Z λ

0
dk ψ†λ(k ′)Uλ(k ′, q′)bO(q′, q)U†λ(q, k)ψλ(k)

Factorization: set Uλ(k ,q)→ Kλ(k)Qλ(q), where k < λ and q � λ

=⇒
Z λ

0

Z λ

0
ψ†λ(k ′)

»Z λ

0

Z λ

0
Uλ(k ′, q′)bO(q′, q)U†λ(q, k)| {z }+IQOQ Kλ(k ′)Kλ(k)| {z }

–
ψλ(k)

Low Momentum Structure

where IQOQ ≡
∫∞
λ

dq′
∫∞
λ

dq
[
Qλ(q′)Ô(q′,q)Qλ(q)

]
← Universal

– Valid when initial operators weakly couple high and low momentum:

r2 1/r GC(q = 3.02 fm−1) a†qaq(q = 3.02 fm−1)
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Factorization in few-body nuclei: n(k) at large k
AV14 NN with VMC

From Pieper, Wiringa, and Pandharipande (1992).

Conventional explanation:
Dominance of NN potential and
short-range correlations
(Frankfurt et al.)

A bosons in 1D model

Alternative: factorization∫ λ
0

∫ λ
0 ψ†λ(k ′) [IQOQKλ(k ′)Kλ(k)]ψλ(k)
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Factorization in few-body nuclei: n(k) at large k
AV14 NN with VMC

From Pieper, Wiringa, and Pandharipande (1992).

Conventional explanation:
Dominance of NN potential and
short-range correlations
(Frankfurt et al.)

A bosons in 1D model

Alternative: factorization∫ λ
0

∫ λ
0 ψ†λ(k ′) [IQOQKλ(k ′)Kλ(k)]ψλ(k)
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Long-distance observables: radius
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Unevolved operator
Harmonic oscillator basis is problematic!
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Evolving NN forces in NCSM A=3 space
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~ω = 28 is optimal for the bare interaction
~ω = 20 is optimal for λ = 2 evolution
No improvement in convergence for small λ
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Evolving NN forces in NCSM A=3 space
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Evolving NN forces in NCSM A=3 space
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Evolving NN forces in NCSM A=3 space
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Evolving NN forces in NCSM A=3 space
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Evolving NN forces in NCSM A=3 space
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Evolving NN + NNN in NCSM A=3 space
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Same plots but now including an initial 3NF from N2LO

No improvement in convergence for small λ
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Using other SRG Generators
1D matrices Trel and V in NCSM basis:

In this basis Trel will not drive H to diagonal form
But harmonic oscillator Hamiltonian will!

Hho = Trel + Vho is diagonal in this basis
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Evolving with Hho in HO Basis
Using G = Hho improves convergence dramatically
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Compare Trel on the left with Hho on the right
But: 1D study indicates spurious bound states contaminate
evolution with Hho with many-body truncation
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Summary of open questions and issues

Power counting for evolved many-body interactions

Do many-body interactions flow to universal form?
Operator issues

Scaling of many-body operators
Factorization for few-body systems

Can choices for Gs . . .
reduce the many-body forces?
improve convergence in HO basis?
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