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Tensor Network States:
MPS, PEPS and others

A short incomplete review




What are TNS?

e TNS =Tensor Network States

A general state of the W) = > leiyinfin - in)
N-body Hilbert space g /
has exponentially many " N-legged
coefficients — tensor
¢ Pa— ATNS has only a
//\‘ A polynomial number
NS / of parameters




What are TNS?

* A particular example

e e Mean field
approximation

Can still produce
good results in
some cases
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Why should TNS be useful?

* States appearing in Nature are peculiar

State at random
from Hilbert space is
not close to product

We look for the
particular corner of
the Hilbert space
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Why should TNS be useful?

* Thermal states of nearest neighbour
Hamiltonians described by small number of

parameters
H = Z hi it1
N2 2
specifies the state
p~ e H/IT with a small number

of parameters
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Why should TNS be useful?

* The goal is to find good descriptions of
physical states

= efficient representation

= computable observables

= (variational) algorithms
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Finding a good ansatz

* Which properties characterize ground
states of relevant Hamiltonians!?

Area law 4

-----------------------

finite range

gapped
Hamiltonians
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Sa = —tr(palogpa)
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Finding a good ansatz

* Which properties characterize ground
states of relevant Hamiltonians!?

Arealaw ¢ e e e e e e o e

eo0eoeo000000

= observed for known T EEEEERX.

Hamiltonians eecoecocooe
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Calabrese, Cardy 2004
Wolf 2006
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Finding a good ansatz

* Which properties characterize ground
states of relevant Hamiltonians!?

Area law 4

0000000
00000000
= rigorously proven for eeiidddioe
thermal states eocoeococoo
eoeceoo0o0coe
= in any dimension oo co00ocoe0
eocceccecoe
I(A: B) = e00ecoo0 o0 o0
00000000

= S(pa) +S(pr) — S(par) 1
Wolf, Verstraete, Hastings, Cirac, PRL 2008 ](A . B)maX X T |5A‘
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MPS and PEPS

e States which fulfill the area law by
construction

1D

r\_/‘.. ."\_/"v. .r'\f\. .r\_/\

/ number of
maximally

param eters
entangled virtual
] 2
7 state particles NdD
D
> o))
a=1

Verstraete, Porras, Cirac, PRL 2004
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MPS and PEPS

e States which fulfill the area law by
construction

1D

SHE@-€) <

local projectors
cannot increase
the entropy




MPS and PEPS

e States which fulfill the area law by
construction

1D

< Streeee) =5(e o
= 2logD




MPS and PEPS

e States which fulfill the area law by
construction

higher D
f\f.g.'\f'.é.'\f'.z.'\/\
485
additional

virtual
particles

Verstraete, Cirac, 2004
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MPS and PEPS

* States which fulfill the area law by

construction 2 2 2 2

AVA X AVa x AW x aWal X AV

nigher D & ;3 ----- 2

r\f‘
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Entropy of a region

bounded by the

number of cut
bonds
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Verstraete, Cirac, 2004




MPS and PEPS

e Also formal results known

= MPS and PEPS are complete families




MPS and PEPS

e Also formal results known

= onhe dimensional

Hastings, J. Stat. Phys. 2007

Verstraete, Cirac, PRB 2006
= higher dimensions

Hastings, PRB 2006



MPS and PEPS

provide
accurate and efficient descriptions
of ground and thermal states of
finite range Hamiltonians
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Relation to RG

* Real space renormalization produce MPS

----------------- = Increase b)' one site

orthonormal basis
for M sites

; : truncation
Apfr1) = As,|Br) @ |) prya
o pr41) Z Bur) ® |) ethod
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Relation to RG

* Real space renormalization produce MPS

O Ol O] Ol OO

W) = > tr(APAZ . AY)|iy. i)

11...1N




Relation to RG

* Real space renormalization produce MPS

= different truncation methods
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Relation to RG

* Other renormalization procedures give rise
to different TNS

Thursday, February 25, 2010



Relation to RG

* Other renormalization procedures give rise
to different TNS

_ | tree tensor
N . states
R TTS

= efficient contraction

= violate area law
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Some more properties of MPS

* Efficient algorithms

= ground states o)~ 666666

= compute expectation values I
()

* Can be efficiently prepared
P

Continuous
limit

Verstraete, (W
arXiv:1002. 1624 €

Schon et al., PRL 2005
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PEPS

e Generalization of MPS

= incorporate area law |
Verstraete, Cirac, 2004

= approximate interesting states

. Hastings, PRB 2007
* Prepare them is hard

Schuch, Wolf, Verstraete, Cirac, PRL 2007
 Cannot be contracted efficiently

Thursday, February 25, 2010



PEPS

* Efficient algorithms

- gr’ound states Murg,Verstraete, Cirac, PRA 2009
= time evolution Murg Verstraete, Cirac, PRA 2007

* |nfinite lattices jordan, Orus,Vidal,Verstraete, Cirac, PRL 2008
Bauer,Vidal, Troyer, |. Stat. Mech 2009

* Fermionic systems |
Kraus, Schuch,Verstraete, Cirac, 2009

Corboz, Orus, Bauer,Vidal, 2009
e |[imited to small bond dimension

_evin, Nave, PRL 2007
_evin, Wen, PRB 2008
Kao, Sandvik, 2009
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Summarizing

.’\/“

GS and thermal states
of finite range H

aWa x Ve x Vel x aVal x avVa

:
:
:
E

aVa )

approximate efficiently

mgwwuww GS and thermal states

momoww
mowowm

of finite range H

m

:

Vs )

O 0.0 @

2
PEPS

MPS

3
z

m

successful variational
algorithms

area law

O O] O Ol OO

Cirac,Verstraete, J. Phys. A 2009
other TNS  Verstraete, Murg, Cirac, Adv. Phys. 2008

renormalization procedures
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Long-time evolution with
M

M. C. Banuls, M. B. Hastings, F.Verstraete, ]. |. Cirac




What can be studied with MPS

= Ground states properties with MPS

= finite chains — very successful

approach White, PRL 1992
Schollwock, RMP 2005

= infinite chains — with translational

INvariance Ostlund, Rommer, PRL 1995

Vidal, PRL 2007
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What can be studied with MPS

= Time evolution with MPS

= finite chains vidal, PRL 2003
White, Feiguin, PRL 2004
Daley et al., 2004

= infinite (Tl) chains = iTEBD method

Vidal, PRL 2007
= but limited to short times
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Standard method

= Start with a MPS

)= ) tr(AilA%V)il...iN>
d

[
D —€ —-D




Standard method

= Start with a MPS

 Apply evolution operator
= discrete time steps U (¢) — [U(8)]"
= nearest-neighbour H=H.+ H,

= Trotter U(6) = e e tHo0

___
o




Standard method

= Start with a MPS
* Apply evolution step

e Obtain a MPS with larger bond

e Truncate D
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Standard method

= Start with a MPS
* Apply evolution step

e Obtain a MPS with larger bond

e Truncate D




Standard method

* Problem: only short times

* Entropy of evolved state may grow linearly

Osborne, PRL 2006
Schuch et al., NJP 2008

= required bond for fixed precision
D ~ 6Ozt

= results deviate abruptly from the exact
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Transverse method

e Compute dynamical quantities

* For infinite chains

* Avoid explicit truncation of the bond
dimension along the evolution

M.C.B., M. Hastings, F.Verstraete, ].I.Cirac, PRL 2009
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Transverse method

3. Apply an operator

|. Start with MPS

2 3 5 8 mem B3 oE R
O Hlulu—ulaNe
2 2 5 8 mmm B3R R
OHuu—ulaNe
2 % 1 3 N3N
Ol E—uEuNe
O EEE LN Ne
Ol un—uEaNe
2 2 8 s B3N R
OHuu—ulaNe
2 32 8 s B3N R
Ol uEE—uEuEe
HE EH B B




Transverse method

* |nfinite in the space direction, finite in time

direction
e Reduce to 2D finite network




Transverse method

* Tl = Repeated contraction of same

operator




Transverse method

> A R)Y (L)

* |f non-degenerate E"

n—aoao

e Effectively substitute half networks by left

and right eigenvectors




Transverse method

* Up to normalization

-
(2 5 5 5 mme % 5 B R
RN
-
(.2 5 5 5 8 5 B 5 B %4




Real time evolution

* Benchmark: Ising model

H:—Z( : 7“H%—ga)

1

e Start in product state

Wy) ~ ®;(]0) +[1))

* Evolve with g=7.05 = magnetization (o,(t))




Real time evolution

Ising model, g=1.05
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But...

* Not all sites along the time direction are

independent

bubmh dnins
Sning wmEno
inis clnke

QIF ilo
CHERE EREED
on mFiF e
oPHlLIﬁ#HFG
SLET
oEENE BEEEO
i@@*!lﬂfﬂfo

free pr




But...

* Not all sites along the time direction are

independent

vy
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O uEe wEuiEe

PRL 102, 240603 (2009)




Folded transverse method

* Bring together sites corresponding to the
same time step

—€ — PRL 102, 240603 (2009)

y 25, 2010



Ising model

1.4 bxact 10’
D=60
12l D=60 folded 2
D=120 w™ 10
1 D=120 folded
n
A |
= 10
g 0.8 0 5 10
0.6
241 a - R S G — R P e
\ /T
04F
02 I ' ' ' I |
0 2 4 6 3 10 12

Thursday, February 25, 2010



Non-integrable model

* More general: non-integrable model

H:—Z( Lot got —I—ha)

1




Non-integrable model

+ D=64,1TEBD
09L —— D=128,iTEBD |
D=256,iTEBD
— D=512,iTEBD
— D=1024,iTEBD
D=60, folded
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<0X(t)>
-]
~J
+

Thursday, February 25, 2010



Folded transverse method

* With same D, much longer t

e | ook at truncation errors
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Folded transverse method

1077

2

e~ 1%
D < 100

qualitative good description
with modest resources

e=le—§
e=le—6
£¢=0.0001
£=0.01

2 3 4 5 6 7 8 9 10



Applications

3. Thermal states

|. Impurity models
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4 Thermalization

2. Dynamical correlators
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Outlook

e Transverse method

e Folded variant

* Applications
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