
New Applications of the RG INT, 24.02.2010

Tensor Network 
States: ground states 
and time evolution of 

spin systems
M. C. Bañuls

Max Planck Institut für 
Quantenoptik

Garching (Germany)

Thursday, February 25, 2010



Why Tensor Network States

Long time evolution with MPS
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Tensor Network States: 
MPS, PEPS and others 

A short incomplete review
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What are TNS?

• TNS = Tensor Network States

A general state of the 
N-body Hilbert space 
has exponentially many 

coefficients

A TNS has only a 
polynomial number 

of parameters

|Ψ〉 =
∑

ij

ci1...iN |i1 . . . iN 〉

N-legged 
tensor
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What are TNS?

• A particular example

Mean field 
approximation

Can still produce 
good results in 

some cases
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• States appearing in Nature are peculiar

Why should TNS be useful?

State at random 
from Hilbert space is 
not close to product

We look for the 
particular corner of 
the Hilbert space

H

product
states
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Why should TNS be useful?

• Thermal states of nearest neighbour 
Hamiltonians described by small number of 
parameters

H =
∑

i

hi,i+1

d2 × d2

ρ ∼ e−H/T
specifies the state 

with a small number 
of parameters

H
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Why should TNS be useful?

• The goal is to find good descriptions of 
physical states 

➡ efficient representation

➡ computable observables

➡ (variational) algorithms

H
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Finding a good ansatz

• Which properties characterize ground 
states of relevant Hamiltonians?

Area law

finite range 
gapped 

Hamiltonians

SA = −tr(ρAlogρA)

A

B

SAmax ∝ |δA|
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Finding a good ansatz

• Which properties characterize ground 
states of relevant Hamiltonians?

Area law
➡ observed for known 

Hamiltonians
➡ proven in 1D
➡ in critical systems, 

only log corrections

A

B

SAmax ∝ |δA|log|δA|

Hastings 2007

Calabrese, Cardy 2004

Wolf 2006
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Finding a good ansatz

• Which properties characterize ground 
states of relevant Hamiltonians?

Area law

➡ rigorously proven for 
thermal states

➡ in any dimension A

I(A : B) =
= S(ρA) + S(ρB)− S(ρAB)

I(A : B)max ∝
1
T

|δA|

B

Wolf,  Verstraete, Hastings, Cirac, PRL 2008
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• States which fulfill the area law by 
construction

MPS and PEPS 

virtual
particles

project onto the physical degrees of freedom
1D

Verstraete, Porras, Cirac, PRL 2004

D

d

maximally
entangled

state
D∑

α=1

|α〉|α〉

Ai
αβ |i〉〈αβ|

number of 
parameters

NdD2
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MPS and PEPS 

• States which fulfill the area law by 
construction

1D

S( ) ≤

local projectors
cannot increase

the entropy
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MPS and PEPS 

• States which fulfill the area law by 
construction

1D

S( )≤ S( )=

= 2logD
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• States which fulfill the area law by 
construction

MPS and PEPS 

additional
virtual

particles

local map onto the physical d.o.f.
higher D

Verstraete, Cirac, 2004
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• States which fulfill the area law by 
construction

MPS and PEPS 

higher D

Verstraete, Cirac, 2004

Entropy of a region 
bounded by the 
number of cut 

bonds
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MPS and PEPS 

• Also formal results known

➡ MPS and PEPS are complete families

• increasing the bond dimension, they can 
describe any state of the Hilbert space
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MPS and PEPS 

• Also formal results known

➡ one dimensional

• gapped finite range Hamiltonian ⇒ area 

law (ground state)

• area law ⇒ MPS efficient approximation

➡ higher dimensions

• finite range, finite T ⇒ PEPS efficiently 

approximate thermal state

Verstraete, Cirac, PRB 2006

Hastings, PRB 2006

Hastings, J. Stat. Phys. 2007
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MPS and PEPS 

provide 
accurate and efficient descriptions 
of ground and thermal states of 

finite range Hamiltonians
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|αM+1〉 =
∑

Ai
βα|βM 〉 ⊗ |i〉M+1

Relation to RG

• Real space renormalization produce MPS

orthonormal basis
for M sites

increase by one site

truncation
method
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Relation to RG

• Real space renormalization produce MPS

|Ψ〉 =
∑

i1...iN

tr(Ai1
1 Ai2

2 . . . AiN
N )|i1 . . . iN 〉

...
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Relation to RG

• Real space renormalization produce MPS

➡ different truncation methods

• states of minimal energy for the 
subsystem ⇒ Wilson’s NRG

• variational minimization of                  
over MPS ⇒ DMRG 〈Ψ|H|Ψ〉

〈Ψ|Ψ〉
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• Other renormalization procedures give rise 
to different TNS

Relation to RG

k

2k − 1 2k

|n〉k =
∑

Tn
mp|m〉2k−1 ⊗ |p〉2k

Thursday, February 25, 2010



• Other renormalization procedures give rise 
to different TNS

Relation to RG

tree tensor 
states
TTS

➡ efficient contraction

➡ violate area law

• logarithmically
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Some more properties of MPS

• Efficient algorithms

➡ ground states

➡ approximate a state by a MPS

➡ compute expectation values

• Can be efficiently prepared

|E0〉 "

|Ψ〉 "

Schön et al., PRL 2005

Continuous
limit

Verstraete, Cirac, 
arXiv:1002.1824
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PEPS

• Generalization of MPS

➡ incorporate area law

➡ approximate interesting states

• Prepare them is hard

• Cannot be contracted efficiently

• approximate contraction

Schuch, Wolf, Verstraete, Cirac, PRL 2007

Hastings, PRB 2007

Verstraete, Cirac, 2004

Thursday, February 25, 2010



PEPS

• Efficient algorithms 

➡ ground states

➡ time evolution

• Infinite lattices

• Fermionic systems

• Limited to small bond dimension

• RG techniques Levin, Nave, PRL 2007
Levin, Wen, PRB 2008
Kao, Sandvik, 2009

Kraus, Schuch, Verstraete, Cirac, 2009
Corboz, Orús, Bauer, Vidal, 2009

Jordan, Orús, Vidal, Verstraete, Cirac, PRL 2008
Bauer, Vidal, Troyer, J. Stat. Mech 2009

Murg, Verstraete, Cirac, PRA 2009

Murg, Verstraete, Cirac, PRA 2007
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Summarizing

H

Cirac, Verstraete, J. Phys. A 2009
Verstraete, Murg, Cirac, Adv. Phys. 2008

GS and thermal states
of finite range H

area law

approximate efficiently
GS and thermal states

of finite range H

successful variational
algorithms

MPS

PEPS

other TNSrenormalization procedures
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Long-time evolution with 
MPS

M. C. Bañuls, M. B. Hastings, F. Verstraete, J. I. Cirac
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What can be studied with MPS

➡ Ground states properties with MPS

➡ finite chains → very successful 
approach

➡ infinite chains → with translational 
invariance Östlund, Rommer, PRL 1995

Vidal, PRL 2007

White, PRL 1992
Schollwöck, RMP 2005
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What can be studied with MPS

➡ Time evolution with MPS

➡ finite chains

➡ infinite (TI) chains ⇒ iTEBD method

➡ but limited to short times

Vidal, PRL 2003
White, Feiguin, PRL 2004
Daley et al., 2004

Vidal, PRL 2007
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Standard method

➡ Start with a MPS

|Ψ〉 =
∑

i1...iN

tr(Ai1
1 Ai2

2 . . . AiN
N )|i1 . . . iN 〉

D D

d
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Standard method

➡ Start with a MPS

• Apply evolution operator

➡ discrete time steps

➡ nearest-neighbour

➡ Trotter

U(t)→ [U(δ)]M

H = He + Ho

U(δ) = e−iHeδe−iHoδ
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Standard method

➡ Start with a MPS

• Apply evolution step

➡ discrete time steps

➡ nearest-neighbour

➡ Trotter

• Obtain a MPS with larger bond

• Truncate D
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➡ Start with a MPS

Standard method

• Apply evolution step

➡ discrete time steps

➡ nearest-neighbour

➡ Trotter

• Obtain a MPS with larger bond

• Truncate D
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Standard method

• Problem: only short times

• Entropy of evolved state may grow linearly

➡ required bond for fixed precision

• truncation error becomes dominant

➡ results deviate abruptly from the exact

• increasing D by factor gets only constant 
improvement

D ∼ eαt

Osborne, PRL 2006
Schuch et al., NJP 2008
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Transverse method

• Compute dynamical quantities

• For infinite chains

• No extrapolation from finite size

• Avoid explicit truncation of the bond 
dimension along the evolution

M.C.B., M. Hastings, F. Verstraete, J.I.Cirac, PRL 2009
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Transverse method
1. Start with MPS

2. Apply evolution 
steps

3. Apply an operator

4. Contract

Thursday, February 25, 2010



Transverse method
• Infinite in the space direction, finite in time 

direction

• Reduce to 2D finite network
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Transverse method
• TI ⇒ Repeated contraction of same 

operator

• transfer matrix of evolved MPS
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Transverse method
• If non-degenerate

• Effectively substitute half networks by left 
and right eigenvectors

En −−−−→
n→∞

λn|R〉〈L|
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Transverse method
• Up to normalization

〈O(t)〉 =
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Real time evolution 

• Benchmark: Ising model

• exactly solvable

• Start in product state

• Evolve with g=1.05 ⇒ magnetization

H = −
∑

i

(
σi

zσ
i+1
z + gσi

x

)

|Ψ0〉 ∼ ⊗i(|0〉+ |1〉)

〈σx(t)〉
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Real time evolution
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• Not all sites along the time direction are 
independent

But...

intuition
free propagation
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• Not all sites along the time direction are 
independent

But...

PRL 102, 240603 (2009)
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• Bring together sites corresponding to the 
same time step

• largest correlations expected

Folded transverse method

folding

PRL 102, 240603 (2009)

Thursday, February 25, 2010



• Try Ising chain

Ising model
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• More general: non-integrable model

• Ising chain plus parallel field

• No exact results ⇒ Compare with iTEBD 
method

H = −
∑

i

(
σi

zσ
i+1
z + gσi

x + hσi
z

)

Non-integrable model
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• More general: non-integrable model

• Ising chain plus parallel field

• No exact results ⇒ Compare with iTEBD 
method

H = −
∑

i

(
σi

zσ
i+1
z + gσi

x + hσi
z

)

Non-integrable model
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Folded transverse method

• With same D, much longer t

• Look at truncation errors

• Compare eigenvector with highest D to 
its truncated versions

• Which D do we need for a fixed 
truncation error?
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Folded transverse method

• With same D, much longer t

• Look at truncation errors

• Compare eigenvector with highest D to 
its truncated versions

• Which D do we need for a fixed 
truncation error?

1 2 3 4 5 6 7 8 9 10
101

102

t

D

 

 

ε=1e−8
ε=1e−6
ε=0.0001
ε=0.01

qualitative good description
with modest resources

ε ∼ 1%
D < 100
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Applications

1. Impurity models

2. Dynamical correlators
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3. Thermal states

4. Thermalization
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Outlook

• Transverse method
‣ dynamical quantities in infinite chains
‣ correlations at different times 
‣ can deal with impurity models

• Folded variant
‣ much longer times than existing methods
‣ qualitative description at very large times

• Applications
‣ thermalization
‣ physical impurity problems, dynamics of QPT, 

finite chains, ...
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