Tensor Network States: ground states and time evolution of spin systems

M. C. Bañuls Max Planck Institut für **Quantenoptik** Garching (Germany)

New Applications of the RG INT, 24.02.2010

Thursday, February 25, 2010

Why Tensor Network States

Long time evolution with MPS

Tensor Network States: MPS, PEPS and others

A short incomplete review

What are TNS?

• TNS = Tensor Network States

A general state of the N-body Hilbert space has exponentially many coefficients

A TNS has only a polynomial number of parameters

What are TNS?

• A particular example

Mean field approximation

Can still produce good results in some cases

Why should TNS be useful?

• States appearing in Nature are peculiar

State at random from Hilbert space is not close to product

We look for the particular corner of the Hilbert space

Why should TNS be useful?

• Thermal states of nearest neighbour Hamiltonians described by small number of parameters

$$
H = \sum_{i} h_{i,i+1}
$$

$$
d^2 \times d^2
$$

$$
\rho \sim {\rm e}^{-H/T}
$$

specifies the state with a small number of parameters

Why should TNS be useful?

• The goal is to find good descriptions of physical states

- ➡ efficient representation
- ➡ computable observables
- ➡ (variational) algorithms

Finding a good ansatz

• Which properties characterize ground states of relevant Hamiltonians?

 $S_{A\text{max}} \propto |\delta A|$

Thursday, February 25, 2010

Finding a good ansatz

• Which properties characterize ground states of relevant Hamiltonians?

Calabrese, Cardy 2004 Wolf 2006

Finding a good ansatz

• Which properties characterize ground states of relevant Hamiltonians?

• States which fulfill the area law by construction

• States which fulfill the area law by construction

1D $S(\sim \sim \sim) \leq$

local projectors cannot increase the entropy

• States which fulfill the area law by construction

1D $\leq S(\sim \bullet \bullet \bullet) = S(\bullet \bullet \bullet)$

= 2log*D*

• States which fulfill the area law by construction

local map onto the physical d.o.f.

higher D

additional virtual particles

Verstraete, Cirac, 2004

• Also formal results known

➡ MPS and PEPS are complete families

• increasing the bond dimension, they can describe any state of the Hilbert space

- Also formal results known
	- ➡ one dimensional
		- gapped finite range Hamiltonian \Rightarrow area law (ground state) Hastings, J. Stat. Phys. 2007
		- area law \Rightarrow MPS efficient approximation

Verstraete, Cirac, PRB 2006

- ➡ higher dimensions
	- finite range, finite $T \Rightarrow$ PEPS efficiently approximate thermal state Hastings, PRB 2006

provide accurate and efficient descriptions of ground and thermal states of finite range Hamiltonians

• Real space renormalization produce MPS

$$
|\alpha_{M+1}\rangle = \sum A_{\beta\alpha}^i|\beta_M\rangle \otimes |i\rangle_{M+1}
$$

truncation method

• Real space renormalization produce MPS

$$
\begin{array}{|c|c|c|c|c|}\hline\hline\textbf{0} & \textbf{0} & \textbf{0} & \textbf{0} & \textbf{0} & \textbf{0} & \textbf{0} \\ \hline\hline\end{array}
$$

$$
|\Psi\rangle = \sum_{i_1...i_N} tr(A_1^{i_1} A_2^{i_2} \dots A_N^{i_N}) |i_1 \dots i_N\rangle
$$

 $-\bullet$

- Real space renormalization produce MPS
	- ➡ different truncation methods
		- states of minimal energy for the $subsystem \Rightarrow Wilson's NRG$
		- variational minimization of $over MPS \Rightarrow DMRG$

• Other renormalization procedures give rise to different TNS

 $|n\rangle_{k} = \sum T_{mp}^{n}|m\rangle_{2k-1} \otimes |p\rangle_{2k}$

• Other renormalization procedures give rise to different TNS

tree tensor states TTS

- ➡ efficient contraction
- ➡ violate area law
	- logarithmically

Some more properties of MPS

- Efficient algorithms
	- ➡ ground states $|E_0\rangle \simeq$ 0-0-0-0-
	- ➡ approximate a state by a MPS $|\Psi\rangle \simeq$.
	- ➡ compute expectation values

• Can be efficiently prepared

Schön et al., PRL 2005

PEPS

- Generalization of MPS
	- ➡ incorporate area law Verstraete, Cirac, 2004
	- ➡ approximate interesting states
		- Hastings, PRB 2007
- Prepare them is hard

Schuch, Wolf, Verstraete, Cirac, PRL 2007

- Cannot be contracted efficiently
	- approximate contraction

PEPS

- Efficient algorithms
	- ground states Murg, Verstraete, Cirac, PRA 2009
	- time evolution Murg, Verstraete, Cirac, PRA 2007
- Infinite lattices Jordan, Orús, Vidal, Verstraete, Cirac, PRL 2008 Bauer, Vidal, Troyer, J. Stat. Mech 2009
- Fermionic systems

Kraus, Schuch, Verstraete, Cirac, 2009 Corboz, Orús, Bauer, Vidal, 2009

- Limited to small bond dimension
	- RG techniques Levin, Nave, PRL 2007

Levin, Wen, PRB 2008 Kao, Sandvik, 2009

Summarizing

Long-time evolution with MPS

M. C. Bañuls, M. B. Hastings, F. Verstraete, J. I. Cirac

Thursday, February 25, 2010

What can be studied with MPS

➡ Ground states properties with MPS

- ➡ finite chains *→* very successful approach White, PRL 1992 Schollwöck, RMP 2005
- ➡ infinite chains *→* with translational invariance Östlund, Rommer, PRL 1995

Vidal, PRL 2007

What can be studied with MPS

➡ Time evolution with MPS

➡ finite chains Vidal, PRL 2003 White, Feiguin, PRL 2004 Daley et al., 2004

 \rightarrow infinite (TI) chains \Rightarrow iTEBD method ➡ but limited to short times Vidal, PRL 2007

➡ Start with a MPS

- ➡ Start with a MPS
- Apply evolution operator
	- \blacktriangleright discrete time steps $U(t) \to \left[U(\delta) \right]^M$
	- \blacktriangleright nearest-neighbour $H = H_e + H_o$

- ➡ Start with a MPS
- Apply evolution step
- Obtain a MPS with larger bond
- uncate D • Truncate D

- ➡ Start with a MPS
- Apply evolution step
- Obtain a MPS with larger bond
- uncate D • Truncate D

- Problem: only short times
- Entropy of evolved state may grow linearly Osborne, PRL 2006 Schuch et al., NJP 2008
	- ➡ required bond for fixed precision

D ∼ $e^{\alpha t}$

- truncation error becomes dominant
	- \rightarrow results deviate abruptly from the exact
- increasing D by factor gets only constant improvement

- Compute dynamical quantities
- For infinite chains
	- No extrapolation from finite size
- Avoid explicit truncation of the bond dimension along the evolution

M.C.B., M. Hastings, F. Verstraete, J.I.Cirac, PRL 2009

- 1. Start with MPS
- 2. Apply evolution steps

3. Apply an operator

4. Contract

- Infinite in the space direction, finite in time direction
- Reduce to 2D finite network

• $T1 \Rightarrow$ Repeated contraction of same operator

- If non-degenerate $E^n \xrightarrow[n \to \infty]{}$ *n*→∞ $\lambda^n |R\rangle\langle L|$
- Effectively substitute half networks by left and right eigenvectors

• Up to normalization

Real time evolution

• Benchmark: Ising model

$$
H = -\sum_{i} \left(\sigma_z^i \sigma_z^{i+1} + g \sigma_x^i\right)
$$

• exactly solvable

• Start in product state

 $|\Psi_0\rangle \sim \otimes_i (|0\rangle + |1\rangle)$

• Evolve with $g=1.05 \Rightarrow$ magnetization $\langle \sigma_x(t) \rangle$

Real time evolution

But...

• Not all sites along the time direction are independent

But...

• Not all sites along the time direction are independent

PRL 102, 240603 (2009)

Folded transverse method

- Bring together sites corresponding to the same time step
	- largest correlations expected

Ising model

Non-integrable model

- More general: non-integrable model
	- Ising chain plus parallel field

$$
H = -\sum_{i} \left(\sigma_z^i \sigma_z^{i+1} + g \sigma_x^i + h \sigma_z^i \right)
$$

• No exact results \Rightarrow Compare with iTEBD method

Non-integrable model

Folded transverse method

- With same D, much longer t
- Look at truncation errors
	- Compare eigenvector with highest D to its truncated versions
	- Which D do we need for a fixed truncation error?

Applications

1. Impurity models

3. Thermal states

2. Dynamical correlators

4. Thermalization

Outlook

• Transverse method

- ‣ dynamical quantities in infinite chains
- ‣ correlations at different times
- ‣ can deal with impurity models
- Folded variant
	- ‣ much longer times than existing methods
	- ‣ qualitative description at very large times

• Applications

- ‣ thermalization
- ‣ physical impurity problems, dynamics of QPT, finite chains, ...