
Unitary Fermi Gas: 
Quarky Methods

Matthew Wingate
DAMTP, U. of Cambridge

Tuesday, March 30, 2010



Outline

✤ Fermion Lagrangian

✤ Monte Carlo calculation of Tc

✤ Superfluid EFT

✤ Random matrix theory

Tuesday, March 30, 2010



Fermion L
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Dilute Fermi gas, 2 spins

H = −
1

2m

∑∑∑

σ

ψ̄σ∇2ψσ −
g2

2
(
ψ̄1ψ̄2ψ2ψ1

)

Lt = ψ̄ i∂tψ +
1

2m
ψ̄∇2ψ +

g2

2
(
ψ̄ψ

)2

ψ(t,"x) → ψ′(t,"x) = eim!v·!x ψ(t,"x − "vt)

ψ → eiαψ, ψ̄ → ψ̄e−iα

Hamiltonian

Lagrangian, real time

Galilean invariance

SU(2) spin symmetry

U(1) fermion number

t → t, !x → !x + !vt ⇒

ψ → ei!β·!σψ, ψ̄ → ψ̄e−i!β·!σ
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Transformations

Lt = ψ̄ i∂tψ +
1

2m
ψ̄∇2ψ + gψ̄φψ −

1
2

φ2

Hubbard-Stratonovich, as in Chen & Kaplan, PRL (2003).

Imaginary time for finite temperature formulation

with

Lτ = ψ̄ ∂τ ψ −
1

2m
ψ̄∇2ψ − gψ̄φψ +

1
2

φ2

≡ ψ̄Kψ +
1
2

φ2

Z =
∫∫∫

Dψ Dψ̄ Dφ exp

(
−

∫∫∫ β

0
dτ

∫∫∫
d3x Lτ

)
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Gor’kov basis

Lτ =
1
2
(ψT , −ψ̄(iσ2))

(
0 K†(iσ2)

K(iσ2) 0

) (
ψ

iσ2ψ̄T

)
+

1
2

φ2

Chen & Kaplan, PRL (2003).

Ψ → UΨ = Ψ + iα

(
I 0
0 −I

)
Ψ + . . .

SU(2) spin symmetry

U(1) fermion number

Ψ → V Ψ = Ψ + i!β ·
(

!σ 0
0 −!σ

)
Ψ + . . .

γ0

γkγ5

≡
1
2
ΨT KΨ +

1
2

φ2
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Pairing source

+
1
2

(
JψT σ2ψ + J∗ψ̄ σ2ψ̄T

)

J =
(

Jσ2 0
0 J∗σ2

)

{γ0, K} = 0 , {γ0, J } != 0 , {γkγ5, A} = 0

A = K + J

conserves U(1) breaks U(1) conserves SU(2)
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Reduced Gor’kov basis

≡ η̄ Ãη +
1
2

φ2

Ã = K̃ + J̃

{σ3, K̃} = 0 , {σ3, J̃ } != 0
conserves U(1) breaks U(1)

Z =
∫∫∫

Dφ detÃ e−Sφ

L = (ψ1, ψ̄2)
(

−iJ K̃†

K̃ −iJ∗

) (
ψ2

−ψ̄1

)
+

1
2

φ2
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Pseudofermions

Z =
∫∫∫

Dφ Dζ exp
[
−

(∫∫∫
ζ†Ã−1

ζ +
1
2

φ2

)]

✤ HMC: Molecular dynamics + accept/reject step

✤ Requires inversion of sparse matrix

✤ But matrix becomes singular in physical limit
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Banks-Casher for superfluidity

=
1
2

〈ΨT σ31Ψ〉

Order parameter (negl. signs, limits...)

∂ log Z

∂J

∣∣∣∣
J=0

=
1
2

〈ψT σ2ψ + ψ̄σ2ψ̄T 〉

= 〈η̄η〉

K̃ηn = λnηn det Ã =
∏∏∏

n

(λn − iJ)e.v. real, paired if nonzero

Σ ≡

Σ = lim
J→0

lim
V →∞

〈
1
V

∑∑∑

n

1
λn − iJ

〉

Tuesday, March 30, 2010



Banks-Casher for superfluidity

Σ = lim
J→0

lim
V →∞

〈
1
V

∑∑∑

n

1
λn − iJ

〉

= lim
J→0

∫∫∫ ∞

0

2i J ρ(λ)
λ2 + J2

dλ

= 2iπρ(0)

✤ Non-vanishing condensate implies accumulation of zero-
modes in the thermodynamic limit

✤ Interesting, but makes inversions for HMC increasingly 
difficult
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Tc
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Extrapolation to zero external source
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Phase transition
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Diagrammatic Determinant Monte Carlo

The Fermi-Hubbard model at unitarity 6

Z = 1 + +

− − + + . . .

= 1 + + + . . .

Figure 2. Diagrammatic series for the partition function. Upper line is the
graphical representation of the series (3.2), lower line depicts Eq. (3.4). Diagram
signs are shown explicitly.

as one. This implies summation over the (p!)2 ways of connecting vertices by
propagators. Upon summation, Eq. (3.2) takes on the form [22]:

Z =
∞∑

p=0

(−U)p
∑

Sp

detA↑(Sp) detA↓(Sp) , (3.4)

where
∑

Sp

≡
∑

x1...xp

∫

0<τ1<τ2<...<τp<β

p∏

j=1

dτj , (3.5)

and Aσ(Sp) are the p × p matrices built on the single-particle propagators:

Aσ
ij(Sp) = G(0)

σ (xi − xj , τi − τj) , i, j = 1, . . . , p . (3.6)

For equal number of spin-up and spin-down particles detA↑ detA↓ = | detA|2,
and the sign problem is absent. ‡ Graphically, Feynman diagrams in this
representation are just collections of vertices, see figure 2. For future use, we define
the set of all possible vertex configurations (3.3) by S(Z), i.e., S(Z) = {p, {Sp}}.

The following two-point pair correlation function will prove useful:

G2(xτ ;x′τ ′) =
〈
TτP (x, τ)P †(x′, τ ′)

〉
≡

g2(xτ ;x′τ ′)

Z
, (3.7)

g2(xτ ;x′τ ′) = TrTτP (x, τ)P †(x′, τ ′) e−βH , (3.8)

where P (x, τ) and P †(x′, τ ′) are the pair annihilation and creation operators in the
Heisenberg picture, respectively: P (x, τ) = cx↑(τ)cx↓(τ). The non-zero asymptotic
value of G2(xτ ;x′τ ′) as |x − x′| → ∞ is proportional to the condensate density.

Feynman diagrams for g2(xτ ;x′τ ′) are similar to those for Z, but contain two
extra elements: a pair of two-point vertices with two incoming (outgoing) ends which
represent P (x, τ) ( P †(x′, τ ′) ), see figure 3. The vertex configurations for the
correlation function (3.7) slightly differ from those for the partition function (3.3)
by the presence of the two extra elements: the configuration space for Eq. (3.7) is
S(G) = {p, {S̃p}}, with

S̃p = {P (x, τ), P †(x′, τ ′), (xj , τj), j = 1, . . . , p} . (3.9)

‡ At half filling, the sign of U changes if the hole representation is used for one of the spin components.
Hence, this method is also applicable to the half-filled repulsive Hubbard model.

Burovski, Prokof’ev, Svistunov, Troyer, New J. Phys 8, 153 (2003) 
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Critical Temperature
The Fermi-Hubbard model at unitarity 15
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Figure 4. A typical crossing of the R(L, T ) curves. The errorbars are 2σ, and
solid lines are the linear fits to the MC points. Inset shows the finite-size scaling
of the filling factor (ν vs 1/L), which yields ν = 0.148(1). From this plot and Eq.
(4.3) one obtains 1/Tc(ν) = 4.41(5)/t
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Figure 5. The scaling of the lattice critical temperature with filling factor
(circles). ν = 1 corresponds to the half filling. The errorbars are one standard
deviation. The results of Ref. [42, 43] at quarter filling and ν = 0.25 are also
shown for a comparison. See the text for discussion.

cutoff, while we use the tight-binding dispersion law. Indeed, Eqs. (2.8)-(2.9) indicate
that a particular choice of εk does influence lattice corrections to Tc, which may even
have different signs for different εk.

Burovski, Prokof’ev, Svistunov, Troyer, New J. Phys 8, 153 (2003) 
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Continuum limit
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Figure 5. The scaling of the lattice critical temperature with filling factor
(circles). ν = 1 corresponds to the half filling. The errorbars are one standard
deviation. The results of Ref. [42, 43] at quarter filling and ν = 0.25 are also
shown for a comparison. See the text for discussion.

cutoff, while we use the tight-binding dispersion law. Indeed, Eqs. (2.8)-(2.9) indicate
that a particular choice of εk does influence lattice corrections to Tc, which may even
have different signs for different εk.

Burovski, Prokof’ev, Svistunov, Troyer, New J. Phys 8, 153 (2003) 
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Our investigations with DDMC

✤ Implemented own version of code

✤ Found long autocorrelations in cases

✤ Update of result for Tc in balanced case

✤ Investigation of imbalanced gas, Tc vs. Δn/n, in 
continuum limit

✤ Final results later this spring

with Olga Goulko

Lattice 2009 proceedings, arXiv:0910.3909
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Trade-offs

✤ Can work directly with J=0

✤ Fine for finite volume determination of Tc

✤ Scales like V 2
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Superfluid EFT
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Phonon

〈ψT σ2ψ〉 = |〈ψT σ2ψ〉| e2iθ

X ≡ χ

(
∂τ −

∇2

2m

)
χ† =

(
−i∂τ θ +

1
2m

|∇θ|2
)

χ(τ,#x) ≡ eiθ(τ,#x)

Leff = c0 m3/2X5/2

 NLO derived in D T Son & M W, Annals Phys (2006)

puted within the EFT, but since the number of physical quantities that can be computed is
greater than three, the EFT has real predictive power.

We start the paper with a summary of some results that can be obtained using the EFT
(Section 2). Then in Section 3 we show that the Lagrangian for interacting nonrelativistic
particles can be coupled to background gauge fields and spatial metric in a way that
respects gauge invariance and the general coordinate invariance. The general coordinate
invariance is a gauge version of the translation and Galilean transformations. In Section
4 we study the conformal invariance of unitary Fermi gas. We then proceed, in Sections 5
and 6, to find the most general effective Lagrangian, to leading and next-to-leading orders,
that is consistent with these symmetries. Some applications of the EFT are considered in
Section 7. We conclude with Section 8.

2. Summary of results

Here we give a brief summary of the result of this paper for the unitary Fermi gas. We
do it here to give the reader a sense of the power and the limitations of the effective field
theory derived in the paper. We work in the unit system where !h = 1. We denote the num-
ber density as n and the fermion mass as m, from which we define the Fermi momentum
kF = (3p2n)1/3, the Fermi energy !F ¼ k2F=ð2mÞ, and the Fermi velocity vF = kF/m. We
introduce the dimensionless parameter n, defined as the ratio of the energy density of
the unitary Fermi gas to the energy density of a free Fermi gas at the same density

! ¼ n
3

5
!Fn. ð1Þ

First, we shall show that the dynamics of the gas is described, to leading order, by the
Lagrangian

LLO ¼ c0m3=2 l$ V ðt; xÞ $ _u$ ðruÞ2

2m

" #5=2

; ð2Þ

where u is the phase of the condensate, l is the chemical potential, V (t,x) is the trapping
potential, and c0 is a dimensionless parameter. The leading-order Lagrangian captures the
same information as the Thomas-Fermi theory and superfluid hydrodynamics. The coef-
ficient c0 is directly related to the parameter n, defined in Eq. (1), by

c0 ¼
25=2

15p2n3=2
ð3Þ

and has to be determined microscopically.
To the next-to-leading order in the low-momentum expansion, the effective Lagrangian

has the form

L ¼ c0m3=2X 5=2 þ c1m1=2 ð$X Þ2ffiffiffiffi
X

p þ c2ffiffiffiffi
m

p ½ðr2uÞ2 $ 9mr2A0'
ffiffiffiffi
X

p
; ð4Þ

where we have introduced the shorthand notation

X ¼ l$ V ðt; xÞ $ _u$ ðruÞ2

2m
ð5Þ

D.T. Son, M. Wingate / Annals of Physics 321 (2006) 197–224 199
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Initial power counting: (∂θ)n ∼ O(1), ∂m(∂θ)n ∼ O(pm)
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Expand about ground state

ϕ = θ − iµτ

ϕ(τ,#x) ≡
π(τ, #x)
F

√
m

.

X = − µ + i∂τ ϕ +
|∇ϕ|2

2m

Leff = −c0m3/2

[
µ5/2 −

5µ3/2

2F
√

m

(
i∂τ π +

1
2m3/2F

|∇π|2
)

+
15µ1/2

4mF 2

(
i∂τ π +

1
2m3/2F

|∇π|2
)2

+ . . .

]
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Include pairing source

J → e−2iαJ

Y = J(χ†)2 + J∗χ2

Y = 2J cos 2ϕ = 2J(1 − 2ϕ2 + . . .)

Leff = c0m3/2X5/2 + d0m3/2X3/2Y

Leff = −m3/2

[(
c0 +

2d0J

µ

)
µ5/2 −

µ3/2

F
√

m

(
5c0

2
+

3d0J

µ

) (
i∂τ π +

1
2m3/2F

|∇π|2
)

+
µ1/2

4mF 2

(
15c0

2
+

3d0J

µ

) (
i∂τ π +

1
2m3/2F

|∇π|2
)2

−
4d0Jµ3/2

mF 2
π2

]

 work done with J-W Chen
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Phonon mass

M2
0 =

4B

F 2c4
s

J

B = 2d0m1/2µ3/2 ∝ Σ

ξ =
1

√
2mMc2

s

Correlation length

LO phonon mass

Must use power counting: 

(∂nθ) ∼ O(pn), Mk ∼ O(pk)
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Pressure

P0(µ) = (c0µ5/2 + 2d0Jµ3/2)m3/2

n = P ′
0(µ) = (

5
2

c0µ3/2 + 3d0Jµ1/2)m3/2

Leff = − P0(µ) +
in

F
√

m
∂τ π

+
1
2

(∂τ π)2 +
c2

s

2
|∇π|2 +

1
2

M2
0 π2 + Lint

c2
s =

1
m

n(µ)
n′(µ)

=
2
3

µ

m

(
1 +

4
5

d0

c0

J

µ
+ O

(
J2

µ2

))

Constant part of L

Canonical norm’n for kinetic term

Speed of sound
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✤ p regime: small effects, e-ML

✤ ε regime: phonon zero mode 
dominates, must be resummed. 

✤ δ regime: symmetry restored

Finite volume effects

L !
1

F 2
! ξ

1
F 2

! L ! ξ

1
F 2

! ξ ! L
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Random Matrix Theory
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Random matrix theory

✤ Low energy EFT is universal given symmetries and 
symmetry breaking pattern

✤ In ε regime uniform phonon zero mode dominates over 
fluctuating nonzero modes

✤ Replace Gor’kov operator with random matrix with 
appropriate global symmetries (and no spacetime 
dependence)

✤ Spectral quantities on scale of average level spacing are 
thought to be universal

✤ Compare to Monte Carlo

✤ Guidance for algorithmic improvements
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Random Matrix Model
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Random matrix model

✤ Going beyond universal results...

✤ Use RMT as toy model (with same low energy EFT 
as Fermi gas)

✤ Explore larger population imbalances analytically

✤ Interesting phase diagram?
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Summary

✤ Numerical calculation of critical temperature

✤ Need to improve Monte Carlo calculations (HMC)

✤ EFT study of SSB in finite volume

✤ Importance of low-lying eigenmodes

✤ Random matrix theory for unitary Fermi gas
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