Unitary Fermi Gas: Quarky Methods

MATTHEW WINGATE DAMTP, U. OF CAMBRIDGE

Tuesday, March 30, 2010

Outline

- Fermion Lagrangian
- Monte Carlo calculation of Tc
- Superfluid EFT
- Random matrix theory

Fermion L

H

Dilute Fermi gas, 2 spins

Hamiltonian

$${\cal H} \;=\; - {1\over 2m} \sum_\sigma ar\psi_\sigma
abla^2 \psi_\sigma \;-\; {g^2\over 2} \left(ar\psi_1 ar\psi_2 \psi_2 \psi_1
ight)$$

Lagrangian, real time

$$\mathcal{L}_t \ = \ ar{\psi} i \partial_t \psi \ + \ rac{1}{2m} ar{\psi}
abla^2 \psi \ + \ rac{g^2}{2} \left(ar{\psi} \psi
ight)^2$$

Galilean invariance $t \rightarrow t, \quad \vec{x} \rightarrow \vec{x} + \vec{v}t \Rightarrow$

$$\psi(t,\vec{x}) \rightarrow \psi'(t,\vec{x}) = e^{im\vec{v}\cdot\vec{x}}\psi(t,\vec{x}-\vec{v}t)$$

SU(2) spin symmetry
$$\psi \to e^{i \vec{\beta} \cdot \vec{\sigma}} \psi, \quad \bar{\psi} \to \bar{\psi} e^{-i \vec{\beta} \cdot \vec{\sigma}}$$

U(1) fermion number $\psi
ightarrow e^{ilpha} \psi, \quad ar{\psi}
ightarrow ar{\psi} e^{-ilpha}$

Transformations

Hubbard-Stratonovich, as in Chen & Kaplan, PRL (2003).

$${\cal L}_t \;=\; ar{\psi} i \partial_t \psi \,+\, {1\over 2m} ar{\psi}
abla^2 \psi \,+\, g ar{\psi} \phi \psi \,-\, {1\over 2} \phi^2$$

Imaginary time for finite temperature formulation

$${\cal Z} \;=\; \int {\cal D}\psi \, {\cal D}ar{\psi} \, {\cal D}\phi \, \exp\left(-\int_{0}^{eta} {
m d} au \int {
m d}^{3}x \; {\cal L}_{ au}
ight)$$

with

$$egin{aligned} \mathcal{L}_{ au} &= ar{\psi} \, \partial_{ au} \psi - rac{1}{2m} ar{\psi}
abla^2 \psi - g ar{\psi} \phi \psi + rac{1}{2} \phi^2 \ &\equiv ar{\psi} K \psi + rac{1}{2} \phi^2 \end{aligned}$$

Gor'kov basis

$$\mathcal{L}_{\tau} = \frac{1}{2} (\psi^{T}, -\bar{\psi}(i\sigma_{2})) \begin{pmatrix} 0 & K^{\dagger}(i\sigma_{2}) \\ K(i\sigma_{2}) & 0 \end{pmatrix} \begin{pmatrix} \psi \\ i\sigma_{2}\bar{\psi}^{T} \end{pmatrix} + \frac{1}{2}\phi^{2}$$

$$\equiv \frac{1}{2} \Psi^{T} \mathcal{K} \Psi + \frac{1}{2} \phi^{2}$$
SU(2) spin symmetry $\Psi \rightarrow V \Psi = \Psi + i\vec{\beta} \cdot \begin{pmatrix} \gamma_{k}\gamma_{5} \\ \vec{\sigma} & 0 \\ 0 & -\vec{\sigma} \end{pmatrix} \Psi + \dots$
U(1) fermion number $\Psi \rightarrow U \Psi = \Psi + i\alpha \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \Psi + \dots$

$$\frac{\gamma_{0}}{\gamma_{0}}$$

Chen & Kaplan, PRL (2003).

Pairing source

$$+rac{1}{2}\left(J\psi^T\sigma_2\psi\ +\ J^*ar{\psi}\,\sigma_2ar{\psi}^T
ight)$$

$${\cal J} \;=\; \left(egin{array}{ccc} J\sigma_2 & 0 \ 0 & J^*\sigma_2 \end{array}
ight)$$

$$\mathcal{A} = \mathcal{K} + \mathcal{J}$$

 $\{\gamma_0, \mathcal{K}\} = 0, \quad \{\gamma_0, \mathcal{J}\} \neq 0, \quad \{\gamma_k \gamma_5, \mathcal{A}\} = 0$ conserves U(1) breaks U(1) conserves SU(2)

Reduced Gor'kov basis

$$egin{aligned} \mathcal{L} &= (\psi_1, ar{\psi}_2) \left(egin{aligned} -iJ & ilde{K}^\dagger \ ilde{K} & -iJ^st \end{array}
ight) \left(egin{aligned} \psi_2 \ -ar{\psi}_1 \end{array}
ight) + rac{1}{2} \phi^2 \ &\equiv ar{\eta} \, \widetilde{\mathcal{A}} \, \eta \, + rac{1}{2} \phi^2 \ &\widetilde{\mathcal{A}} \, = \, \widetilde{\mathcal{K}} \, + \, \widetilde{\mathcal{J}} \ &\{\sigma_3, \widetilde{\mathcal{K}}\} \, = \, 0 \,, \quad \{\sigma_3, \widetilde{\mathcal{J}}\} \,
eq 0 \ & ext{ conserves U(1) } \ & ext{ breaks U(1)} \ &\mathcal{Z} \, = \, \int \! \mathcal{D} \phi \, \det \widetilde{\mathcal{A}} \, e^{-S_\phi} \end{aligned}$$

Tuesday, March 30, 2010

Pseudofermions

$${\cal Z} \;=\; \int {\cal D} \phi \; {\cal D} \zeta \, \exp\left[- \left(\int \zeta^\dagger {\widetilde {\cal A}}^{-1} \zeta \;+ {1\over 2} \phi^2
ight)
ight]$$

HMC: Molecular dynamics + accept/reject step

Requires inversion of sparse matrix

But matrix becomes singular in physical limit

Banks-Casher for superfluidity

Order parameter (negl. signs, limits...)

$$\Sigma \equiv \left. rac{\partial \log Z}{\partial J} \right|_{J=0} = \left. rac{1}{2} \langle \psi^T \sigma_2 \psi + ar{\psi} \sigma_2 ar{\psi}^T
angle$$

 $= \left. rac{1}{2} \langle \Psi^T \sigma_{31} \Psi
angle$
 $= \langle ar{\eta} \eta
angle$
 $= \lambda_n \eta_n \,\, ext{ex. real, paired if nonzero} \,\, \det \widetilde{\mathcal{A}} = \prod_n (\lambda_n - iJ)$

$$\Sigma = \lim_{J o 0} \lim_{V o \infty} \left\langle rac{1}{V} \sum_n rac{1}{\lambda_n - iJ}
ight
angle$$

Tuesday, March 30, 2010

 $\widetilde{\mathcal{K}}\eta_n$

Banks-Casher for superfluidity

$$\Sigma = \lim_{J \to 0} \lim_{V \to \infty} \left\langle \frac{1}{V} \sum_{n} \frac{1}{\lambda_n - iJ} \right\rangle$$
$$= \lim_{J \to 0} \int_0^\infty \frac{2iJ\rho(\lambda)}{\lambda^2 + J^2} d\lambda$$

$$= 2i\pi
ho(0)$$

- Non-vanishing condensate implies accumulation of zeromodes in the thermodynamic limit
- Interesting, but makes inversions for HMC increasingly difficult

Extrapolation to zero external source

Phase transition

Anisotropy (\approx Temperature)

MW, cond-mat/0502372

Diagrammatic Determinant Monte Carlo

Burovski, Prokof'ev, Svistunov, Troyer, New J. Phys 8, 153 (2003)

 $\bigcirc - \bigcirc + \bigcirc + \dots$

 $= 1 + \mathbf{A} + \mathbf$

Critical Temperature

Burovski, Prokof'ev, Svistunov, Troyer, New J. Phys 8, 153 (2003)

Continuum limit

Burovski, Prokof'ev, Svistunov, Troyer, New J. Phys 8, 153 (2003)

Our investigations with DDMC with Olga Goulko

- Implemented own version of code
- Found long autocorrelations in cases
- Update of result for T_c in balanced case
- Investigation of imbalanced gas, T_c vs. $\Delta n/n$, in continuum limit
- Final results later this spring

Lattice 2009 proceedings, arXiv:0910.3909

Trade-offs

• Can work directly with J=0

• Fine for finite volume determination of T_c

Scales like V²

Superfluid EFT

Phonon

$$egin{aligned} &\langle \psi^T \sigma_2 \psi
angle \ = \ &|\langle \psi^T \sigma_2 \psi
angle | e^{2i heta} \ &\chi(au, ec x) \ \equiv \ e^{i heta(au, ec x)} \end{aligned}$$
 $X \ &\equiv \ \chi \left(\partial_ au - rac{\overline{
abla}^2}{2m}
ight) \chi^\dagger \ = \ \left(-i\partial_ au \ heta \ + \ rac{1}{2m} |
abla heta |^2
ight)$

Initial power counting: $(\partial \theta)^n \sim O(1), \ \partial^m (\partial \theta)^n \sim O(p^m)$

$$\mathcal{L}_{\text{eff}} = c_0 m^{3/2} X^{5/2}$$
 $c_0 = \frac{2^{5/2}}{15\pi^2 \xi^{3/2}}$ $\epsilon = \xi \frac{3}{5} \epsilon_F n.$

NLO derived in D T Son & M W, Annals Phys (2006)

- / -

Expand about ground state

$$\varphi = heta - i\mu au$$

$$X = -\mu + i \partial_ au arphi + rac{|
abla arphi|^2}{2m}$$

$$arphi(au,ec x) \;\equiv\; rac{\pi(au,ec x)}{F\sqrt{m}}\,.$$

$$\mathcal{L}_{\text{eff}} = -c_0 m^{3/2} \bigg[\mu^{5/2} - \frac{5\mu^{3/2}}{2F\sqrt{m}} \left(i\partial_\tau \pi + \frac{1}{2m^{3/2}F} |\nabla\pi|^2 \right) \\ + \frac{15\mu^{1/2}}{4mF^2} \left(i\partial_\tau \pi + \frac{1}{2m^{3/2}F} |\nabla\pi|^2 \right)^2 + \dots \bigg]$$

Tuesday, March 30, 2010

Include pairing source

work done with J-W Chen

$$egin{aligned} & \mathfrak{J} o e^{-2ilpha} \mathfrak{J} \ & Y \ &= \ \mathfrak{J}(\chi^\dagger)^2 + \mathfrak{J}^*\chi^2 \ & Y \ &= \ 2J\cos 2arphi \ &= \ 2J(1-2arphi^2+\ldots) \ & \mathcal{L}_{ ext{eff}} \ &= \ c_0 m^{3/2} X^{5/2} \ + \ d_0 m^{3/2} X^{3/2} Y \end{aligned}$$

$$\mathcal{L}_{\text{eff}} = -m^{3/2} \bigg[\left(c_0 + \frac{2d_0 J}{\mu} \right) \mu^{5/2} - \frac{\mu^{3/2}}{F\sqrt{m}} \left(\frac{5c_0}{2} + \frac{3d_0 J}{\mu} \right) \left(i \partial_\tau \pi + \frac{1}{2m^{3/2} F} |\nabla \pi|^2 \right) \\ + \frac{\mu^{1/2}}{4mF^2} \left(\frac{15c_0}{2} + \frac{3d_0 J}{\mu} \right) \left(i \partial_\tau \pi + \frac{1}{2m^{3/2} F} |\nabla \pi|^2 \right)^2 \left(- \frac{4d_0 J \mu^{3/2}}{mF^2} \pi^2 \right)$$

Tuesday, March 30, 2010

Phonon mass

$$B \;=\; 2 d_0 m^{1/2} \mu^{3/2} \;\propto\; \Sigma$$

LO phonon mass
$$M_0^2 = {4B\over F^2 c_s^4} J$$

Correlation length
$$\xi = rac{1}{\sqrt{2mMc_s^2}}$$

Must use power counting:

$$(\partial^n \theta) \sim O(p^n), \ M^k \sim O(p^k)$$

Pressure

Constant part of L

$$P_0(\mu) \ = \ (c_0 \mu^{5/2} \ + \ 2 d_0 J \mu^{3/2}) m^{3/2}$$
 $n \ = \ P_0'(\mu) \ = \ (rac{5}{2} c_0 \mu^{3/2} \ + \ 3 d_0 J \mu^{1/2}) m^{3/2}$

Canonical norm'n for kinetic term

$$egin{aligned} \mathcal{L}_{ ext{eff}} &= & -P_0(\mu) \,+\, rac{in}{F\sqrt{m}}\,\partial_ au\pi \ &+ rac{1}{2}\,(\partial_ au\pi)^2 \,+\, rac{c_s^2}{2}\,|
abla\pi|^2 \,+\, rac{1}{2}M_0^2\pi^2 \,+\, \mathcal{L}_{ ext{int}} \end{aligned}$$

Speed of sound

$$c_s^2 \ = \ rac{1}{m} rac{n(\mu)}{n'(\mu)} \ = \ rac{2}{3} rac{\mu}{m} \left(1 \ + \ rac{4}{5} rac{d_0}{c_0} rac{J}{\mu} \ + \ \mathcal{O}igg(rac{J^2}{\mu^2} igg)
ight)$$

Finite volume effects

* *p* regime: small effects, e^{-ML}

 $\frac{1}{F^2} \ll \xi \ll L$

ε regime: phonon zero mode dominates, must be resummed.

 $\frac{1}{F^2} \ll L \ll \xi$

δ regime: symmetry restored

 $L \ll \frac{1}{F^2} \ll \xi$

Random Matrix Theory

Random matrix theory

- Low energy EFT is universal given symmetries and symmetry breaking pattern
- In ε regime uniform phonon zero mode dominates over fluctuating nonzero modes
- Replace Gor'kov operator with random matrix with appropriate global symmetries (and no spacetime dependence)
- Spectral quantities on scale of average level spacing are thought to be universal
- Compare to Monte Carlo
- Guidance for algorithmic improvements

Random Matrix Model

Random matrix model

- Going beyond universal results...
- Use RMT as toy model (with same low energy EFT as Fermi gas)
- Explore larger population imbalances analytically
- Interesting phase diagram?

Summary

Numerical calculation of critical temperature
 Need to improve Monte Carlo calculations (HMC)
 EFT study of SSB in finite volume
 Importance of low-lying eigenmodes
 Random matrix theory for unitary Fermi gas

Photo: Stefan Meinel

-q- EFIGUR

1 m l 1

· Incide

P

. .