EQUATION OF STATE OF THE UNITARY GAS

DIAGRAMMATIC MONTE CARLO

Kris Van Houcke (UMass Amherst & U of Ghent)

Félix Werner (UMass Amherst)

Evgeny Kozik (ETH Zurich)

Boris Svistunov & Nikolay Prokofev (UMass Amherst)

EXPERIMENT

Andre Schirotzek Ariel Sommer Mark Ku Martin Zwierlein (MIT)

Seattle, March 17, 2010

What is the unitary gas:

- Spin 1/2 fermions
- Interactions have
- **f** infinite scattering length
 - zero range

(3D)

Universality hypothesis:

$$\begin{array}{c} \mathsf{V}(\mathsf{r}) \\ \downarrow |a| = \infty \\ \downarrow |b| \\ \downarrow |a| = \infty \\ \downarrow$$

Diagrammatic Monte-Carlo

Random walk in the space of all possible diagram topologies and all values of internal and external variables. Each configuration is visited with a probability proportional to the absolute value of its contribution to $\Sigma(\vec{p}, \tau)$

after each MC update:

 \Rightarrow histogram for $\Sigma(p, \tau)$

Previous applications of DiagMC:

- Solution of Fermi-polaron problem [Prokofev&Svistunov, PRB 2008]
- Doped Hubbard model [Van Houcke et al., 2008; Kozik et al. arXiv 2009]

<u>A new way to fight the sign problem:</u>

traditional QMC: error bars ~ $\exp\{\#\beta \text{ Volume}\}$ DiagMC: Volume = ∞ error bars ~ $\exp\{\# \text{ diagram order}\}$

 $\beta \mu = 0$

Resummation

 $\beta \mu = 0$

$$\beta \mu = 0$$

 $\beta\mu = 0.5$

Comparison with experiments:

How were these experimental EOS obtained:

$$\rho = \sqrt{x^2 + y^2}$$

trapping potential $V(\rho, z)$
local density $n_{3D}(\rho, z)$

local density approximation : $n_{3D}(\rho, z) = n_{\text{homogeneous}} (T, \mu = \mu_g - V(\rho, z))$ $p_{3D}(\rho, z) = p_{\text{homogeneous}} (T, \mu = \mu_g - V(\rho, z))$ $\ell^{+\infty} = \frac{?}{2} p_{\text{homogeneous}} (T, \mu)$

$$n_{2D}(y,z) = \int_{-\infty}^{+\infty} dx \ n_{3D}(\rho = \sqrt{x^2 + y^2}, z) \longrightarrow Phomogeneous(T, \mu)$$

$$\underline{ENS \ protocol:} \ [Ho&Zhou]$$

$$p_{3D}(\rho = 0, z) = \frac{m\omega_{\rho}^2}{2\pi} \int_{-\infty}^{+\infty} dy \ n_{2D}(y, z) \quad \text{for harmonic trap}$$
fitting the wings with virial (2nd order) $\longrightarrow (T, \mu_g)$

$$\underbrace{\frac{our \ protocol:}}{p_{3D}(\rho_0, z) = \frac{1}{\pi} \int_{\rho_0}^{\infty} dy \ n_{2D}(y, z)} \left[\frac{\frac{\partial V}{\partial \rho}(y, z)}{\sqrt{y^2 - \rho_0^2}} + \int_{\rho_0}^{y} d\rho \ \frac{\rho \frac{\partial V}{\partial \rho}(y, z) - y \frac{\partial V}{\partial \rho}(\rho, z)}{(y^2 - \rho^2)^{3/2}} \right] \text{for any trap}}_{\text{fitting the wings with virial (3rd order)}} \longrightarrow (T, \mu_g)$$

What we are working on

Bold Diagrammatic Monte Carlo

• Combine theory with experiment to obtain accurately EOS down to T=0

Next projects:

- Finite scattering length
- Finite imbalance
- Doped Hubbard model

