EQUATION OF STATE OF THE UNITARY GAS

DIAGRAMMATIC MONTE CARLO

Kris Van Houcke (UMass Amherst & U of Ghent)

Félix Werner (UMass Amherst)

Evgeny Kozik (ETH Zurich)

Boris Svistunov & Nikolay Prokofev (UMass Amherst)

EXPERIMENT

Andre Schirotzek Ariel Sommer Mark Ku Martin Zwierlein (MIT)

Seattle, March 17, 2010

What is the unitary gas:

- Spin 1/2 fermions
- Interactions have
- infinite scattering length
- *{* • zero range

(3D)

Universality hypothesis:

$$
V(r)
$$
\n
$$
|a| = \infty
$$
\n
$$
|a| = \infty
$$
\n
$$
|a| = \infty
$$
\n
$$
\frac{1}{\sum_{n \in B} \pi}
$$
\n
$$
\frac{n}{\sum_{n \in B} \pi}{\sum_{n \in B} \pi}
$$
\n
$$
\frac{n}{\sum_{n \in B} \pi}{\sum_{n \in B} \pi}
$$
\n
$$
\frac{n}{\sum_{n \in B} \pi}{\sum_{n \in B} \pi}
$$
\n
$$
\frac{n}{\sum_{n \in B} \pi}{\sum_{n \in B} \pi}
$$
\n
$$
\frac{n}{\sum_{n \in B} \pi}{\sum_{n \in B} \pi}
$$
\n
$$
\frac{n}{\sum_{n \in B} \pi}{\sum_{n \in B} \pi}
$$
\n
$$
\frac{n}{\sum_{n \in B} \pi}{\sum_{n \in B} \pi}
$$
\n
$$
\frac{n}{\sum_{n \in B} \pi}{\sum_{n \in B} \pi}
$$
\n
$$
\frac{n}{\sum_{n \in B} \pi}{\sum_{n \in B} \pi}
$$
\n
$$
\frac{n}{\sum_{n \in B} \pi}{\sum_{n \in B} \pi}
$$
\n
$$
\frac{n}{\sum_{n \in B} \pi}{\sum_{n \in B} \pi}
$$
\nSuppose us phase

\n
$$
\beta = 1/T
$$

Diagrammatic Monte-Carlo

Random walk in the space of all possible diagram topologies and all values of internal and external variables. Each configuration is visited with a probability proportional to the absolute value of its contribution to $\Sigma(\vec{p},\tau)$

after each MC update:

 \Rightarrow histogram for $\Sigma(p, \tau)$

Previous applications of DiagMC:

- Solution of Fermi-polaron problem [Prokofev&Svistunov, PRB 2008]
- Doped Hubbard model [Van Houcke et al., 2008; Kozik et al. arXiv 2009]

A new way to fight the sign problem:

traditional QMC: error bars ~ exp*{*#β Volume*}* DiagMC: Volume = ∞ error bars ~ $\exp\{\# \text{ diagram order}\}$

 $\beta\mu=0$

Resummation

$$
\beta\mu=0
$$

 $\mathsf{k}\lambda$

$$
\beta\mu=0.5
$$

Comparison with experiments:

How were these experimental EOS obtained: <u>tained:</u> \Box

 $\rho = \sqrt{x^2 + y^2}$ local density $n_{3D}(\rho, z)$

 $)$

 $\overline{}$

ci c

 $\mu_{\text{max}}(p, z) = \text{min}_{\text{max}}(p, z)$. It is related to the equation of the equation of $\sigma_{\text{max}}(p, z)$ $\frac{1}{2}$ $\text{local density approximation}: n_{3D}(\rho, z) = n_{\text{homogeneous}}(T, \mu = \mu_g - V(\rho, z))$ $d\alpha = 1/2$ $p_{3D}(\rho, z) = p_{\text{homogeneous}}(1, \mu = \mu_g - V(\rho, z))$ $p_{3D}(\rho,z)=p_{\text{homogeneous}}\left(T,\mu=\mu_g-V(\rho,z)\right)$ \mathcal{Q} b_r annic $\frac{1}{\mathrm{ion}}$: $\mu_3D(\rho, z) = \mu_0$ nomogeneous $\left(1, \mu - \mu_g \right)$ $\left(\rho, z\right)$. $\mathcal P$

$$
n_{2D}(y, z) = \int_{-\infty}^{+\infty} dx \ n_{3D}(\rho = \sqrt{x^2 + y^2}, z)
$$

$$
p_{\text{homogeneous}}(T, \mu)
$$

$$
P_{\text{nonlocal}}(T, \mu)
$$

ENS protocol: [Ho&Zhou] LIVS DIULUCUI. IT IUGLIIUU

 $p_{3D}(\rho=0,z) =$ $m\omega_\rho^2$ 2π $\int^{+\infty}$ $-\infty$ $dy n_{2D}(y, z)$ for harmonic trap fitting the wings with virial (2nd order) \longrightarrow (T, μ_g) F_{F} $p(0, z) = \frac{p}{2\pi} \int dy n_{2D}(y, z)$ for harmonic trap Titting the wings with virial (2nd order) \longrightarrow $(1, \mu_g)$ Formula 1999

our protocol:
\n
$$
p_{3D}(\rho_0, z) = \frac{1}{\pi} \int_{\rho_0}^{\infty} dy \ n_{2D}(y, z) \left[\frac{\frac{\partial V}{\partial \rho}(y, z)}{\sqrt{y^2 - \rho_0^2}} + \int_{\rho_0}^{y} d\rho \ \frac{\rho \frac{\partial V}{\partial \rho}(y, z) - y \frac{\partial V}{\partial \rho}(\rho, z)}{(y^2 - \rho^2)^{3/2}} \right] \text{for any trap}
$$

 $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ fitting the wings with virial (3rd order) \longrightarrow (T, μ_g)

What we are working on

Bold Diagrammatic Monte Carlo

• Combine theory with experiment to obtain accurately EOS down to $T=0$

Next projects:

- Finite scattering length
- Finite imbalance
- Doped Hubbard model

