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• Spin 1/2 fermions
• Interactions have

n(T, µ)
n0(T, µ)

= βµ [β ≡ 1/T ]N↑ = N↓

What is the unitary gas:

• infinite scattering length
• zero range{
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Diagrammatic Monte-Carlo

Random walk in the space of
all possible diagram topologies
and all values of internal and external variables.
Each configuration is visited with a probability
proportional to the absolute value of its contribution
to Σ(!p, τ)
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after each MC update:

⇒ histogram for Σ(p, τ)



Previous applications of DiagMC:

• Solution of Fermi-polaron problem

• Doped Hubbard model

[Prokofev&Svistunov, PRB 2008]

[Van Houcke et al., 2008; Kozik et al. arXiv 2009]

A new way to fight the sign problem:

traditional QMC: error bars ~ exp{#β Volume}

DiagMC:                        error bars ~Volume =∞ exp{# diagram order}



βµ

0

(βµ)c = 3.2(2) [Burovski et al.]
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Riesz:
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⇒ nλ3 = 2.90(2) i.e. T/TF = 0.646(6)
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βµ = 0.5

⇒ nλ3 " 4.8 i.e. T/TF " 0.46
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DiagMC

Virial order 2
Virial order 3 [Liu et al.]

T=0, "  0.4 [Juillet; Gezerlis et al.,...]

Bulgac et al.

critical point [Burovski et al.]

(preliminary)
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Comparison with experiments:

βµ



ENS protocol:

p3D(ρ = 0, z) =
mω2

ρ

2π

∫ +∞

−∞
dy n2D(y, z) for harmonic trap 

fitting the wings with virial (2nd order) (T, µg)

How were these experimental EOS obtained:

z

y

Direct transformation from 2D profile to local pressure for an arbitrary trap

Notations

As usual, ρ =
√

x2 + y2, the trapping potential V (ρ, z) and the density n3D(ρ, z) are cylindrically symmetric, and
the 2D profile is

n2D(y, z) =

∫ +∞

−∞

dx n3D(ρ =
√

x2 + y2, z). (1)

Let us denote the local pressure by p(ρ, z). It is related to the equation of state p(µ) through

p(ρ, z) = p(µ = µg − V (ρ, z)) (2)

where µg is the global chemical potential of the trapped gas. (I drop the dependence on T since T is fixed throughout.)

Formula

p(ρ0, z) =
1

π
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∂ρ (ρ, z)

(y2
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]

. (3)

Derivation

Pick some (ρ0, z). The local chemical potential at (ρ0, z) is µ0 = µg − V (ρ0, z).
From the Gibbs-Duhem relation dp = n dµ (valid at constant T )

p(µ0) =

∫ µ0

−∞

n(µ) dµ. (4)

We do the change of variables µ → ρ according to

µ = µg − V (ρ, z). (5)

In other words we interpret µ as the local chemical potential at (ρ, z). In the integral, µ runs from −∞ to µ0, so ρ
runs from +∞ to ρ0 (while z is fixed throughout). This gives

p(ρ0, z) = p(µ0) =

∫

∞

ρ0

n3D(ρ, z)
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∂ρ
(ρ, z) dρ. (6)
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1

π
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ρ
dy
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1
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and exchange the order of integrations:
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(y, ρ) I(y) (8)

where
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local density n3D(ρ, z)

local density approximation : n3D(ρ, z) = nhomogeneous (T, µ = µg − V (ρ, z))
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? phomogeneous(T, µ)

p3D(ρ, z) = phomogeneous (T, µ = µg − V (ρ, z))

our protocol:

for any trap 

fitting the wings with virial (3rd order) (T, µg)
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p3D

[Ho&Zhou]



What we are working on
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Bold Diagrammatic Monte Carlo



DiagMC fit

• Combine theory with experiment to 
obtain accurately EOS down to T=0



Next projects:
• Finite scattering length
• Finite imbalance 
• Doped Hubbard model
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