

Nuclear Parity Violation and Lattice QCD

Joseph Wasem University of Washington Nuclear Theory Group

Fast Times for QCD

- Faster computers & better algorithms
 - Fully dynamical nonperturbative lattice calculations
 - Beginning to do precise calculations
 - Proton mass with ~0.1% error (NPLQCD)
 - $\pi\pi$ scattering length with ~1% error (NPLQCD)
 - But at unphysical pion mass and only certain calcs.
 - Starting to look at the calculation of poorly known observables

n

Nuclear Parity Violation

'eak

Parity Violation

Discovered in 1957 in beta and mu decays

q

W, Z

- Weak force effect mediated by W or Z
- Tested extensively in leptonic and semileptonic processes
- What about the quarks?
 - Specifically neutral current interactions
 - NN interactions are the only answer
 - Hadronic PV much harder

Nuclear Parity Violation

- Predicted by Feynman & Gell-Mann in 1958, confirmed experimentally in 1967 by Lobashov
- ▶ PV signal is dwarfed by QCD: Ø(10⁻⁷)
- Experimental ways around this
- Large uncertainties and many-body effects

NN Parity Violating Interaction

n

- PV interaction ~ 0.002 fm
- NN force dominated by long-range interactions
- Hence: meson exchange models
- All weak physics encapsulated in weak vertex

Quark Level PV Operators

- Quark level operators known at W, Z scale
- Operator coefficients are scale-dependent
- Want operators at hadronic scale:
 - Integrate out W,Z
 - Run down to b- L_{PV} quark scale and integrate out
 - Run down to c-quark scale and integrate out
 - Run to hadronic scale

$$= -\frac{G_F \sin^2(\theta_w)}{3\sqrt{2}} \sum_i C_i(\lambda, m_c, m_b) \theta_i$$

$$\theta_1 = \overline{q}^a \gamma^\mu q_a \overline{q}^b \gamma_\mu \gamma_5 \tau_3 q_b$$

$$\theta_2 = \overline{q}^a \gamma^\mu q_b \overline{q}^b \gamma_\mu \gamma_5 \tau_3 q_a$$

$$\theta_3 = \overline{q}^a \gamma^\mu \gamma_5 q_a \overline{q}^b \gamma_\mu \tau_3 q_b$$

$$\theta_4 = \overline{q}^a \gamma^\mu \gamma_5 q_b \overline{q}^b \gamma_\mu \tau_3 q_a$$

Hadron Level PV Interaction

Leading order one-pion exchange

$$\begin{split} L_{weak}^{\Delta I=1} \sim h_{\pi NN} \left(\overline{p} n \pi^{+} - \overline{n} p \pi^{-} \right) \\ \sim h_{\pi NN} f_{\pi} \overline{N} \left(X_{L}^{3} - X_{R}^{3} \right) N \end{split}$$

- Meson exchange model or ChPT
- $h_{\pi NN}$:
 - Encapsulates short-distance physics
 - Expected to dominate NN interaction (by dimensional analysis)
- This is the parameter we want to calculate!

Extracting $h_{\pi NN}$ from Experiment

From Haxton WC, Liu CP, and Ramsey–Musolf MJ, 2001, *Phys Rev Lett* 86, 5247–5250.

NPDGamma (LANL & ORNL) want to extract at the 10% level.

Extracting $h_{\pi NN}$ from Theory

	Quark Model					χ -Soliton	QCD SR				
$ imes 10^7$	DDH Ra	nge	Best	DZ	FCDH	KM	HHK	Lobov			
h_{π}^{1}	$0.0 \leftrightarrow$	11.4	4.6	1.1	2.7	0.2	3.0	3.4			
From CP Liu, J.Phys.Conf.Ser.69:012038,2007											

- Large theoretical unknowns
- Fundamental problem is nonperturbative QCD
- Lattice QCD is an answer...
 - First proposed by Beane & Savage (2002)

Extracting $h_{\pi NN}$ from Theory

	Quai		χ -Soliton	QCD SR		LQCD		
$ imes 10^7$	DDH Range	Best	DZ	FCDH	$\mathbf{K}\mathbf{M}$	HHK	Lobov	BS
h_{π}^{1}	$0.0 \leftrightarrow 11.4$	4.6	1.1	2.7	0.2	3.0	3.4	proposed

From CP Liu, J.Phys.Conf.Ser.69:012038,2007

- Large theoretical unknowns
- Fundamental problem is nonperturbative QCD
- Lattice QCD is an answer...
 - First proposed by Beane & Savage (2002)
 - Unfortunate abbreviation!

Lattice QCD

- Only known way of calculating nuclear observables directly from the underlying theory
- Space and time discrete and finite

$$\Rightarrow \int [d\phi] \to \prod_n \int_{-\infty}^{\infty} d\phi_n$$

 Straightforward idea, but the devil is in the details!

What is Calculated

Lattice correlation function:

 $C(x, y, z) = \langle 0 | \vartheta_1(x) \vartheta_2(y) \vartheta_3(z) | 0 \rangle$ = $\int [dq] [d\overline{q}] [dG] \vartheta_1(x) \vartheta_2(y) \vartheta_3(z) e^{-(S_g + S_q)}$ $C = \sum_{\overline{y}, \overline{z}} C(0, y, z)$ = $\sum_{\overline{y}, \overline{z}} \langle 0 | \vartheta_1(0) e^{-ipy} \vartheta_2(0) e^{ip(y-z)} \vartheta_3(0) | 0 \rangle$

Operators we want:

$$\begin{split} & \mathcal{P}_{1} \sim proton \\ & \mathcal{P}_{2} = \int d^{3}x \, L_{weak}(x) \\ & \mathcal{P}_{3} \sim neutron + pion \end{split}$$

Correlation Functions

- Lattice Correlation Function ≠ Matrix Element
- 3 point functions:

 $C_{3pt} \sim \langle 0 | \mathcal{G}_p | p \rangle e^{-m_p t_1} \langle p | \int d^3 x L_{weak} | n\pi \rangle e^{-m_{n\pi} (t_2 - t_1)} \langle n\pi | \mathcal{G}_{N\pi} | 0 \rangle$

2 point function:

$$C_{p} \xrightarrow{t \to \infty} \left| \left\langle p \left| \vartheta_{p} \right| 0 \right\rangle \right|^{2} e^{-m_{p}t}$$
$$C_{n\pi} \xrightarrow{t \to \infty} \left| \left\langle n\pi \left| \vartheta_{n\pi} \right| 0 \right\rangle \right|^{2} e^{-m_{n\pi}t}$$

- Form ratios of correlation functions
 - Ratio as a function of time will plateau to the matrix element value

Correlation Functions

- Lattice Correlation Function ≠ Matrix Element
- 3 point functions:

$$C_{3pt} \sim \langle 0 | \mathcal{G}_p | p \rangle e^{-m_p t} \langle p | \int d^3 x L_{weak} | n\pi \rangle e^{-m_{n\pi}(t_2 - t_1)} \langle n\pi | \mathcal{G}_{N\pi} | 0 \rangle$$

2 point function:

$$C_{p} \xrightarrow{t \to \infty} \left| \left\langle p \left| \vartheta_{p} \right| 0 \right\rangle \right|^{2} e^{-m_{p}t}$$

$$C_{n\pi} \xrightarrow{t \to \infty} \left| \left\langle n\pi \left| \vartheta_{n\pi} \right| 0 \right\rangle \right|^{2} e^{-m_{n\pi}t}$$

- Form ratios of correlation functions
 - Ratio as a function of time will plateau to the matrix element value

Steps to a Lattice Calculation

- Gauge Configurations
- 2. Propagator Generation
- 3. Quark Contractions
- 4. Correlation Function Analysis

Disconnected Diagrams

- Quark loops
- Require all-to-all propagators
- Computationally expensive
- Can we avoid them?

- Source for proton, sinks for neutron-pion
- Interpolating operators
- Produce more than just a proton/neutron-pi
- Parity projection

The Weak Operator

- 8 ops in SU(3), only 4 in SU(2)
- Three ways to put together:

Similarly for the disconnected types:

Propagators with a Weak Insertion > 2 types of operators:

- First type allows matrix multiplication
- Second type:
 - Allows matrix multiplication in disconnected
 - Requires slower tensor manipulations w/connected

Additional Calculation Methods

- Multiple sources on the same lattice
 - Nucleon wavelength ~ 0.2 fm
 - Allows multiple measurements on a single config.
 - Significant reduction in statistical errors
 - Used by Beane et al., Phys.Rev.D79:114502,2009.

Current Status

- Running code on 4³×32 w/~30k configurations w/operator on a single timeslice
- Need to hammer out noise....
- Only hints of a signal thus far, but it is early.
- Stepping stone calculation:
 - Lattice spacing and size errors ~O(1)
 - Indicate necessary scaling

- Need to understand 2 pt functions first!
- Very noisy (even compared with 1 baryon)
- No momentum injection though

$$C_{3pt} \sim \langle 0 | \mathcal{P}_{np,S} | pn \rangle e^{-m_{pn}t} \langle pn | \int d^3x L_{weak} | np \rangle e^{-m_{pn}(t_2 - t_1)} \langle np | \mathcal{P}_{np,P} | 0 \rangle$$

$$C_{pn} \xrightarrow{t \to \infty} | \langle pn | \mathcal{P}_{pn} | 0 \rangle |^2 e^{-m_{pn}t}$$

Moving Forward

- Near future:
 - Calculation on small lattices with non-strange operators
 - Test scalability and provide ballpark figure for full calc.
- Farther ahead:
 - Full calculation including strange operators
 - Goal is to meet or beat NPDGamma (~10% errors)
 - A Peta or Exascale project...?