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Plan of the talk

• Fermions at unitarity

• Conformal invariance

• Classification of operators: primary, descendants

• Operator-state correspondence

• OPEs



Fermions at unitarity
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Boundary conditions
Unitarity fermions = system described by free Hamiltonian

Boundary condition interpretation
Unitarity: taking Hamiltonian to be free:

H =
X

i

p
2
i

2m

but imposing nontrivial boundary condition on the wavefunction:

Ψ(x1,x2, . . .
| {z }

spin−up

,y1,y2, . . .
| {z }

spin=down

)

When |xi − yj | → 0:

Ψ → C
|xi − yj |

+ 0 × |xi − yj |0 + O(|xi − yj |)

Free gas corresponds to

Ψ → 0
|xi − yj |

+ C + O(|xi − yj |)

Toward an AdS/cold atom correspondence – p.7/30
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Free fermions corresponds to another boundary condition:

Boundary condition interpretation
Unitarity: taking Hamiltonian to be free:

H =
X

i

p
2
i

2m

but imposing nontrivial boundary condition on the wavefunction:

Ψ(x1,x2, . . .
| {z }

spin−up

,y1,y2, . . .
| {z }

spin=down

)

When |xi − yj | → 0:

Ψ → C
|xi − yj |

+ 0 × |xi − yj |0 + O(|xi − yj |)

Free gas corresponds to

Ψ → 0
|xi − yj |

+ C + O(|xi − yj |)

Toward an AdS/cold atom correspondence – p.7/30

Boundary condition interpretation
Unitarity: taking Hamiltonian to be free:

H =
X

i

p
2
i

2m

but imposing nontrivial boundary condition on the wavefunction:

Ψ(x1,x2, . . .
| {z }

spin−up

,y1,y2, . . .
| {z }

spin−down

)

When |xi − yj | → 0:

Ψ → C
|xi − yj |

+ 0 × |xi − yj |0 + O(|xi − yj |)

Free gas corresponds to

Ψ → 0
|xi − yj |

+ C + O(|xi − yj |)

Toward an AdS/cold atom correspondence – p.7/30



Field theory interpretation
Consider the following model Sachdev, Nikolic; Nishida, DTS

S =

Z

dt ddx

„

iψ†∂tψ − 1
2m

|∇ψ|2 − c0ψ
†
↑ψ

†
↓ψ↓ψ↑

«

Dimensional analysis:

[t] = −2, [x] = −1, [ψ] =
d
2
, [c0] = 2 − d

Contact interaction is irrelevant at d > 2
RG equation in d = 2 + ε:

∂c0

∂s
= −εc0 −

c2
0

2π

Two fixed points:
c0 = 0: trivial, noninteracting
c0 = −2πε: unitarity regime

)c!( 0

c0

Toward an AdS/cold atom correspondence – p.8/30



Field theory in d = 4 − ε dimensions
Sachdev, Nikolic; Nishida, DTS; Nussinov and Nussinov

S =

Z

dt ddx

„

iψ†∂tψ − 1
2m

|∇ψ|2 − gφψ†
↑ψ

†
↓ − gφ∗ψ↓ψ↑

+ iφ∗∂tφ − 1
4m

|∇φ|2 + Cφ∗φ

«

C fined tuned to criticality

Dimensions: [g] = 1
2 (4 − d) = 1

2 ε

RG equation for g:

∂g
∂ ln µ

= − ε
2
g +

g3

16π2

Fixed point at g2 = 8π2ε

!(g)

g

Toward an AdS/cold atom correspondence – p.9/30



Galilean algebra
Conserved quantities:

Hamiltonian: H t→ t + δt

Momentum: Pi x→ x + a
Particle number (mass): M ψ → eiαψ

n = ψ†ψ, j = − i

2
(ψ†∇ψ −∇ψ†ψ)

M =
�

dxn(x) P =
�

dx j(x)

and Galilean boosts: Ki x→ x + vt

K =
�

dxxn(x)

Text

M, P, K can be expressed in terms of local density and current:

also angular momentum

⎫
⎬
⎭

commute

N = M



Galilean algebra (II)
Using commutation relations between n and j:

2

in the nonrelativistic conformal field theory in free space. The latter problem is amenable

to standard diagrammatic techniques for fermions at unitarity near two or four spatial di-

mensions, or for anyons near the bosonic and fermionic limits. We present a few examples

of such calculations in this paper. In particular, we compute the ground state energy of

up to six fermions at unitarity in a harmonic potential near two and four dimensions, and

interpolate the results to find the energy in three dimensions. We also compute the ground

state energy of up to four anyons in a harmonic potential.

II. SCHRÖDINGER ALGEBRA

A. Derivation of the algebra

We briefly review the Schrödinger algebra [3, 4]. For definiteness, consider a nonrelativis-

tic theory described by a second-quantized field ψα(x) (where α is the spin index) which

satisfies the commutation or anticommutation relation

[ψα(x), ψ†
β(y)]± = δ(x − y)δαβ. (1)

Throughout this paper, we use nonrelativistic natural units ! = m = 1 where m is a particle

mass. We consider a general spatial dimension d. Define the number density and momentum

density,

n(x) = ψ†(x)ψ(x), ji(x) = −
i

2
(ψ†(x)∂iψ(x) − ∂iψ

†(x)ψ(x)) (2)

(summation over spin indices is implied). Their commutators are

[n(x), n(y)] = 0, [n(x), ji(y)] = −in(y)∂iδ(x − y), (3a)

[ji(x), jj(y)] = −i (jj(x)∂i + ji(y)∂j) δ(x − y). (3b)

The Schrödinger algebra is formed by the following operators:

N =

∫

dx n(x), Pi =

∫

dx ji(x), Mij =

∫

dx (xijj(x) − xjji(x)), (4)

Ki =

∫

dx xin(x), C =

∫

dx
x2

2
n(x), D =

∫

dx xiji(x), (5)

and the Hamiltonian H . The operators in Eq. (4) have simple physical interpretation: N

is the particle number, Pi is the momentum, and Mij is the orbital angular momentum. In

a scale-invariant theory like unitary fermions, these operators form a closed algebra. All

commutators except those that involve H can be found from Eqs. (3). First N commutes

with all other operators:

[N, any] = 0. (6)

Landau 1941

and [H, n] = −i∂tn = i∇·j

[Ki, Pj ] = iδijM

[Ki, H] = iPi

Other commutators are zero

Note: K is not conserved, but Galilean invariance has physical 
consequences: generating family of solutions 



Scale invariance
x→ λx, t→ λ2t

Should be an invariance of fermions at unitarity: no length scale

D =
�

dxx · j

[D, O] = i∆OO [D, P] = iP

[D, K] = −iK

[D, H] = 2iH for scale-invariant Hamiltonian

dim of O



Conformal invariance
If ψ satisfies the time-dependent Schrödinger equation

i
∂

∂t
ψ(t,xi) = −

�

i

∇2
i

2m
ψ(t,xi)

then

is also a solution to the time-dependent Schr. eq. for any λ

ψλ(t,xi) =
1

(1− λt)d/2
exp

�
− imλ

2(1− λt)

�

i

x2
i

�
ψ

�
t

1− λt
,

x
1− λt

�

This property is preserved with |xi-xj|-2 potential

Was known a long time ago, first applied unitarity fermions by 
Mehen, Stewart and Wise

Short-distance boundary condition is preserved.



Conformal algebra
Contain Galilean operators, dilatation D, and

C =
1
2

�
dxx2n(x)

Nonzero commutators involving C:

[C, Pi] = iKi [D, C] = −2iC [C, H] = iD

[D, H] = 2iH

SO(2,1) subalgebra

Particle number N: center of the algebra



Local operators
Include ψ, ψ✝,∂iψ, composites like ψ↑(x)ψ↓(x) which in 
general needs renormalization

Classification:

Particle number: [N, O(x)] = iNOO(x)

Dimension: 

Commutators with H and P: [H, O(t,x)] = −i∂tO(t,x)
[Pi, O(t,x)] = −i∂iO(t,x)

[D, O(0)] = i∆OO(0)

For example, Nψ = −1, ∆ψ = 3/2



Primary operators

Unitary Fermi gas, � expansion, and nonrelativistic conformal field theories 23

Pi

∆Opri

∆Opri+1

∆Opri+2

Pj Kj

Ki

H C

Opri |ΨOpri�

Q
†

i

Q
†

j Qj

Qi

L
† L

Fig. 11 Correspondence between the spectrum of scaling dimensions of local operators in NRCFT

(left tower) and the energy spectrum of states in a harmonic potential (right tower). The bottom of

each tower corresponds to the primary operatorOpri (primary state |ΨOpri
�).

�T O(t,x)O†(0)� ∝ θ(t) t
−∆O exp

�
iM
O†

|x|2

2t

�
. (62)

This formula or its Fourier transform ∝
�
−p0 + p2

2M
O†

− i0
+
�∆O−d/2−1

will be use-

ful to read off the scaling dimension ∆O.

3.2.2 Correspondence to states in a harmonic potential

We now show that each primary operator corresponds to an energy eigenstate of

the system in a harmonic potential. The Hamiltonian of the system in a harmonic

potential is

Hω ≡ H +ω2
C, (63)

where ω is the oscillator frequency. We consider a primary operator O(t,x) that is

composed of annihilation operators in the quantum field theory so that O†(t,x) acts

nontrivially on the vacuum: O†|0� �= 0. We construct the following state using O†

put at t = 0 and x = 0:

|ΨO� ≡ e
−H/ω

O
†(0)|0�. (64)

If the mass of O†
is M

O† > 0, then |ΨO� is a mass eigenstate with the mass eigen-

value M
O† : M|ΨO� = M

O† |ΨO�. Furthermore, with the use of the commutation

relations in Table 1, it is straightforward to show that |ΨO� is actually an energy

eigenstate of the Hamiltonian Hω with the energy eigenvalue E = ∆Oω:

Hω |ΨO� =
�
H +ω2

C
�

e
−H/ω

O
†(0)|0�

= e
−H/ω �

ω2
C− iωD

�
O

†(0)|0�= ω∆O|ΨO�, (65)

where we used [C, O†(0)] = 0 and [D, O†(0)] = i∆O and the fact that both C and D

annihilate the vacuum.

[D, Pi] = iPi if dim[O]=Δ, then dim[Pi, O]=Δ+1
[D, H] = 2iH, dim[H, O] = ∆ + 2
[D, Ki] = −iKi, dim[Ki, O] = ∆− 1

O is primary operator if it 
cannot be lowered further

[Ki, O(0)] = [C, O(0)] = 0



Examples of primary operators

ψ↑∂iψ↓ − ∂iψ↑ψ↓

ψ(x) :

but not ψ↑∂iψ↓ + ∂iψ↑ψ↓ = ∂i(ψ↑ψ↓)

[Ki ψ(0)] =
�

dxxi[n(x), ψ(0)] = −
�

dxψ(x)δ(x) = 0



Operator-state correspondence

Consider operators made out of annihilation operators

Primary operator with 
dimension Δ

Eigenstate in harmonic 
potential with energy ħΔω↔

Proof:

Hosc = H + ω
2
C C =

1
2

�
dxx2n

|ΨO� ≡ e
−H/ω

O
†(0)|0�

Unitary Fermi gas, � expansion, and nonrelativistic conformal field theories 23
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We now show that each primary operator corresponds to an energy eigenstate of

the system in a harmonic potential. The Hamiltonian of the system in a harmonic

potential is

Hω ≡ H +ω2
C, (63)

where ω is the oscillator frequency. We consider a primary operator O(t,x) that is

composed of annihilation operators in the quantum field theory so that O†(t,x) acts

nontrivially on the vacuum: O†|0� �= 0. We construct the following state using O†

put at t = 0 and x = 0:

|ΨO� ≡ e
−H/ω

O
†(0)|0�. (64)

If the mass of O†
is M

O† > 0, then |ΨO� is a mass eigenstate with the mass eigen-

value M
O† : M|ΨO� = M

O† |ΨO�. Furthermore, with the use of the commutation

relations in Table 1, it is straightforward to show that |ΨO� is actually an energy

eigenstate of the Hamiltonian Hω with the energy eigenvalue E = ∆Oω:

Hω |ΨO� =
�
H +ω2

C
�

e
−H/ω

O
†(0)|0�

= e
−H/ω �

ω2
C− iωD

�
O

†(0)|0�= ω∆O|ΨO�, (65)

where we used [C, O†(0)] = 0 and [D, O†(0)] = i∆O and the fact that both C and D

annihilate the vacuum.

H,D,C form SO(2,1)



Operator-state correspondence: examples

dim[ψ] =
3
2

ground state of one particle in 
harmonic potential: E=3/2 ħω

Two particles
Ground state known exactly

ψ(x,y) =
e−(x2+y2)/2

|x− y|

E=2ħω

So the operator ψ↑ψ↓ has dimension 2

Naive dimension=3, anomalous dimension= -1?



Dimer operator
Consider a 2-body state characterized by a wavefunction 
Ψ(x,y), call that state |Ψ〉

�0|ψ↑(x)ψ↓(y)|Ψ� = Ψ(x,y)

But recall the unitary boundary condition:

Ψ(x,y) =
C

|x− y| + · · ·

The operator ψ↑(x)ψ↓(x) has infinite matrix elements

The properly defined two-body operator is

φ(x) = lim
x→y

4π|x− y|ψ↑(x)ψ↓(y)

Matrix elements of ϕ are finite



Dimer in QFT

L = iψ†∂tφ−
|∇ψ|2

2m
− (ψ†

↑ψ
†
↓φ + h.c) + c−1

0 φ†φ

=0 in dim reg

�φ(x)φ†(0)� ∼
�

dq0, dq
(2π)4

eiq·x
�

q2/4m− q0

∼ θ(t)
1
t2

exp
�

imx2

t

�

OPE: 
ψ↑(t,x)ψ↓(0) ∼ 1

4π|x|f
�

t

x2

�
φ(0)



Three-body operators
From the spectrum of 3 body in harmonic potential: lowest 3-
body primary operators

∆l=1 = 4.27272 ∆l=0 = 4.66622

4-body operator: lowest one has dimension ~ 5.0

Deforming the unitarity fermions:

L = LCFT +
1

4πa
φ
∗
φ + #O

†
3,l=0O3,l=0 + #�

O
†
3,l=1O3,l=1

suppressed by fractional 
powers of Λ

cf. Grießhammer



Unitarity bound

Consider operator O made out of annihilation operators

Y. Tachikawa

dim[O] ≥ 3/2

Heuristic argument:

dim[O] = energy eigenstate in harmonic potential

is a sum of c.o.m motion and relative motion

c.o.m. energy ≥ 3/2, relative energy ≥ 0

Can be formalized to an algebraic argument



Non-universality of p-wave resonance

L = iψ†∂tψ −
|∇ψ|2

2m
− (ψ�∇ψ�φ† + h.c.) + c0

�
iφ†∂tφ−

|∇ψ|2

4m

�
+ c1φ

†φ

two fine tunings: c0~Λ and c1~Λ3

�φφ†� ∼ 1
(q2/4m− ω)3/2

dim ϕ = 1
5/2 41

below unitarity bound: CFT does not exist

cf. Hammer & Lee

“flipping rule”



Comments on OPE
Product of two local operators expanded in sum over local 
operators

2

for the dynamic structure factor is Eq. (26).

The second problem considered in this paper is the calculation of the energy deposition

into a unitary Fermi gas by small, rapid variations of the inverse scattering length. It can

be solved using the same OPE methods.

The usefulness of the operator product expansion can be illustrated as follows. Suppose

we need to compute the following Green’s function

GAB(ω,q) =

�
dt dx e

iωt−iq·x �A(t,x)B(0,0)� (1)

for large ω and q. Here “large” means energy and momentum much larger than the typical

energy and momentum scales of the state with respect to which the average �. . .� is taken.

For the ground state of a unitary Fermi gas, these scales are the Fermi energy and Fermi

momentum. Let us also recall that one can associate a local operator O with a scaling

dimension ∆O. In our counting scheme, the dimension of momentum is 1 and of energy is

2 (the particle mass m is set to 1). Assuming that the operator product expansion exists,

one can expand the product A(t,x)B(0,0) in terms of local operators,

A(t,x)B(0,0) =
�

i

|x|∆i−∆A−∆Bfi

�
|x|2

t

�
Oi(0). (2)

Here fi are functions of one variable |x|2/t, and ∆i are the dimensions of Oi. In contrast

to the OPE in relativistically invariant theories, in nonrelativistic theories the OPE coeffi-

cients are not constant, but are in general functions of this variable. This identity is to be

interpreted as an operator identity; in particular, we can take the expectation value of both

sides with respect to any state, including thermodynamic states. Taking the average and

performing a Fourier transform, one finds

GAB(ω,q) =
�

i

1

ω(5+∆i−∆A−∆B)/2
ci

�
q2

ω

�
�Oi�, q ≡ |q|. (3)

On the right hand side, the higher the dimension of Oi, the more rapidly its contribution

decays in the limit of large momentum/energy (to be precise, the limit considered in this

paper will be ω → ∞, q → ∞, q2/ω = fixed.) Thus, the leading behavior of the Green

function is dominated by those few operators in the OPE with smallest scaling dimension.

The expectation values of the operators Oi, are, in general, not computable theoretically

because they depend on many-body physics. Thus, they should be considered as numbers

parameterizing the many-body state. The OPE coefficients ci, however, depend only on

few-body physics (although, the number of bodies increases with increasing complexity of

the operator Oi), and hence can be computed reliably, at least for simple operators A, B

and Oi. In this way, the functional dependence of GAB on frequency and wavenumber can

be expressed in terms of a few numbers which have to be determined experimentally or

numerically.

First applied to unit. fermions by Braaten and Platter

For high momentum (frequency) physics: only a first few 
operators with lowest dimensions matter

N=0 L=0 operators: n (Δ=3) and ϕ✝ϕ (Δ=4)

OPE coeffs: few-body calculations
expectation value can be taken in any state (e.g. finite μ)

a bridge between few- and many-body physics



OPE (II)

5

(t,x) (0,0)

FIG. 3: The other diagrams contributing to the fermion propagator

From the Feynman rules, the contribution of Fig. 2 to Cφ∗φ is

− 1

(ω − �q + i0)2(−ω − �q + i0)
, (9)

where �q = q2/2.

With this information we can find the leading nontrivial contribution to the Green’s

function for t < 0:

�
dx e

−iq·x�ψ†
1(0,0)ψ1(t,x)� = −i

�
dω

2π
e
−iωt

Cφ∗φ(ω,q)�φ∗φ�

=
1

q4
exp

�
i
q2

2
t

�
�φ∗φ�+ · · · , t < 0. (10)

In the limit t → −0, we find the tail of the distribution function to be

nq =
�φ∗φ�

q4
, (11)

which allows us to establish �φ∗φ� = C, where C is Tan’s contact parameter [4, 5].

One can also show that the diagrams in Fig. 3 do not contribute to the imaginary part

of G(ω,q) for ω < 0. The latter receives only a contribution from Fig. 2, which is

ω < 0 : Im G(ω,q) =
�φ∗φ�

q4
πδ(ω + �q). (12)

The peak at ω = −�q is already discussed in Refs. [8, 9]. At this level, we are not able to

resolve the structure of the peak.

III. RF SPECTROSCOPY

Consider now a system where, in addition to the ‘up’ and ‘down’ fermions included in

the earlier Lagrangian, a third species of fermion is added which does not interact with the

other two fermions. Suppose we turn on a photon field which converts atoms of type one

into atoms of type three. The absorption rate is proportional to the imaginary part of the

Green’s function of

O13 = ψ†
3ψ1. (13)

5

(t,x) (0,0)

FIG. 3: The other diagrams contributing to the fermion propagator

From the Feynman rules, the contribution of Fig. 2 to Cφ∗φ is

− 1

(ω − �q + i0)2(−ω − �q + i0)
, (9)

where �q = q2/2.

With this information we can find the leading nontrivial contribution to the Green’s

function for t < 0:

�
dx e

−iq·x�ψ†
1(0,0)ψ1(t,x)� = −i

�
dω

2π
e
−iωt

Cφ∗φ(ω,q)�φ∗φ�

=
1

q4
exp

�
i
q2

2
t

�
�φ∗φ�+ · · · , t < 0. (10)

In the limit t → −0, we find the tail of the distribution function to be

nq =
�φ∗φ�

q4
, (11)

which allows us to establish �φ∗φ� = C, where C is Tan’s contact parameter [4, 5].

One can also show that the diagrams in Fig. 3 do not contribute to the imaginary part

of G(ω,q) for ω < 0. The latter receives only a contribution from Fig. 2, which is

ω < 0 : Im G(ω,q) =
�φ∗φ�

q4
πδ(ω + �q). (12)

The peak at ω = −�q is already discussed in Refs. [8, 9]. At this level, we are not able to

resolve the structure of the peak.
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Consider now a system where, in addition to the ‘up’ and ‘down’ fermions included in

the earlier Lagrangian, a third species of fermion is added which does not interact with the

other two fermions. Suppose we turn on a photon field which converts atoms of type one
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t=0:  high-momentum tail of the distribution function

4

n

q

q

q

0 0

FIG. 1: The diagram that gives Cn in Eq. (7). The large momentum and energy flow along lines
carrying label “q.”

To compute Cn, we use the Feynman diagram in Fig. 1.

Physically, this diagram describes the interaction of a particle carrying large momentum

and frequency (ω,q) with particles already in the medium. The energy and momentum

of the particles in the medium can be neglected compared to (ω,q). The “hard” particle

interacts with particles of type 2 in the medium with the result,

Cn(ω,q) = − 4π

(ω − q2/2 + i0)2
�

q2/4 − ω − i0
. (8)

One can see immediately that Cn(ω,q) has singularities only in the lower-half plane, and

thus does not contribute to the Green’s function for t < 0. This can already be seen from

the Feynman diagram in Fig. 1: one can go directly from the initial point to the final point,

following the direction of the propagators (fermions and scalars). Recall that the propagators

are all retarded.

Consider now the OPE coefficient of Cφ∗φ. It can be found by computing the fermion

propagator in the background field of φ. One diagram that contributes to Cφ∗φ is as in

Fig. 2. The dashed lines carry zero energy and momentum, and go to the “condensate”

φ∗φ

FIG. 2: A contribution of �φ∗φ� to the fermion propagator

�φ∗φ�. Fig. 2 is not the sole diagram contributing to Cφ∗φ; there is an infinite number of

diagrams contributing to this coefficient, like those depicted in Fig. 3 and obvious subsequent

iterations. It can be seen that, in all diagrams of the type of Fig. 3, one can go from one end

of the diagram to the other by following the arrows, which is not true in the case of Fig. 2.

Thus, if our ultimate goal is to compute the Green’s function for t < 0, it is sufficient to

just evaluate the diagram in Fig. 2.

5

(t,x) (0,0)

FIG. 3: The other diagrams contributing to the fermion propagator

From the Feynman rules, the contribution of Fig. 2 to Cφ∗φ is

− 1

(ω − �q + i0)2(−ω − �q + i0)
, (9)

where �q = q2/2.

With this information we can find the leading nontrivial contribution to the Green’s

function for t < 0:

�
dx e

−iq·x�ψ†
1(0,0)ψ1(t,x)� = −i

�
dω

2π
e
−iωt

Cφ∗φ(ω,q)�φ∗φ�

=
1

q4
exp

�
i
q2

2
t

�
�φ∗φ�+ · · · , t < 0. (10)

In the limit t → −0, we find the tail of the distribution function to be

nq =
�φ∗φ�

q4
, (11)

which allows us to establish �φ∗φ� = C, where C is Tan’s contact parameter [4, 5].

One can also show that the diagrams in Fig. 3 do not contribute to the imaginary part

of G(ω,q) for ω < 0. The latter receives only a contribution from Fig. 2, which is

ω < 0 : Im G(ω,q) =
�φ∗φ�

q4
πδ(ω + �q). (12)

The peak at ω = −�q is already discussed in Refs. [8, 9]. At this level, we are not able to

resolve the structure of the peak.

III. RF SPECTROSCOPY

Consider now a system where, in addition to the ‘up’ and ‘down’ fermions included in

the earlier Lagrangian, a third species of fermion is added which does not interact with the

other two fermions. Suppose we turn on a photon field which converts atoms of type one

into atoms of type three. The absorption rate is proportional to the imaginary part of the

Green’s function of

O13 = ψ†
3ψ1. (13)

Tan’s parameter



OPE (III)
Dynamic structure factor S(q,ω) of unitarity fermions at high 
frequency, high momentum

S(q,ω) =
�

n

1
ω∆n−1/2

fn

�
q2

ω

�
�O†

nOn�

Leading inelastic contribution: from Tan’s parameter 

Between 2 and 3 body thresholds: 2<q2/2ω<3: leading 
contribution from 3-body operator

S(q,ω) =
�φ†φ�
ω3/2

f

�
q2

ω

�

S(q,ω) ∼ ω−3.77

f calculated DTS, Thompson



Conclusions

• Nonrelativistic conformal invariance is 
useful

• OPEs are useful


