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Nucleon interactions

@ Manifestation of interactions between nucleon constituents
@ Bulk of interactions from strong interactions (QCD)

@ QCD conserves parity

@ Quarks interact weakly

@ Parity violation in weak interactions

= Parity-violating component in nucleon interaction

@ Relative strength ~ Gem2 ~ 107



Hadronic weak interactions

@ At low energies for AS =0

ros=0_ G | o2 0cd Iy +sin? cdll Iy +J5dz

weak \@

AI=0,2 Al=1

@ Al =1 dominated by neutral current Jz (sin? 6 ~ 0.05)

@ Neutral currents cannot be observed in flavor changing
hadronic decays



Weak interaction

Well-understood between quarks

Mediated by W, Z exchange

Range ~ 0.002 fm

How manifested for quarks bound in nucleon?
Sensitivity to quark-quark correlations in nucleon
“Inside-out” probe

Isolate through parity-violation
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Parity violation model

Desplanques, Donoghue, Holstein

@ Single-meson exchange (7, p, w) between two nucleons
with one strong and one weak vertex

I
|
VT, w
|

@ Estimate weak couplings (quark models, symmetries)
= ranges and “best values”

@ Has been standard for analyzing experiments

Desplanques, Donoghue, Holstein (1980)
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e Isovector coupling from '8F small compared to DDH value
e Isoscalar coupling from '33Cs differs from other results

@ Potential problems

DDH model

Haxton (2008)

@ Possible explanation: model assumptions not valid?
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e Restriction on spectrum
e No two-pion-exchange



Few-nucleon experiments

@ Complex nuclei: enhancement up to ~ 10% effect
e Relation to NN interaction?
e Theoretically difficult
@ Two-nucleon system
e pPp scattering (Bonn, PSI, TRIUMF, LANL)
e np — dv (SNS, LANSCE, Grenoble)
e 7ip spin rotation?
@ Few-nucleon systems

Front-End Systems Accumulator Ring
(Lawrence Berkeley) (Brookhaven)

o ra spin rotation (NIST)

Target
~% " (0ak Ridge)

@ pPa scattering (PSI)
o ®He(f, p)°H (SNS) =
e fid — ty (SNS?) it D

e id spin rotation?
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Theory goals

Variety of experiments
@ Unified framework
@ Model-independent
@ Check consistency of results
@ Defendable theoretical errors
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Effective field theories for PV

One-nucleon sector
@ PV 7N coupling

Two-nucleon sector
@ Pionless theory: NN contact interactions
@ Explicit pions: NN contact interactions and PV 7N coupling

@ “Hybrid” approach: EFT PV potential combined with
phenomenological wave functions
— resolution mismatch?

Kaplan, Savage (1993); Savage, Springer (1998); Savage (2001); Zhu, Maekawa,
Holstein, Ramsey-Musolf, van Kolck (2005); Liu (2007)
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Parity violation in EFT(#)

Structure of interaction

@ Only nucleons

@ Contact interactions

@ Parity determined by orbital angular momentum L : (—1)*
@ Simplest parity-violating interaction: L — L 4+ 1

@ Leading order: S — P wave transitions

@ Spin, isospin: 5 different combinations
@ No new constants for electromagnetic effects — gauging

Danilov (1965, '71, '72); Phillips, MRS, Springer (2009)
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Lowest-order parity-violating Lagrangian

Partial wave basis
T —
Lpy = — [6(331_1’3‘) (NTcrz 672N) : <NT02721' \Y% N)
1. _3 N I
+ L (Noerar)| (NToz19 a7
1g,_3 T - =
+ C((AS[O 1)PO) 3ab <NT0'27'27' N) (NTJ2 g v 7_27-bN>

_ T =

+ C((AS,O 25‘30) 73 (NTongTaN) (NTag d-iv TgTbN>
3 . T —

+ C(3S1—3P1) EUk (NT020172N> <NTO'20'k’7'27'3 \Vi N>:|

+ h.c.

Phillips, MRS, Springer (2009)
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Dibaryon formalism

£hy == g P (NToami Vi N)
1g._3 i
+ g((ASIOZO;DO)Sj; (NTTQTaUg d-iv N)
+ g((f,:ff") EBabSL (NTTgTbag g % N)

1 _ 3 L e
+ g((AS,OZZ)PO) 73! (NTTgTbag d-iv N)

+ g(ss‘ =) e’fkl‘,-T (NT7'27'3020k \V4 N)] + h.c.

Relation between couplings

X—-Y s 8 CX_Y

AT

MRS, Springer (2009)
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Nucleon-nucleon scattering

@ Simplest process
@ Parity-violating contribution suppressed by ~ 10~

@ NN cross section

e Strong contribution does not depend on helicity
e Weak contribution does depend on helicity

@ Consider asymmetry in N+ N

Oy —O0_—
A=+ "=
O'++O'_

@ Interference between strong and weak
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Leading-order results: pp/nn

_ 13 _3p, 1S _3p, (18 _3p )
App = 4 (C((AIO:O) R C((AIO=1) "+ Clar-z)’ )
13 _3P 180_3/:; (18 _SP )
Apn = 4 (C((AIO:O) ) — C((AI:1) 4 Clal=z) )
@ No Coulomb interaction for pp

@ Depends on ratio of PV and PC constant
;
= Renormalization point-dependence of A, ,, dictated by COS°
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Leading-order results: np

13 o (13 _3P) (13 _SP)
Anp’ =4 (C(AIO:O) - 2C(A/°=2) ’ )

Aqu; —4 (6(331—‘P1) _ 20(331—3P1))

1
do

d_Q:

A
(3) +»

@ Measure at 2 different energies: disentangle A:,%’ and Af;f,‘
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Coulomb corrections

@ Coulomb corrections can be included in EFT(#)

@ Coulomb parameter ; = 42

@ Integrals for cross section over finite range 61 < 0 < 6»

@ For Tiy, = 0.1 MeV: =~ 0.26 = expand in n

Kong and Ravndal (1999)
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Comparison with experiment

@ pp scattering experiments (23° < 6,5, < 52°)

APP(E = 13.6 MeV) = (~0.93+0.21) x 1077
APP(E = 45 MeV) = (—1.50 +0.22) x 107

@ Fromresult at E = 13.6 MeV:

4‘;"’ = (-1.5+0.3) x 107" MeV !
C 0

0

@ Coulomb correction ~ 3 percent
@ Use to ‘predict’ asymmetry at 45 MeV

APP(E = 45 MeV) = (—1.69 +0.38) x 107

@ In agreement with experiment

Eversheim (1991); Kistryn (1987)
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Higher-order corrections

@ At E = 45 MeV center-of-mass momentum p > m,
@ Resum higher-order corrections in PC sector
@ Re-analyze low-energy pp measurement (no Coulomb)

App(p = my)

1 SO
CO

= (—=1.14£0.25) x 10710 MeV~!
~ 30% difference
@ “Prediction” for E = 45 MeV
APP(E = 45MeV) = (—2.6 +0.6) x 10~7

Compare to —1.69 x 10~7: > 50% difference
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Electromagnetic processes: np — dv
/Y
fip — d’y ‘ ‘
@ Quantity of interest

1 ar
dcosé

=1+ A, cost

32 M clsP)
T ?FMU —ya'%) C;S‘

@ Experiment: Currently consistent with zero
e NPDGamma @ SNS: A, to 1078

@ Related to deuteron anapole moment through ¢(*S1—°F1)

Savage (2001); MRS, Springer (2009)
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Electromagnetic processes: np — dvy

o0 — @9 o
Circular polarization
@ Quantity of interest

P — Oy — 00—
B oy +o-
° 1 3 1 3
p csi="P1) C((Aslto;%) B ZC((AS;);z)PO)
v a 35S, + b 1S,
CO CO

@ Experimental result consistent with P, =0
@ Use high-intensity free electron lasers for yd — np?

MRS, Springer (2009); Knyazkov (1983)
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Three-body observables

@ Two-body information not sufficient to determine PV LECs
@ Require three- and few-body observables

@ PV three-body operators?

@ Parity-conserving sector:

e Naive dimensional analysis: three-body terms higher-order
e nd scattering in 28% channel

e Three-body counterterm at leading order
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Efimov (1974); Bedaque, Hammer, van Kolck (2000)
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PV three-body operators

General structure at LO
@ S — P transitions
@ Conserve J

@ Include isospin
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PV three-body operators at LO

@ Possible divergence from 28% part in PC amplitude in

O,

@ Asymptotic behavior
) d L oo 5-G\"
tll\l/??pN/qurZ(A)/quY/m(Qq) G-eKpy Y _c <pqzq>
n=0

@ 5p(1) =1.00624 .../, n = 0 leads to logarithmic divergence
@ Angular integral vanishes for n = 0

No PV three-body operator at leading order

GrieBhammer, Phillips, MRS

24/27



PV three-body operators at NLO

@ NLO correction to PC sector leads to divergence

@ Cannot be absorbed by PV S — P 3-body counterterm
@ Contribution from PC 3-body counterterm at same order

XA

No PV three-body operator at NLO (?)

GrieBhammer, MRS
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Conclusion & Outlook

Hadronic parity violation
@ Gate to neutral current weak interaction

@ Probe non-perturbative QCD phenomena: inside-out probe
@ Current and proposed experiments

e Low-energy
e Few-nucleons

@ Need consistent analysis and interpretation
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Conclusion & Outlook

EFT for parity-violating NN interactions

@ 5 independent operators at LO in EFT(#)
@ 2-body observables

e pPp scattering

e 7ip spin rotation

e np « dvy

e Not enough information
@ PV 3 body sector

e No PV 3-body operators at LO and NLO
e nd spin rotation
e nid — ty

@ Few-body observables
@ Lattice
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