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Ultracold Gases
• the scattering length a is a variable 

parameter in experiments with ultracold 
gases (Feshbach resonances)

• study BEC-BCS crossover

• system similar to dilute neutron matter 
(less scales ⇒ cleaner)

• study few-body physics in systems with 
variable scattering length



• for a finite range potential t-matrix can be 
written as

• for low energies k cot(δ)  can be expanded 
in powers of k⇒ effective range expansion

Low Energy Physics

t(k) ∼ 1
k cot δ − ik

k cot δ = −1
a

+
r

2
k2 + ...



• the system is described by the Lagrangian

• the coupling         is determined by 

• 2-body amplitude is

➡                             from bubble sum

The LO Lagrangian

L =
∑

σ

ψ†
σ(i∂t −

∇2

2m
)ψσ −

g(Λ)
m

ψ†
1ψ

†
2ψ2ψ1

g(Λ) a

g(Λ) =
4πa

1− 2aΛ/π

= +

A =
4π

m

1
−1/a +
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−mE



➡ rescale parameters w/ real parameter λ

➡ observables scale with powers of λ 
suggested by NDA, e.g. 

➡ this is a conformal theory in the unitary 
limit, ie 

Continuus Scaling Symmetry

a→∞

a→ λa E → λ−2E

BD(λa) = λ−2BD(a)



• What is the gs energy of a two component 
fermion system in the unitary limit (1/a=0 
⇒ no remaining scales)

• analytical approaches

★ ε-expansion (Nishida & Son)

• numerical approaches

★ Monte Carlo, Lattice (Carlson, 
Gezerlis, Lee, Bulgac, Drut, ...)

The Bertsch Challenge

Egs = ξ · 3
5

kF

2m
N



• Shina Tan derived a number of relations for 
finite scattering length (Tan 2009)

At finite a

Energy Relation:

E =
∑

σ

∫
d3k

(2π)3
k2

2m

(
ρσ(k) − C

k4

)
+

C

4πma
+ 〈V 〉

Adiabatic Relation:
d

da
E =

1
4πma2

C

and others ....



What is C?



• Tan Relations contain the extensive 
quantity C

C =
∫

d3r C(r)

What is C?



• Tan Relations contain the extensive 
quantity C

C =
∫

d3r C(r)

ρ(k)→ C

k4

What is C?

• Contact C can be defined via momentum 
density tail



• The contact density is known in certain cases.  
Consider the unpolarized, T=0, Fermi gas:

Examples: 

• use adiabatic relation d

da
E =

1
4πma2

C
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• Rederive Tan relations with the operator 
product expansion (Braaten & Platter 2009)

• express non-local operator through sum of 
local operators multiplied with Wilson 
coefficients (Wilson 1964 & 1969, Kadanoff 
1969, formal proofs: Brandt 1967, 
Zimmerman 1972)

‣ operators at equal time

The OPE for Cold Atoms

ψ†
σ(R− 1

2r)ψσ(R + 1
2r) =

∑

n

Cσ,n(r)On(R)



• The OPE is an operator identity

➡ we can match the Wilson coefficients in any 
state

➡ determine the Wilson coefficients of an n-body 
operator in an n-body state

➡ calculate momentum distribution exactly for 
the two-body system

〈X|OA(R + 1
2r, T + 1

2 t) OB(R− 1
2r, T − 1

2 t)|X〉 =

= 〈X|
∑

C

WC(r, t)OC(R, T )|X〉



• Elastic scattering with rel. momentum p

Consider 2→2 Scattering

〈ψ†σ(− 1
2r)ψσ(+ 1

2r)〉±p =
im2eipr

8πp
A2(

p2

m
) + . . .

• this involves evaluating diagrams such as



• Elastic scattering with rel. momentum p

Consider 2→2 Scattering

〈ψ†σ(− 1
2r)ψσ(+ 1

2r)〉±p =
im2eipr

8πp
A2(

p2

m
) + . . .

• this involves evaluating diagrams such as

• expand the exponential

−→ im2

8πp
A(

p2

m
) (1 + ipr + . . .)



• Matching to the exact solution gives 

ψ†
σ(R− 1

2r)ψσ(R + 1
2r) =

= ψ†
σψσ(R) + 1

2r ·
[
ψ†

σ∇ψσ(R)−∇ψ†
σψσ(R)

]

− r

8π
g(Λ)2ψ†

1ψ
†
2ψ1ψ

(Λ)
2 (R) + . . .

Scaling dimension of operator \int d^4 x <O(x) O(0)> -->p^{2d-5}
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• Matching to the exact solution gives 
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σ(R− 1

2r)ψσ(R + 1
2r) =

= ψ†
σψσ(R) + 1

2r ·
[
ψ†

σ∇ψσ(R)−∇ψ†
σψσ(R)

]

− r

8π
g(Λ)2ψ†

1ψ
†
2ψ1ψ

(Λ)
2 (R) + . . .

• For a state X the contact C is therefore 

C =
∫

d3r〈X|g(Λ)2ψ†
1ψ

†
2ψ1ψ2(r)|X〉

Scaling dimension of operator \int d^4 x <O(x) O(0)> -->p^{2d-5}



• Hamiltonian density can be rewritten as

• integrate over R use the definition of C

Rederive Tan Relations
Energy Relation:

H =
( ∑

σ

1
2m
∇ψ†

σ ·∇ψ(Λ)
σ − Λ

2π2m
g2ψ†

1ψ
†
2ψ1ψ2

)

+
1

4πma
g2ψ†

1ψ
†
2ψ1ψ2 + V

E =
∑

σ

∫ Λ d3k

(2π)3
k2

2m

(
ρσ(k) − C

k4

)
+

C

4πma
+

∫
d3R 〈V〉



• Change in energy E=〈H〉due to small 

change in scattering length a

➡ Use Feynman-Hellman

➡ integrate over space and obtain

Adiabatic Relation:

∂H/∂a =
g2

4πma2
ψ†

1ψ
†
2ψ1ψ2

d

da
E =

1
4πma2

C



• use RF pulse to transfer atoms of type 2 to 
atoms to type 3

• the Hamiltonian contains

• for the inclusive rate Γ(ω) we need to 
calculate

RF Spectroscopy

HRF(t) = λθ(t) sin(ωt)
∫

d3r
(
ψ†

3ψ2(r, t) + ψ†
2ψ3(r, t)

)

〈ψ†
2ψ3(r, t)ψ†

3ψ2(r′, t′)〉



• expand operators non-local in time & space

• match n-body Wilson coefficient to n-body 
matrix element

Use Short-Time OPE

OA(R + 1
2r, T + 1

2 t) OB(R− 1
2r, T −

1
2 t) =

=
∑

C

WC(r, t)OC(R, T )

Braaten, Kang & LP 2010

∫
dt eiωt

∫
d3r ψ†

2ψ3(R + 1
2r, t) ψ†

3ψ2(R− 1
2r, 0)

= (i/ω) ψ†
2ψ2(R) + iW12(ω) g2

12ψ
†
1ψ

†
2ψ2ψ1(R)



• large ω tail of Γ(ω)

New Information

Γ(ω) −→ Ω2(a−1
12 − a−1

13 )2

4π
√

mω3/2(a−2
13 + mω)

C12.

• can be used to calculate sum rules

b± =
√

m(ωγ ± ω0)/2

\Omega is Rabi Frequency: 
strength coupling between light 
and transition

Compare to Randeria, Zwerger, ...

∫ ∞

−∞
dω

γ/π

(ω − ω0)2 + γ2
Γ(ω) =

Ω2γ

ω2
γ

N2

+
Ω2

[
(ω2

0 − γ2)b+ + 2ω0γb− − 2ω0γa−1
12

]

4πmω4
γ

C12 + . . .



• Punk & Zwerger 2008

• Schneider & Randeria 2010

• Werner & Castin 2010

• Son & Thompson 2010

Active field of research

Theoretical:

Experimental:

• Hu et al. 2010

• Gaebler, Stewart & Jin 2010



• in few-body systems we can do calculations 
exactly

• what are the implications of a large 
scattering length in such systems

• what types of universality exist here

Let’s switch gears



• 3-Boson Problem different from 3-Fermion 
problem           Efimov effect

• Lagrangian is now

• 3-body force is needed for 
renormalization in the 3-body 
sector

The 3-Boson Problem

L = ψ†(i∂t −
∇2

2m
)ψ − g(Λ)

m
(ψ†ψ)2 − h(Λ)

m
(ψ†ψ)3



• Write down integral equation for particle-
dimer scattering

How is this shown?

= + + +

• Solve without 3-body 
force

101 102 103

Λ [B2
1/2]

101

102

103

B 3[B
2]

Skorniakov & Ter-Martirosian ‘56

• introduce 3-body force 
for renormalization 
(Bedaque, Hammer, van 
Kolck 1999)



• extra counterterm 
introduces new scale

• rg flow is a limit cycle 
(Bedaque, Hammer, 
van Kolck 1999)

• continuous scaling 
symmetry is broken 
down to discrete 
scaling symmetry 
(Efimov 1979)

Discrete Scale Invariance

101 102 103

Λ [1/a]

-2

-1

0

1

2

H(
Λ

)

➡ Consequences for 
observables

B(m)
3

B(m+1)
3

≈ 515



• Question: Do we need 4-body force for 
renormalization?

➡ No new parameter in the 4-body 
system (Hammer, Meissner, LP 2005)

➡ New universal predictions 
(Hammer & LP 2007, Stecher et al. 2008)

The 4-Boson Problem

★ 1D Correlation between 3- and 
4-body observables

★ 2 4-body states tied to every 



• Recombination features in AMO 
experiments display four-body features

Confirmed Experimentally



• Recombination features in AMO 
experiments display four-body features

Confirmed Experimentally

(a) (b)

Ferlaino et al. 2009
Tetramer 1

Tetramer 2



• This is the LO of an Effective Field Theory

➡ Include higher order corrections through 
operators with derivatives

➡ important for nuclear physics

Effective Range Corrections
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LP 2006



• Range corrections and power counting 
have been discussed mostly for fixed a

• Hammer & Mehen 2001

• Bedaque et al. 2003

• Phillips & LP 2006

• LP 2006

• What about variable scattering length?

➡ Relevant for AMO and Lattice QCD 
exptrapolations

Range Corrections II



• Effect of linear range correction can be 
calculated exactly in the unitary limit 
(perturbatively & in coordinate space)

• Spectrum remains unchanged, i.e.

Linear Range Correction
Phillips, Ji &LP 2009 & to be submitted 2010

∆B(NLO)
n = 0 for all n and 1/a = 0



• Evaluate diagrams

• for finite a energy-
independent 3-body force 
H1=H10 + H11/a

Finite a



• Evaluate diagrams

• for finite a energy-
independent 3-body force 
H1=H10 + H11/a

Finite a

➡ no new input for fixed a

➡ new parameter required for variable a

➡ reminiscent of quark mass dependence in χPT



• Universality is important:

➡ exact results for many-body systems

➡ low-energy theorems for few-body 
systems

• Range corrections are important

➡ first understand the physics then do 
the calculation

Summary


