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Motivation
π-N scattering length                     pattern of chiral symmetry and its breaking

LO  ChPT (PCAC, Weinberg, 1966)

Higher order results have been calculated

Experimentally not so well known, 

requires very accurate determination of scattering lengths in two isospin channels, e.g.

Most accurate determination from pionic atoms using 

                                        + IV corrections  +  few-nucleon corrections 

                                            

(for IV  corrections see  Hoferichter et al., NPA 2010,  Baru et al.  arXiv:1003.4444 [nucl-th]) 
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Motivation
ChPT calculation of few-nucleon corrections (Weinberg, 1992)

                     perturbative expansion of the transition operator 

 

                     phenomenological few-nucleon wave functions 

                     or chiral wave functions (Beane at al., 1998)      

 

Result (for A=2):    some of the few-nucleon corrections are smaller than expected

                              but they are in general somewhat larger than expected 

 

Is this a systematic deviation from the power counting? 

                  Beane at al., 2003 :   consequence of a second scale entering

                  „Q-counting“

                   consequences for error estimates, 

                   power counting in complex nuclei ? 
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Contributions to π-2H scattering
„Weinberg-counting“  -  typical momenta  

1-nucleon contributions 

2-nucleon contributions            (Beane et al., 2003)

                                                                                                   (Weinberg, 1992; Beane et al. 1998)

no                          contributions

boost & dispersive corrections almost cancel each other (Lensky et al. 2007, Baru et al. 2008)
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Numerical results (Beane et al.)
2-nucleon contributions  have different sizes than expected by power counting

                                                                                                  

Solution of Beane at al.  
                       

assume that the typical momentum is the binding momenta of the deuteron
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Numerical results seem to fit expectations!

                                                                                                  

                   First counter term is very much suppressed compared to few-nucleon contributions

                   Boost corrections are of the order                   (Is the kinetic energy measurable?)

                   Is Weinberg counting restored for 3He, 4He ?
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Q-counting
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LO chiral interaction

small deuteron binding energy is fine-tuning effect

 

              undo fine-tuning of CS and fit to range of binding energies (here CT=0)

large range of cutoffs in LO to study 

           size of first ππ4N contribution

CS is in general of natural size  ( ≈ 100 GeV-2)

except close to new spurious bound states
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Physical & unphysical deuterons
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Table 3. Values for CS depending on the cutoff Λ. For these
fits, the experimental binding energy Ed = 2.225 MeV is re-
produced. We fixed CT = 0 in all cases.

Λ[fm−1] CS[GeV−2]

3.0 -34.2225
4.0 48.1751
5.0 562.089
10.0 -50.9683
20.0 -92.1179

5.2 Dependence of the π-2H scattering length on the
deuteron binding energy

Following up on the discussion in Sec. 2, we now study the
energy dependence of the ratios of few-nucleon contribu-
tions. If Q–counting were operative, the relative scaling of
Diagrams Figs. 1(a) and 1(b)+1(c) would strongly depend
on the binding momentum. A straightforward analysis of
Eqs. (6) and (7) shows that Diagram (a) of Fig. 1 scales
as

a(1a)πA ∼ m2
π/q

2 ,

while the sum of Diagram (b) and (c) scales as

a(1bc)πA ∼ q2/m2
π .

Thus, for the binding energy dependence of the ratio of
these two contributions we find

a(1bc)πA

a(1a)πA

∝
{

const. (Weinberg)

Ed
2 (Q–counting)

, (21)

where we used the Q–counting relation q ∼ γ together
with Eq. (2). Analogously one gets

a(2)πA

a(1a)πA

∝
{

const. (Weinberg)√
Ed (Q–counting)

, (22)

using the explicit expression for the contributions of the
individual diagrams.

We have studied the binding energy dependence of
both classes of diagrams based on the leading chiral NN in-
teraction. To this aim, we have adjusted the contact inter-
action acting in the deuteron channel so that the deuteron
was bound with unphysically large and small binding en-
ergy (see Table 4). It was then an easy exercise to cal-
culate the contributions of Figs. 1(a), 1(b)+1(c) and 2
to the scattering length depending on the binding energy
and explicitly compare to the expectations from Q– and
Weinberg counting.

Based on this observation, we are now in the position
to look in more detail at the dependence of the various
contributions on the binding energy. For this, we arbitrar-
ily choose Λ = 20 fm−1, which is in the region where the
results are almost independent of the cutoff. We start dis-
playing the binding energy dependence of the individual
contributions to the scattering length in Fig. 8. We ob-
serve that, independent of the binding energy, the contri-
bution of the Coulombian diagram is the most important

Table 4. Values for CS depending on the chosen binding en-
ergy of the deuteron Ed. For these fits, we fixed CT = 0 and
Λ = 20 fm−1.

Ed[MeV] CS[GeV−2]

0.002 -71.7689
0.005 -72.1400
0.01 -72.5574
0.02 -73.1460
0.05 -74.3088
0.1 -75.6126
0.2 -77.4471
0.5 -81.0703
1.0 -85.1564
5.0 -103.225
10.0 -118.793
20.0 -147.032
30.0 -178.149
40.0 -217.147
50.0 -271.056

two-nucleon contribution. In contrast to the naive power
counting estimates, the amplitude of Eq. (8) — the triple
scattering diagram, depicted in Fig. 2 — is the next im-
portant one. Still, it is suppressed by one order of mag-
nitude compared to the leading Coulombian two-nucleon
diagram. The contribution of this diagram will be dis-
cussed in detail in Sec. 5.3. The amplitude Eq. (7) —
shown in Fig. 1(b)+1(c) — gives an extraordinarily small
shift of the scattering length. From the observation that
this suppression is not strongly depending on the bind-
ing energy, we conclude that this suppression is unrelated
to the binding momentum as suggested in Ref. [20], but
probably accidental.

In order to be more quantitative on the relative sup-
pression of these contributions, we show in Fig. 8(d) the
ratios of the shifts of the scattering lengths due to Eqs. (7)
and (8) and the one due to Eq. (6). Based on Q–counting,
the ratio for Eq. (7) should scale like E2

d (c.f. Eqs. (21) for
small energies, the one for Eq. (8) should scale like

√
Ed

(c.f. Eqs. (22)). Our explicit calculation, however, shows
a much weaker dependence on the binding energy. This
is in strong contrast to the expectation from Q–counting.
Therefore, we conclude that Q–counting is not realized for
pion scattering on light nuclei, i.e. 2H.

It is instructive to investigate further the source of
the residual binding energy dependence reported above.
From this we will find that the ratios of contributions to
the scattering length has a logarithmic and not a power
law dependence. In addition, we will be able to show that
the physical deuteron binding energy is already beyond
the range of applicability of heavy pion effective field the-
ory. To this aim, we study the ratios within an analyti-
cal model of the deuteron wave function. To get there we
start from pionless EFT to obtain the deuteron based on a
zero range approximation of the NN interaction. However,
from different investigations it became clear that the bind-
ing momentum cannot be the only scale affecting the wave
functions of the deuteron in a model independent way: π-
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is in strong contrast to the expectation from Q–counting.
Therefore, we conclude that Q–counting is not realized for
pion scattering on light nuclei, i.e. 2H.

It is instructive to investigate further the source of
the residual binding energy dependence reported above.
From this we will find that the ratios of contributions to
the scattering length has a logarithmic and not a power
law dependence. In addition, we will be able to show that
the physical deuteron binding energy is already beyond
the range of applicability of heavy pion effective field the-
ory. To this aim, we study the ratios within an analyti-
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start from pionless EFT to obtain the deuteron based on a
zero range approximation of the NN interaction. However,
from different investigations it became clear that the bind-
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Cutoff dependence - π-2H

few-nucleon contributions are independent of the cutoff

     (see also AN, Hanhart, 2005, 

                    Pavon Valderrama, Ruiz Arriola, 2006

                    Platter, Phillips, 2006)

cutoff variation most significant  for „double scattering“

            estimate of short range contribution

            naive estimate agrees (Weinberg)    

8
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Table 2. Comparison of PW and MC results. The scattering length contribution of the different two-nucleon operators Figs.1
(a), (b)+(c) and 2 is compared for different cutoffs and phenomenological wave functions.

Λ[fm−1] a
(1a)
π−2H

[10−3 m−1
π ] a

(1bc)
π−2H

[10−3 m−1
π ] a

(2)
π−2H

[10−3 m−1
π ]

PW MC PW MC PW MC

3.0 -21.37 -21.16(22) -0.666 -0.6658(4) 2.43 2.433(3)
4.0 -20.02 -19.65(9) -0.902 -0.9017(7) 1.77 1.767(2)
5.0 -19.75 -20.13(35) -0.889 -0.8904(6) 1.61 1.613(3)
10.0 -20.72 -22.68(136) -0.824 -0.8232(14) 2.35 2.345(7)
20.0 -20.78 -20.60(52) -0.867 -0.8729(40) 2.49 2.459(29)
AV18 -19.62 -19.45(13) -0.749 -0.7493(6) 1.63 1.631(3)
Nijm93 -19.84 -19.40(11) -0.743 -0.7425(3) 1.72 1.724(3)
CD-Bonn -20.20 -19.99(8) -0.553 -0.5521(4) 1.92 1.924(2)
CD-Bonn [20] -20.20 — -0.55 — — —
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Λ. In Figs. 5, 6, and 7, this result is seen once more. Note
that the scales are entirely different in these figures. Ad-
ditionally, we observe that the same is true for the con-
tribution due to Eq. (7). We observe a mild oscillation of
the result, the amplitude of which is approximately 5 %
of the respective contribution — 1×10−3m−1
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due to amplitude Eq. (8) to the
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potential. The result for the Nijmegen 93 is also shown “(+)”.

terms. From the comparison in Table 2, we observe that
the leading order results are in good agreement with the
previous potential model results. This is also true for the
amplitude in Eq. (8). From this we conclude that a theo-
retical accuracy of 1 × 10−3m−1

π can be reached at most
from a study of pion-nucleus scattering, which means that
a 5% accuracy can be reached.

As was already argued in Sec. 2, the dependence of the
few-body operators on the regulator used for the deuteron
wave function can give us an idea on the numerical size of
the leading counter term contribution. In Weinberg count-
ing the leading isoscalar counter term is expected to be
suppressed by a factor (mπ/mN )2 ∼ 2% compared to the
numerically leading double scattering term. This is fully
in line with the observed amount of Λ dependence, as de-
scribed in the previous paragraph, but in gross disagree-
ment to the expectations of Q–counting, where a counter
term contribution of the order of 0.2 % would be expected.
Thus, from the study of the cutoff dependence we con-
clude that Weinberg counting provides the more accurate
estimate for the leading counter term contribution.
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terms. From the comparison in Table 2, we observe that
the leading order results are in good agreement with the
previous potential model results. This is also true for the
amplitude in Eq. (8). From this we conclude that a theo-
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a 5% accuracy can be reached.
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numerically leading double scattering term. This is fully
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scribed in the previous paragraph, but in gross disagree-
ment to the expectations of Q–counting, where a counter
term contribution of the order of 0.2 % would be expected.
Thus, from the study of the cutoff dependence we con-
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10.0 -20.72 -22.68(136) -0.824 -0.8232(14) 2.35 2.345(7)
20.0 -20.78 -20.60(52) -0.867 -0.8729(40) 2.49 2.459(29)
AV18 -19.62 -19.45(13) -0.749 -0.7493(6) 1.63 1.631(3)
Nijm93 -19.84 -19.40(11) -0.743 -0.7425(3) 1.72 1.724(3)
CD-Bonn -20.20 -19.99(8) -0.553 -0.5521(4) 1.92 1.924(2)
CD-Bonn [20] -20.20 — -0.55 — — —
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due to amplitude Eq. (6) to the

π-2H scattering length depending on the cutoff Λ of the LO
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Λ. In Figs. 5, 6, and 7, this result is seen once more. Note
that the scales are entirely different in these figures. Ad-
ditionally, we observe that the same is true for the con-
tribution due to Eq. (7). We observe a mild oscillation of
the result, the amplitude of which is approximately 5 %
of the respective contribution — 1×10−3m−1

π in absolute
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terms. From the comparison in Table 2, we observe that
the leading order results are in good agreement with the
previous potential model results. This is also true for the
amplitude in Eq. (8). From this we conclude that a theo-
retical accuracy of 1 × 10−3m−1

π can be reached at most
from a study of pion-nucleus scattering, which means that
a 5% accuracy can be reached.

As was already argued in Sec. 2, the dependence of the
few-body operators on the regulator used for the deuteron
wave function can give us an idea on the numerical size of
the leading counter term contribution. In Weinberg count-
ing the leading isoscalar counter term is expected to be
suppressed by a factor (mπ/mN )2 ∼ 2% compared to the
numerically leading double scattering term. This is fully
in line with the observed amount of Λ dependence, as de-
scribed in the previous paragraph, but in gross disagree-
ment to the expectations of Q–counting, where a counter
term contribution of the order of 0.2 % would be expected.
Thus, from the study of the cutoff dependence we con-
clude that Weinberg counting provides the more accurate
estimate for the leading counter term contribution.

+ ...

≈ 1 · 10−3 mπ
−1
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Fig. 8. Contributions a(1a)
π−2H

(a), a
(1bc)
π−2H

(b), and a(2)
π−2H

(c) due to the amplitudes of Eqs. (6), (7), and (8) to the π-2H

scattering length depending on the binding energy Ed of 2H. The results for Nijmegen 93 are also shown “(+)”. (d) shows the
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deuteron binding energy (a) and at Ed = 0.01 MeV (b). The Hulthén wave function is shown for β = 1.7mπ . We also show the
deuteron wave functions based on contact interactions (β → ∞).

2H scattering at threshold was studied based on the per-
turbative treatment of pions in [53] and using heavy pion
EFT in Refs. [54,55] with the result that a counter term is
required in leading order where two-nucleon diagrams con-
tribute. In practice, this would imply that an extraction
of a(+) is unfeasible based on π-2H atoms. However, it was
realized that this problem is tamed once pions are treated
non-perturbatively [50,51,52,56]. In this case, the short
distance 2H wave function is affected by 1π–exchange in
such a way, that counter terms are not required to obtain
cutoff independent results. No contradiction to the naive

power counting of Weinberg is observed. Obviously, the
pion introduced scales into the wave function beyond the
binding momentum. Therefore, we add a range factor to
the vertex function, so that we are able to introduce the
intrinsic non-perturbative scale that enters through pion
exchange. In momentum space, the wave function then
reads

Ψ(p) = N(γ,β)
1

p 2 + β2

1

p 2 + γ2
, (23)



ψ("p) = N(γ,β)
1

"p 2 + β2

1

"p 2 + γ2
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Hulthén wf allows one to incorporate second scale
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β = 1.7mπ
fit to normalized s-wave part of the LO wave function

second scale is binding energy independent

Ed = 2.23 MeV
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(c) due to the amplitudes of Eqs. (6), (7), and (8) to the π-2H

scattering length depending on the binding energy Ed of 2H. The results for Nijmegen 93 are also shown “(+)”. (d) shows the
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Fig. 9. Comparison of the Hulthén deuteron wave function to the S-wave part of several LO wave functions at the physical
deuteron binding energy (a) and at Ed = 0.01 MeV (b). The Hulthén wave function is shown for β = 1.7mπ . We also show the
deuteron wave functions based on contact interactions (β → ∞).

2H scattering at threshold was studied based on the per-
turbative treatment of pions in [53] and using heavy pion
EFT in Refs. [54,55] with the result that a counter term is
required in leading order where two-nucleon diagrams con-
tribute. In practice, this would imply that an extraction
of a(+) is unfeasible based on π-2H atoms. However, it was
realized that this problem is tamed once pions are treated
non-perturbatively [50,51,52,56]. In this case, the short
distance 2H wave function is affected by 1π–exchange in
such a way, that counter terms are not required to obtain
cutoff independent results. No contradiction to the naive

power counting of Weinberg is observed. Obviously, the
pion introduced scales into the wave function beyond the
binding momentum. Therefore, we add a range factor to
the vertex function, so that we are able to introduce the
intrinsic non-perturbative scale that enters through pion
exchange. In momentum space, the wave function then
reads

Ψ(p) = N(γ,β)
1

p 2 + β2

1

p 2 + γ2
, (23)
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Fig. 9. Comparison of the Hulthén deuteron wave function to the S-wave part of several LO wave functions at the physical
deuteron binding energy (a) and at Ed = 0.01 MeV (b). The Hulthén wave function is shown for β = 1.7mπ . We also show the
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2H scattering at threshold was studied based on the per-
turbative treatment of pions in [53] and using heavy pion
EFT in Refs. [54,55] with the result that a counter term is
required in leading order where two-nucleon diagrams con-
tribute. In practice, this would imply that an extraction
of a(+) is unfeasible based on π-2H atoms. However, it was
realized that this problem is tamed once pions are treated
non-perturbatively [50,51,52,56]. In this case, the short
distance 2H wave function is affected by 1π–exchange in
such a way, that counter terms are not required to obtain
cutoff independent results. No contradiction to the naive

power counting of Weinberg is observed. Obviously, the
pion introduced scales into the wave function beyond the
binding momentum. Therefore, we add a range factor to
the vertex function, so that we are able to introduce the
intrinsic non-perturbative scale that enters through pion
exchange. In momentum space, the wave function then
reads

Ψ(p) = N(γ,β)
1

p 2 + β2

1

p 2 + γ2
, (23)

Ed = 0.01 MeV

β → ∞ β → ∞
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• for double scattering diagram:

        Hulthén wf is a reasonable approximation

• energy dependence is logarithmic

• ratio  is qualitatively reproduced

     (if restricted to  S-wave)

• „contact wf“ is not a good approximation 

           convergence of HPEFT breaks down 
           much earlier than expected 
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where the normalization factor N is fixed to

N(γ,β)2 = 8πγβ(γ + β)3

by the normalization condition for the deuteron wave func-
tion. This is a wave function of the Hulthén type [57]. In
Refs. [56,50,58], it was shown that for radii larger than
0.6 fm the LO chiral wave functions are basically inde-
pendent of the regulator used for their construction. We
therefore fix β by fitting to the tail of the wave function
at Ed = 0.01 MeV. This way we find

β = 1.7mπ . (24)

It is reassuring that β turns out to be of the order
of the pion mass. If the proposed picture is correct, the
scale β should be independent of the deuteron binding en-
ergy. We confirmed that this is indeed the case as long
as we do not go to very large binding energies above the
physical one. Fig. 9 shows the S-wave deuteron wave func-
tions compared to the Hulthén ansatz. For both binding
energies, we use the same β. As one can see, the Hulthén
and chiral wave functions nicely agree for larger distances.
In Fig. 9(a) one can also see that this long range part is
independent of the cutoff used.

The limit of a point like vertex is achieved by the limit
β → ∞. In this limit the wave function of Eq. (23) be-
comes identical to the one used in theories with perturba-
tive pions [53] as well as the one used when treating the
pion as heavy field [54,55]. For completeness, we also show
this wave function in Fig. 9(a). It is obvious that such a
simplistic wave function is not a good approximation to
complete chiral wave functions. The most important ef-
fect is a reduction of the long range part, which becomes
necessary to insure the correct normalization of the wave
function.

The wave function of Eq. (23) is still sufficiently simple
that analytic calculations can be performed for the various
matrix elements discussed in this section. In particular we
find

a(1a)π−2H = κx
(1 + x)

(1− x)2
ln

(

4x

(1 + x)2

)

, (25)

where we introduced the dimensionless parameter x =
γ/β and

κ = β
1

8π2 (1 +mπ/2mN)

m2
π

f4
π

.

In addition, we find

a(1bc)π−2H = κx
(1 + x)

(1− x)2
g2A
12

×
{

ln

(

(1 + x+ m̄π)2

(2x+ m̄π)(2 + m̄π)

)

−
m̄π(1− x)2

(1 + x+ m̄π)(2x+ m̄π)(2 + m̄π)

}

, (26)

with m̄π = mπ/β and

a(2)π−2H = κx
(1 + x)

(1− x)2

×
(

mπβ

4πf2
π

){

ln

(

2

x+ 1

)

+ x ln

(

2x

x+ 1

)}

,(27)

We used these analytic results, found with the Hulthén
wave functions, to predict the ratio

r =

∣

∣

∣

∣

∣

a(1bc)π−2H

a(1a)π−2H

∣

∣

∣

∣

∣

. (28)

In Fig. 10(a), this analytical result is compared to a LO
calculation for which we neglect the D-wave contribution
of the wave function. Although the results do not agree
quantitatively, it is obvious that the simplified calcula-
tion based on the Hulthén ansatz is able to describe the
energy dependence qualitatively. The inclusion of the D-
wave changes the result for Diagram 1(a) only marginally,
however, the full contribution for Diagram 1(b)+1(c) even
changes its sign. Let us now focus on the contributions
from only the deuteron S-wave. From Eqs. (25) and (26) it
follows directly that the suppression of Diagram 1(b)+1(c)
compared to the Coulombian 1(a) is only logarithmic, in
line with Weinberg counting, and not power law (γ4) as
predicted by Q–counting. Close inspection reveals that the
bulk of the suppression of (1bc) with respect to (1a) comes
from spin-isospin factors leading to the factor of 1/12

in a(1bc)π−2H. Such kind of accidental suppression, a power
counting can not capture.

It is also very interesting to investigate various limits of
Eqs. (25) and (26). As mentioned above the expressions for
the wave functions relevant for theories with perturbative
pions, as used e.g. in Ref. [53], are recovered when taking
the limit β → ∞. Then the above expressions collaps to

a(1a)
π−2H,LO = κx ln(4x) , (29)

and

a(1bc)
π−2H,LO = −κx

g2A
12

×
{

ln (2(2x+ m̄π)) +
m̄π

(2x+ m̄π)

}

. (30)

Identifying β/2 with Λ∗, the given equations agree with
those of Ref. [53]. In addition we find

a(2)
π−2H,LO = κx

(

mπβ

4πf2
π

)

ln (2) .

Contrary to the theory with perturbative pions, in the
heavy pion effective field theory the Diagrams 1(b)+1(c)
do not appear explicitly but are absorbed in local counter
terms. A comparison of the given leading order expressions
with the full result reveals that, for Diagrams 1(b)+1(c),
there is no regime of binding energies where the given for-
mula well represents the full result. Contrary to this, the
leading order expression for Diagram 1(a) works well for
very small values of the binding energy (see Fig. 10(b)).
This is to be expected since there must be a kinematical
regime where the heavy pion effective field theory is appli-
cable. However, we find that the expressions break down
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where the normalization factor N is fixed to

N(γ,β)2 = 8πγβ(γ + β)3

by the normalization condition for the deuteron wave func-
tion. This is a wave function of the Hulthén type [57]. In
Refs. [56,50,58], it was shown that for radii larger than
0.6 fm the LO chiral wave functions are basically inde-
pendent of the regulator used for their construction. We
therefore fix β by fitting to the tail of the wave function
at Ed = 0.01 MeV. This way we find

β = 1.7mπ . (24)

It is reassuring that β turns out to be of the order
of the pion mass. If the proposed picture is correct, the
scale β should be independent of the deuteron binding en-
ergy. We confirmed that this is indeed the case as long
as we do not go to very large binding energies above the
physical one. Fig. 9 shows the S-wave deuteron wave func-
tions compared to the Hulthén ansatz. For both binding
energies, we use the same β. As one can see, the Hulthén
and chiral wave functions nicely agree for larger distances.
In Fig. 9(a) one can also see that this long range part is
independent of the cutoff used.

The limit of a point like vertex is achieved by the limit
β → ∞. In this limit the wave function of Eq. (23) be-
comes identical to the one used in theories with perturba-
tive pions [53] as well as the one used when treating the
pion as heavy field [54,55]. For completeness, we also show
this wave function in Fig. 9(a). It is obvious that such a
simplistic wave function is not a good approximation to
complete chiral wave functions. The most important ef-
fect is a reduction of the long range part, which becomes
necessary to insure the correct normalization of the wave
function.

The wave function of Eq. (23) is still sufficiently simple
that analytic calculations can be performed for the various
matrix elements discussed in this section. In particular we
find

a(1a)π−2H = κx
(1 + x)

(1− x)2
ln

(

4x

(1 + x)2

)

, (25)

where we introduced the dimensionless parameter x =
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We used these analytic results, found with the Hulthén
wave functions, to predict the ratio
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∣

∣

∣

∣

∣

. (28)

In Fig. 10(a), this analytical result is compared to a LO
calculation for which we neglect the D-wave contribution
of the wave function. Although the results do not agree
quantitatively, it is obvious that the simplified calcula-
tion based on the Hulthén ansatz is able to describe the
energy dependence qualitatively. The inclusion of the D-
wave changes the result for Diagram 1(a) only marginally,
however, the full contribution for Diagram 1(b)+1(c) even
changes its sign. Let us now focus on the contributions
from only the deuteron S-wave. From Eqs. (25) and (26) it
follows directly that the suppression of Diagram 1(b)+1(c)
compared to the Coulombian 1(a) is only logarithmic, in
line with Weinberg counting, and not power law (γ4) as
predicted by Q–counting. Close inspection reveals that the
bulk of the suppression of (1bc) with respect to (1a) comes
from spin-isospin factors leading to the factor of 1/12

in a(1bc)π−2H. Such kind of accidental suppression, a power
counting can not capture.

It is also very interesting to investigate various limits of
Eqs. (25) and (26). As mentioned above the expressions for
the wave functions relevant for theories with perturbative
pions, as used e.g. in Ref. [53], are recovered when taking
the limit β → ∞. Then the above expressions collaps to

a(1a)
π−2H,LO = κx ln(4x) , (29)

and

a(1bc)
π−2H,LO = −κx

g2A
12

×
{

ln (2(2x+ m̄π)) +
m̄π

(2x+ m̄π)

}

. (30)

Identifying β/2 with Λ∗, the given equations agree with
those of Ref. [53]. In addition we find

a(2)
π−2H,LO = κx

(

mπβ

4πf2
π

)

ln (2) .

Contrary to the theory with perturbative pions, in the
heavy pion effective field theory the Diagrams 1(b)+1(c)
do not appear explicitly but are absorbed in local counter
terms. A comparison of the given leading order expressions
with the full result reveals that, for Diagrams 1(b)+1(c),
there is no regime of binding energies where the given for-
mula well represents the full result. Contrary to this, the
leading order expression for Diagram 1(a) works well for
very small values of the binding energy (see Fig. 10(b)).
This is to be expected since there must be a kinematical
regime where the heavy pion effective field theory is appli-
cable. However, we find that the expressions break down
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where the normalization factor N is fixed to

N(γ,β)2 = 8πγβ(γ + β)3

by the normalization condition for the deuteron wave func-
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)
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π
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π

.
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∣

∣

∣

∣
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In Fig. 10(a), this analytical result is compared to a LO
calculation for which we neglect the D-wave contribution
of the wave function. Although the results do not agree
quantitatively, it is obvious that the simplified calcula-
tion based on the Hulthén ansatz is able to describe the
energy dependence qualitatively. The inclusion of the D-
wave changes the result for Diagram 1(a) only marginally,
however, the full contribution for Diagram 1(b)+1(c) even
changes its sign. Let us now focus on the contributions
from only the deuteron S-wave. From Eqs. (25) and (26) it
follows directly that the suppression of Diagram 1(b)+1(c)
compared to the Coulombian 1(a) is only logarithmic, in
line with Weinberg counting, and not power law (γ4) as
predicted by Q–counting. Close inspection reveals that the
bulk of the suppression of (1bc) with respect to (1a) comes
from spin-isospin factors leading to the factor of 1/12

in a(1bc)π−2H. Such kind of accidental suppression, a power
counting can not capture.

It is also very interesting to investigate various limits of
Eqs. (25) and (26). As mentioned above the expressions for
the wave functions relevant for theories with perturbative
pions, as used e.g. in Ref. [53], are recovered when taking
the limit β → ∞. Then the above expressions collaps to
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and
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those of Ref. [53]. In addition we find
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Contrary to the theory with perturbative pions, in the
heavy pion effective field theory the Diagrams 1(b)+1(c)
do not appear explicitly but are absorbed in local counter
terms. A comparison of the given leading order expressions
with the full result reveals that, for Diagrams 1(b)+1(c),
there is no regime of binding energies where the given for-
mula well represents the full result. Contrary to this, the
leading order expression for Diagram 1(a) works well for
very small values of the binding energy (see Fig. 10(b)).
This is to be expected since there must be a kinematical
regime where the heavy pion effective field theory is appli-
cable. However, we find that the expressions break down

x = γ/β

β → ∞
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and the S-wave part of the LO wave function for Λ = 20 fm−1 depending on the deuteron binding energy Ed. The Hulthén
result is shown for β = 1.7mπ . In (b) the results are also compared to the expansion of Eq. (29).

already for very low values of the binding energy. Already
for a binding energy of 0.1 MeV the leading order expres-
sions show a significant deviation from the full result. We
therefore conclude that for accurate calculations of π-2H
scattering neither the treatment with perturbative pions
nor heavy pion effective field theory are applicable for the
physical deuteron.

5.3 Analysis of the triple scattering diagram

The observation that the diagram shown in Fig. 2 is sig-
nificantly enhanced compared to the expectation based on
Weinberg counting was taken as a further support for Q–
counting [20]. In this subsection, we will demonstrate that
the triple scattering diagram is not enhanced as a result
of the smallness of the deuteron binding momentum but
because of the special topology of its loop diagram.

The loop that appears in the triple scattering diagram
may be written as

I0(ω, v ·Q,Q2) =
1

i

∫

ddl

(2π)d
1

(v · l − ω − iε)

×
1

(m2
π − l2 − iε)(m2

π − (l −Q)2 − iε)
, (31)

where v = (1, 0, 0, 0). In Ref. [59] a general solution for
this integral is given. In the kinematics relevant for π-A
scattering at threshold we find

I0(mπ, 0,−q2) =
1

8|q|
+ δI0, (32)

with

δI0 =
1

8π2|q|

∫ π

0
dx

(

arctan

(

2mπ

sin(x)|q|

)

−
π

2

)

. (33)

In Ref. [20] only the first term on the right hand side was
included. Note that in the limit of heavy pions, as used
in Ref. [55], the contribution of δI0 vanishes. Dimensional
analysis, which is the basis of Weinberg counting, allows

us to estimate integrals. In case of I0 this analysis gives
(assuming q ∼ mπ)

I0 ∼ 1/((4π)2mπ) . (34)

Clearly, the first term on the right hand side of Eq. (32)
is enhanced by a factor of 2π2 compared to this estimate.
The remainder, δI0, on the other hand is numerically fully
in line with the estimate (34). The power counting can
only capture parametric suppressions. We therefore con-
clude that the fact that δI0 behaves in accordance with
Weinbergs power counting is a further support for its ap-
plicability. However, in a high accuracy calculation for
pion-nucleus scattering the first term of Eq. (32) is to
be kept and it is this piece that we have in the list of
operators to be included in the calculation — c.f. Eq. (8).

How can we understand the large enhancement of a
part of I0? To see this, we first observe that the enhanced
part of I0 can be directly calculated from the full Feynman
integral by only keeping the term that corresponds to the
nucleon pole. For this piece we get

Inucl. pole
0 =

∫

d3l

(2π)3
1

l2(l − q)2

=
1

8π2|q|

∫ ∞

0

dx

x
ln

(

(

x+ 1

x− 1

)2
)

. (35)

The implicit assumption behind any dimensional analysis
is that integrals, once converted into dimensionless expres-
sions, are of order 1. And indeed, if the given integral were
of order 1, the full expression would be perfectly in line
with power counting. However, one finds

∫ ∞

0

dx

x
ln

(

(

x+ 1

x− 1

)2
)

= π2 .

We trace the appearance of this large result to the presence
of an integrable singularity at x = 1 in the expression
given above. Indeed, 80 % of the exact result originate
from values of x ≤ 2.

It is interesting to note that enhancements by fac-
tors of π were already observed to emerge also in pion
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sions show a significant deviation from the full result. We
therefore conclude that for accurate calculations of π-2H
scattering neither the treatment with perturbative pions
nor heavy pion effective field theory are applicable for the
physical deuteron.

5.3 Analysis of the triple scattering diagram

The observation that the diagram shown in Fig. 2 is sig-
nificantly enhanced compared to the expectation based on
Weinberg counting was taken as a further support for Q–
counting [20]. In this subsection, we will demonstrate that
the triple scattering diagram is not enhanced as a result
of the smallness of the deuteron binding momentum but
because of the special topology of its loop diagram.

The loop that appears in the triple scattering diagram
may be written as
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where v = (1, 0, 0, 0). In Ref. [59] a general solution for
this integral is given. In the kinematics relevant for π-A
scattering at threshold we find

I0(mπ, 0,−q2) =
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with
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In Ref. [20] only the first term on the right hand side was
included. Note that in the limit of heavy pions, as used
in Ref. [55], the contribution of δI0 vanishes. Dimensional
analysis, which is the basis of Weinberg counting, allows

us to estimate integrals. In case of I0 this analysis gives
(assuming q ∼ mπ)

I0 ∼ 1/((4π)2mπ) . (34)

Clearly, the first term on the right hand side of Eq. (32)
is enhanced by a factor of 2π2 compared to this estimate.
The remainder, δI0, on the other hand is numerically fully
in line with the estimate (34). The power counting can
only capture parametric suppressions. We therefore con-
clude that the fact that δI0 behaves in accordance with
Weinbergs power counting is a further support for its ap-
plicability. However, in a high accuracy calculation for
pion-nucleus scattering the first term of Eq. (32) is to
be kept and it is this piece that we have in the list of
operators to be included in the calculation — c.f. Eq. (8).

How can we understand the large enhancement of a
part of I0? To see this, we first observe that the enhanced
part of I0 can be directly calculated from the full Feynman
integral by only keeping the term that corresponds to the
nucleon pole. For this piece we get
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sions, are of order 1. And indeed, if the given integral were
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We trace the appearance of this large result to the presence
of an integrable singularity at x = 1 in the expression
given above. Indeed, 80 % of the exact result originate
from values of x ≤ 2.
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Table 5. Values for CS and CT depending on the cutoff Λ of
the LO potential.

Λ[fm−1] CS [GeV−2] CT [GeV−2]

2.0 -83.6941 2.63787
3.0 -29.0931 16.3942
4.0 86.3303 52.6427
5.0 -435.354 -122.611
10.0 -39.8356 6.36715
20.0 -66.2861 -4.03158

loop contributions to the NN potential [60], the scalar nu-
cleon form–factor [61] and the π0 photoproduction ampli-
tude [62] from similar topologies as those discussed here.
A deeper understanding, when these dimensionless factors
appear, would be very desireable.

It is also important to note that integrals of the same
topology are also relevant for the reaction NN → NNπ,
though in different kinematics. For a discussion of how to
treat these large momentum transfer reactions in ChPT,
see Refs. [63,45]. Loops for this reaction were studied in
Refs. [59,64,65,66]. It is conceivable that the problems in
understanding quantitatively especially the reaction pp →
ppπ0 are connected to the same enhancement of loops as
discussed in this section.

6 Few-nucleon wave functions

Before we can give results for the scattering lengths, we
need to specify the input going into our calculations of the
few-nucleon wave functions in more detail. We will again
study the results for LO wave functions. In contrast to 2H,
we restrict to interactions in 3S1-3D1 and 1S0 partial waves
requiring fits of the strength of both contact interactions,
CS and CT . We determined these constants fitting to the
binding energy of 2H and the 1S0 neutron-proton phase
shift at a laboratory energy of 1 MeV. The potential was
given already in Eq. (18). For the new fits, we used for
historical reasons a different, more sharp regulator

f(p) = exp

(

−
( p

Λ

)8
)

, (36)

gA = 1.29 (utilizing the Goldberger-Treiman relation [67])
and mπ = 138.0 MeV. The results for CS and CT are
summarized in Table 5.

Based on these fits, it is a straightforward task to cal-
culate the binding energies of 3He and 4He. To this aim,
we have solved Faddeev/Yakubovsky equations in momen-
tum space following [36]. Thereby, we subtracted the poles
of unphysical spurious NN bound states from the 2N t-
matrix as outlined in [37]. As was already shown in the
same reference, the binding energies become rather inde-
pendent of Λ for large Λ. However, in LO, the binding
energies of 3He and 4He do not well reproduce the ex-
perimental values. Table 6 shows our results for the var-
ious NN potentials used. In LO, the 3He binding energy
is varying for the different cutoffs by almost 6 MeV. Such

Table 6. Summary of the 3He and 4He binding energy results
for the LO, NLO, and N2LO chiral interactions, AV18 and CD-
Bonn. For the LO interaction, the cutoff Λ is given in [fm−1].
For the chiral interaction, the Lippmann-Schwinger cutoff Λ
and spectral function cutoff Λ̃ is given in MeV [28]. The binding
energies are given in MeV. For 4He, we have not performed
calculations for all cutoffs in LO.

Λ / Λ̃ B(3He) B(4He)

LO 2.0 / – 11.042 39.88
LO 3.0 / – 6.878 20.25
LO 4.0 / – 6.068 17.08
LO 5.0 / – 5.987 16.48
LO 10.0 / – 5.611 15.05
LO 20.0 / – 5.429 —

NLO 400/500 7.678 28.57
NLO 550/500 6.991 24.38
NLO 550/600 7.051 24.72
NLO 400/700 7.699 28.77
NLO 550/700 7.090 24.94

N2LO 450/500 7.717 28.04
N2LO 600/500 7.740 28.11
N2LO 550/600 7.722 28.28
N2LO 450/700 7.726 27.65
N2LO 600/700 7.808 28.57

CD-Bonn — 7.719 28.28
AV18 — 7.736 28.36

Expt. — 7.718 28.30

a large variation can be expected in low orders, since the
binding energies are specifically sensitive to changes of the
potential [68]. Note that we did not include the Coulomb
interaction in these LO calculations, whereas we did in-
clude the Coulomb interaction for the other orders and
the phenomenological NN forces. In NLO, for a smaller
range of cutoffs, the variation is reduced, but still visi-
ble. In NLO, again, there is an appreciable deviation from
the experimental values. It is only in N2LO, that three-
nucleon forces (3NF’s) contribute [29,69], which ensure by
construction that the binding energies are close to the ex-
perimental results. For the phenomenological interactions,
it is by now standard to augment the Hamiltonians by
phenomenological 3NF’s [70,36,71] mostly based on the
Urbana [72] or Tucson-Melbourne [73] models. Also here,
the 3NF’s are then adjusted so that the binding energies
of 3He and 4He are close to the experimental values. Based
on these adjustments, we are now in the position to calcu-
late shifts of the pion-nucleus scattering length due to the
few-nucleon contributions based on LO, NLO, and N2LO
chiral wave functions and on state-of-the-art phenomeno-
logical ones.

7 Two- and three-nucleon contributions to
π-3He scattering

We now study the few-nucleon contributions to π-3He
scattering in more detail with the goal to get a better,
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Refs. [59,64,65,66]. It is conceivable that the problems in
understanding quantitatively especially the reaction pp →
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study the results for LO wave functions. In contrast to 2H,
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requiring fits of the strength of both contact interactions,
CS and CT . We determined these constants fitting to the
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historical reasons a different, more sharp regulator
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gA = 1.29 (utilizing the Goldberger-Treiman relation [67])
and mπ = 138.0 MeV. The results for CS and CT are
summarized in Table 5.

Based on these fits, it is a straightforward task to cal-
culate the binding energies of 3He and 4He. To this aim,
we have solved Faddeev/Yakubovsky equations in momen-
tum space following [36]. Thereby, we subtracted the poles
of unphysical spurious NN bound states from the 2N t-
matrix as outlined in [37]. As was already shown in the
same reference, the binding energies become rather inde-
pendent of Λ for large Λ. However, in LO, the binding
energies of 3He and 4He do not well reproduce the ex-
perimental values. Table 6 shows our results for the var-
ious NN potentials used. In LO, the 3He binding energy
is varying for the different cutoffs by almost 6 MeV. Such

Table 6. Summary of the 3He and 4He binding energy results
for the LO, NLO, and N2LO chiral interactions, AV18 and CD-
Bonn. For the LO interaction, the cutoff Λ is given in [fm−1].
For the chiral interaction, the Lippmann-Schwinger cutoff Λ
and spectral function cutoff Λ̃ is given in MeV [28]. The binding
energies are given in MeV. For 4He, we have not performed
calculations for all cutoffs in LO.

Λ / Λ̃ B(3He) B(4He)

LO 2.0 / – 11.042 39.88
LO 3.0 / – 6.878 20.25
LO 4.0 / – 6.068 17.08
LO 5.0 / – 5.987 16.48
LO 10.0 / – 5.611 15.05
LO 20.0 / – 5.429 —

NLO 400/500 7.678 28.57
NLO 550/500 6.991 24.38
NLO 550/600 7.051 24.72
NLO 400/700 7.699 28.77
NLO 550/700 7.090 24.94

N2LO 450/500 7.717 28.04
N2LO 600/500 7.740 28.11
N2LO 550/600 7.722 28.28
N2LO 450/700 7.726 27.65
N2LO 600/700 7.808 28.57

CD-Bonn — 7.719 28.28
AV18 — 7.736 28.36

Expt. — 7.718 28.30

a large variation can be expected in low orders, since the
binding energies are specifically sensitive to changes of the
potential [68]. Note that we did not include the Coulomb
interaction in these LO calculations, whereas we did in-
clude the Coulomb interaction for the other orders and
the phenomenological NN forces. In NLO, for a smaller
range of cutoffs, the variation is reduced, but still visi-
ble. In NLO, again, there is an appreciable deviation from
the experimental values. It is only in N2LO, that three-
nucleon forces (3NF’s) contribute [29,69], which ensure by
construction that the binding energies are close to the ex-
perimental results. For the phenomenological interactions,
it is by now standard to augment the Hamiltonians by
phenomenological 3NF’s [70,36,71] mostly based on the
Urbana [72] or Tucson-Melbourne [73] models. Also here,
the 3NF’s are then adjusted so that the binding energies
of 3He and 4He are close to the experimental values. Based
on these adjustments, we are now in the position to calcu-
late shifts of the pion-nucleus scattering length due to the
few-nucleon contributions based on LO, NLO, and N2LO
chiral wave functions and on state-of-the-art phenomeno-
logical ones.

7 Two- and three-nucleon contributions to
π-3He scattering

We now study the few-nucleon contributions to π-3He
scattering in more detail with the goal to get a better,
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Numerical approach
• Most involved calculation: 4-nucleon operator in 4-nucleon system

• Avoid partial wave decompostion (tedious!)

• Need to calculate expectation value

• 4He wave function

• spin-isospin channels

• 4NF matrix element                                              generated using Maple/Mathematica  

• Metropolis walk for evaluation based on weight function 
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Contributions to π-3He scattering
„Weinberg-counting“  -  typical momenta  
1-nucleon contributions 

2-nucleon contributions            

3-nucleon contributions
                                                                                                  

                          Does the explicit calculation support this power counting?
16
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Cutoff dependence for  π-3He

• no unexpected cutoff dependences for LO wave functions

• cutoff dependence seems to be relevant: much larger variation than for deuteron 
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Fig. 11. Leading few-nucleon contributions a(1a)

π−3He
and

a(3)

π−3He
to the π-3He scattering length. The crosses denote the

results obtained by using the LO chiral wave function (triangle
up: AV18, triangle down: CD-Bonn).

triple scattering diagram is even further enhanced to a
quite sizable 15% contribution once the isovector part is
included. In addition, for the first time, we investigate the
role of the leading three-nucleon contributions. From Ta-
ble 7 it becomes clear that three-nucleon contributions are
suppressed compared to the two-nucleon ones. Again, the

Coulombian contributions a(1a)π−3He, a
(2)
π−3He and a(3)π−3He are

a lot more important than the non- or half-Coulombian
ones although the binding momentum is larger for 3He
than for 2H.

It was already discussed in Sec. 2 that, in case of isovec-
tor nuclei, counter terms start to contribute from lower
orders than in isoscalar nuclei. Due to this fact the theo-
retical accuracy of the extraction of the πN low energy pa-
rameters from π-3He is, unfortunately, significantly lower
than from π-2He or π-4He. The contribution of the isovec-
tor counter term in π-3He scattering can be estimated

using dimensional analysis to be ∼ mπ/mN · a(1a)π−3He ≈
4 × 10−3m−1

π . On the other hand, the isovector contact
term is expected to be enhanced by mN/mπ compared to
its isoscalar counter part, which was estimated above (see
sec. 5.1) to be of order 1 × 10−3m−1

π . This would provide
us with an estimate of 7 × 10−3 m−1

π . Both numbers are
consistent and we use the latter uncertainty below.

To support our uncertainty estimates it is important
to study the cutoff dependence of the various scattering
length shifts and to compare it to the counter term con-
tribution. The cutoff dependence is shown in Figs. 11 and
12. We noticed that the results depend strongest on the
cutoff of the Lippmann-Schwinger equation Λ. Therefore,
we plotted the results depending on this cutoff for NLO
and N2LO neglecting the mild dependence on the spectral
function cutoff Λ̃ (see [28] for more details on the definition
of this cutoff). We also included the results for CD-Bonn
and AV18 in these figures, which we arbitrarily positioned
left of the other data.

Fig. 11 shows the most important two- and three-
nucleon contributions, the Coulombian ones. It becomes
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Fig. 12. Few-nucleon contributions a(1bc)

π−3He
and a(19)

π−3He
as

a function of Λ. The crosses, the triangle up and the triangle
down mark again the LO chiral wave functions, AV18 and CD-
Bonn, respectively.
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Fig. 13. Results for the leading two- and three-nucleon con-
tributions and for the isoscalar part of Fig. 2, respectively.
Crosses: LO chiral wave functions, circles: NLO, squares:
N2LO, triangle down: CD-Bonn, triangle up: AV18. For the
NLO (N2LO) four (two) results were selected since they are
very close and therefore not distinguishable.

clear that most of the dependence on the cutoff is for cut-
offs below 5 fm−1. The suppressed contributions for the
non- or half-Coulombian diagrams are shown in Fig. 12.
Also here, we observe that the cutoff dependence becomes
mild for larger Λ. But the results based on the LO wave
functions are not always in good agreement with the ones
for phenomenological and higher order wave functions.
Apparently, the cutoff dependence is not as strong as other
higher order contributions for these diagrams. Obviously,
the small size of the contributions amplifies small effects.
Especially, the counter term contribution is significantly
larger than the few-nucleon terms presented in Fig.12.

Quantitatively more significant is the cutoff depen-
dence of the Coulombian diagrams for small Λ. We found
that for these contributions the cutoff dependence is driven
by the binding energy of 3He. This is shown explicitly in
Fig. 13, where the results of Fig. 11 are plotted again,
this time depending on the binding energy. Basically, the
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Binding energy dependence
Bulk of cutoff dependence is result of low order NN interaction 

             binding energy dependence
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π−3He
and

a(3)
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to the π-3He scattering length. The crosses denote the

results obtained by using the LO chiral wave function (triangle
up: AV18, triangle down: CD-Bonn).

triple scattering diagram is even further enhanced to a
quite sizable 15% contribution once the isovector part is
included. In addition, for the first time, we investigate the
role of the leading three-nucleon contributions. From Ta-
ble 7 it becomes clear that three-nucleon contributions are
suppressed compared to the two-nucleon ones. Again, the

Coulombian contributions a(1a)π−3He, a
(2)
π−3He and a(3)π−3He are

a lot more important than the non- or half-Coulombian
ones although the binding momentum is larger for 3He
than for 2H.

It was already discussed in Sec. 2 that, in case of isovec-
tor nuclei, counter terms start to contribute from lower
orders than in isoscalar nuclei. Due to this fact the theo-
retical accuracy of the extraction of the πN low energy pa-
rameters from π-3He is, unfortunately, significantly lower
than from π-2He or π-4He. The contribution of the isovec-
tor counter term in π-3He scattering can be estimated

using dimensional analysis to be ∼ mπ/mN · a(1a)π−3He ≈
4 × 10−3m−1

π . On the other hand, the isovector contact
term is expected to be enhanced by mN/mπ compared to
its isoscalar counter part, which was estimated above (see
sec. 5.1) to be of order 1 × 10−3m−1

π . This would provide
us with an estimate of 7 × 10−3 m−1

π . Both numbers are
consistent and we use the latter uncertainty below.

To support our uncertainty estimates it is important
to study the cutoff dependence of the various scattering
length shifts and to compare it to the counter term con-
tribution. The cutoff dependence is shown in Figs. 11 and
12. We noticed that the results depend strongest on the
cutoff of the Lippmann-Schwinger equation Λ. Therefore,
we plotted the results depending on this cutoff for NLO
and N2LO neglecting the mild dependence on the spectral
function cutoff Λ̃ (see [28] for more details on the definition
of this cutoff). We also included the results for CD-Bonn
and AV18 in these figures, which we arbitrarily positioned
left of the other data.

Fig. 11 shows the most important two- and three-
nucleon contributions, the Coulombian ones. It becomes
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Fig. 13. Results for the leading two- and three-nucleon con-
tributions and for the isoscalar part of Fig. 2, respectively.
Crosses: LO chiral wave functions, circles: NLO, squares:
N2LO, triangle down: CD-Bonn, triangle up: AV18. For the
NLO (N2LO) four (two) results were selected since they are
very close and therefore not distinguishable.

clear that most of the dependence on the cutoff is for cut-
offs below 5 fm−1. The suppressed contributions for the
non- or half-Coulombian diagrams are shown in Fig. 12.
Also here, we observe that the cutoff dependence becomes
mild for larger Λ. But the results based on the LO wave
functions are not always in good agreement with the ones
for phenomenological and higher order wave functions.
Apparently, the cutoff dependence is not as strong as other
higher order contributions for these diagrams. Obviously,
the small size of the contributions amplifies small effects.
Especially, the counter term contribution is significantly
larger than the few-nucleon terms presented in Fig.12.

Quantitatively more significant is the cutoff depen-
dence of the Coulombian diagrams for small Λ. We found
that for these contributions the cutoff dependence is driven
by the binding energy of 3He. This is shown explicitly in
Fig. 13, where the results of Fig. 11 are plotted again,
this time depending on the binding energy. Basically, the

Estimate cutoff dependence from variation  of N2LO interactions

2N double scattering

3N

2N triple scattering



a(2N+3N)
π−3He =((−25.6 + 4.0 + 0.3) + (−4.0− 0.7)± 7) · 10−3m−1

π = (−26.0± 7) · 10−3m−1
π .

aπ−3He

[
10−3 m−1

π

]

R. Abela et al. 56± 6
G. R. Mason et al. 43± 5
I. Schwanner et al. 41± 4
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Results for  π-3He
• results do not strongly dependent on cutoff when binding energies are OK

• counter term estimate based on naive dimensional analysis larger

• cutoff dependence might result in low estimate since leading few-nucleon 
contribution is isoscalar 
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smaller is the cutoff the larger is the binding energy (see
Table 6) and the larger is the scattering length for the
dominant two- and three-nucleon contributions. Whereas
this fact does not change our conclusion on the power
counting below, it will be interesting for the extraction
of π-N scattering lengths from data on light nuclei. Ob-
viously, the uncertainty due to higher order contributions
to the wave function can be reduced by the requirement
that the binding energy is correctly described. In this way,
the effective dependence of the scattering length shifts on
the order of the interaction is reduced to approximately
1 ×10−3m−1

π . This uncertainty is smaller than the esti-
mated contribution of the contact term and therefore ir-
relevant for the estimation of total theoretical accuracy.

The net contribution of two- and three-nucleon terms
to π-3He scattering length can be read off from Table 7
(the numbers are in 10−3m−1

π )

a(2N+3N)
π−3He =(−25.6 + 4.0 + 0.3) + (−4.0− 0.7)± 7

= −26.0± 7 . (38)

Here the numbers in the first(second) bracket correspond
to the average results for two(three)-nucleon contributions
calculated with N2LO wave functions. The uncertainty
due to the use of different wave functions is not shown,
for it is much smaller than the estimated contact term
contribution. In addition, we argued in Sec. 3.1 that we
do not expect large corrections to the π-3He scattering
length due to the net effect of the dispersive and the ∆
contributions. Thus, our prediction for the π-3He scatter-
ing length is

a(1N+2N+3N)
π−3He = (62± 4± 7)× 10−3m−1

π (39)

where the first uncertainty is due to ambiguities in π-
N scattering lengths whereas the second one represents
the uncertainty in the few-nucleon effect. This result does
not include isospin violating few-nucleon effects. Those are
found to be sizable for π-2H scattering [77] although signif-
icantly smaller than the theoretical uncertainty of π-3He
calculation. The result of Eq.(39) is to be compared to the

Table 8. Experimental results for the π-3He scattering length.
The entries contain measured energy level shifts of π-3He
atomic bound states together with corresponding scattering
lengths.

ε1s [eV] aπ−3He

[

10−3 m−1
π

]

R. Abela et al. [78] 44± 5 56± 6
G. R. Mason et al. [79] 34± 4 43± 5
I. Schwanner et al. [80] 32± 3 41± 4

experimental results for the π-3He scattering lengths given
in Table 8. Those are extracted from the measurements of
the 1s level shifts in π−-3He atom due to the strong inter-
actions [78,79,80] by using DGBT-type formulae [81] and
including logarithmic corrections of Ref. [82]. The table

Table 9. Numerical results for the relative scalings of the few-
nucleon contributions.

Λ/Λ̃ a(2N)

π−3He
/a(1N)

π−3He
a(3N)

π−3He
/a(2N)

π−3He

CD-Bonn — 0.220 0.221
AV18 — 0.222 0.194

NLO 400/500 0.206 0.227
NLO 550/500 0.212 0.181
NLO 550/600 0.210 0.175
NLO 400/700 0.205 0.228
NLO 550/700 0.210 0.180

N2LO 450/500 0.212 0.222
N2LO 600/500 0.220 0.194
N2LO 550/600 0.215 0.224
N2LO 450/700 0.207 0.236
N2LO 600/700 0.216 0.224

demonstrates that the results of the first measurement are
in contradiction with the others even within the large ex-
perimental uncertainties. It is getting even more intriguing
because it is only the first measurement that agrees with
our theoretical prediction (39) based on ChPT. Clearly,
a new measurement of this quantity recently performed
at PSI [83] is of high importance to resolve the existing
discrepancies.

In Table 9, we have compiled the relative contribu-
tions of one-nucleon, two-nucleon, and three-nucleon dia-

grams (a(1N)
π−3He, a

(2N)
π−3He, and a(3N)

π−3He). We omitted the re-
sults of the LO wave functions here, since their description
of the binding energies is generally poor. It sticks out that,
numerically, the suppression of few-nucleon corrections is
less than expected by Weinberg’s power counting. Based
on these findings, we are led to the conclusion that the
power counting gives reasonable guidance in identifying
the most important contributions, however, for a quan-
titative understanding, explicit calculations for the lead-
ing few-nucleon contributions are necessary to estimate
the contribution of the class of N -nucleon contributions.
Qualitatively, more-nucleon diagrams are still sufficiently
suppressed so that the series of one- , two-, ... nucleon con-
tributions can be truncated at sufficiently low complexity
of the problem — we find a factor of 5 suppression when
going from an N -nucleon operator to an (N + 1)-nucleon
operator. It is important to note in this context that we
find the same suppression factor forN = 1,N = 2, and, as
will be shown in the next section, N = 3. Due to this, the
four-nucleon diagrams turn out to be already insignificant.

In summary, we have calculated π-3He scattering length
including leading three-nucleon terms and two-nucleon op-
erators. Due to the presence of the large contact term
in the isovector channel the present calculation basically
reaches the edge of the theoretical accuracy. We also find
that the results are in qualitative agreement with Wein-
berg’s counting.
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Table 7. Summary of the shifts of the π-3He scattering length due to the few-nucleon corrections a(1a)
π−3He

, a
(1bc)
π−3He

, a(2is)
π−3He

,

a(2iv)
π−3He

, a(3)
π−3He

, and a(14 )
π−3He

. For LO, the cutoff Λ is given in fm−1, for NLO and N2LO, both cutoffs (Λ/Λ̃) are given in MeV.

Central values and standard deviation for the scattering length results are given in units of
[

10−3 m−1
π

]

.

Λ/Λ̃ a(1a)
π−3He

a
(1bc)
π−3He

a(2is)
π−3He

a(2iv)
π−3He

a(3)
π−3He

a(14 )

π−3He

CD Bonn — −25.08(6) −0.329(1) 2.769(2) 0.890(1) −4.020(73) −0.789(6)
AV18 — −24.13(9) −0.884(1) 2.286(3) 0.788(1) −3.536(36) −0.728(4)

LO 2.0/ – −30.20(5) 1.711(1) 4.418(1) 1.935(1) −6.755(123) −2.339(6)
LO 3.0/ – −23.76(13) −0.053(1) 2.445(1) 1.553(1) −4.493(38) −1.762(4)
LO 4.0/ – −20.70(25) −0.327(1) 1.077(3) 1.581(1) −3.620(25) −1.556(15)
LO 5.0/ – −20.33(13) −0.120(1) 0.868(3) 1.812(1) −3.830(93) −1.740(15)
LO 10.0/ – −21.92(99) 0.128(3) 0.770(11) 2.576(5) −4.283(302) −1.872(57)
LO 20.0/ – −19.22(146) 0.296(18) −0.392(98) 4.005(76) −3.835(894) −1.743(158)

NLO 400/500 −25.36(4) 0.828(1) 3.117(1) 0.984(1) −3.934(29) −0.695(1)
NLO 550/500 −24.33(4) −0.061(1) 2.714(1) 0.645(1) −3.431(141) −0.374(1)
NLO 550/600 −24.05(2) −0.037(1) 2.637(1) 0.671(1) −3.245(22) −0.397(4)
NLO 400/700 −25.23(3) 0.847(1) 3.085(2) 1.002(1) −3.898(21) −0.720(2)
NLO 550/700 −24.05(5) −0.020(1) 2.564(1) 0.692(1) −3.311(15) −0.435(4)

N2LO 450/500 −25.76(4) 0.642(1) 3.189(2) 0.987(1) −3.979(7) −0.721(2)
N2LO 600/500 −25.60(5) −0.021(1) 3.039(3) 0.779(1) −3.826(58) −0.496(4)
N2LO 550/600 −25.55(2) 0.233(1) 3.104(3) 0.952(1) −4.057(75) −0.708(4)
N2LO 450/700 −25.25(4) 0.611(1) 3.104(1) 1.052(1) −4.038(15) −0.806(1)
N2LO 600/700 −25.51(7) 0.094(1) 3.022(2) 0.985(1) −4.056(53) −0.734(2)

quantitative understanding of the relative importance of
N - and (N + 1)-nucleon operators.

The results for 3He are summarized in Table 7. To ob-
tain these values, we have used the Monte Carlo scheme
introduced in Sec. 4. The table gives the averaged results
together with the estimate of the standard deviation. In
all cases, we have performed several independent runs and
checked that the spread of the different results is in rea-
sonable agreement with the expectations from our esti-
mates of the standard deviation. The table distinguishes

the shifts of the π-3He scattering due to Eqs. (6) (a(1a)π−3He),

(7) (a(1bc)π−3He), (8) (isoscalar part a
(2is)
π−3He and isovector part

a(2iv)π−3He, respectively), and (12) (a(3)π−3He), and due to the

sum of the contributions listed in Appendix B (a(14 )
π−3He).

Based on reasonable assumptions for a(±), the one-
nucleon contribution to the scattering length was found to

be a(1N)
π−3He = (92 ± 15) × 10−3m−1

π [74]. The uncertainty

in this result is mainly due to the uncertainty in a(+) mul-
tiplied by 3 as follows from Eq. (1). On the other hand,
it was realized in Refs.[4,14,75] that the inclusion of the
leading IV effects in π-N scattering leads to the replace-
ment of a(+) by ã(+) in Eq.(1). In addition to this, at the
same order there is also an isospin violating electromag-
netic correction to π-3He scattering: −αf2/2/(1 +

mπ

3mN
)

with α = 1/137 and LEC f2 = (−0.97 ± 0.38)GeV−1

[7]. The latter, however, gives a relatively small shift of
the scattering length by (0.5 ± 0.2)× 10−3m−1

π . A recent
systematic analysis of isospin violating effects in π-N scat-

tering up to NLO [5,6] resulted in updated values for ã(+)

and a(−) [76] from a combined analysis of pionic hydrogen
and deuterium data:

ã(+) = (1±1)×10−3m−1
π , a(−) = (86.5±1.2)×10−3m−1

π .
(37)

In the same works numerically significant subleading IV
corrections were identified. Those may be included here
by changing

ã(+) → ã(+) +∆ã(+) and a(−) → a(−) +∆a(−) ,

with ∆ã(+) = (−3.35± 0.28) and ∆a(−) = (1.39 ± 1.33),
both values again in units of 10−3m−1

π . Equipped with
these numbers we get an updated value for the one-nucleon

contribution a(1N)
π−3He = (88± 4)× 10−3m−1

π .
Also in Ref. [74], the contribution of the two-nucleon

diagrams was estimated based on approximated wave func-

tions for CD-Bonn. Their result is a(2N)
π−3He = −26×10−3m−1

π

which is in acceptable agreement with our full calculation.
In this work, we aim at the theoretical improvement of the
result of Ref. [74] in several aspects. First, using chiral
nuclear wave functions up to N2LO allows us to analyze
systematically the model dependence of our results. Sec-
ond, the empirical enhancement of the triple scattering
diagram, discussed in subsection 5.3, calls for an inclu-
sion of this two-nucleon operator also in π-3He scattering.
We find that the isoscalar part of the triple scattering
diagram reduces the leading double scattering contribu-
tion by about 12% which is fully in line with the corre-
sponding contribution to π-2H scattering. Moreover, the

(from Hoferichter et al., 2009)

Λ/Λ̃ a
(??a)
π−3He

a
(??bc)
π−3He

a
(??is)
π−3He

a
(??iv)
π−3He

a
(??)
π−3He

a
(?? )
π−3He

CD Bonn — −25.08(6) −0.329(1) 2.769(2) 0.890(1) −4.020(73) −0.789(6)
AV18 — −24.13(9) −0.884(1) 2.286(3) 0.788(1) −3.536(36) −0.728(4)

N2LO 450/500 −25.76(4) 0.642(1) 3.189(2) 0.987(1) −3.979(7) −0.721(2)
N2LO 600/500 −25.60(5) −0.021(1) 3.039(3) 0.779(1) −3.826(58) −0.496(4)
N2LO 550/600 −25.55(2) 0.233(1) 3.104(3) 0.952(1) −4.057(75) −0.708(4)
N2LO 450/700 −25.25(4) 0.611(1) 3.104(1) 1.052(1) −4.038(15) −0.806(1)
N2LO 600/700 −25.51(7) 0.094(1) 3.022(2) 0.985(1) −4.056(53) −0.734(2)



  
1-nucleon contributions 

2-nucleon contributions            

3-nucleon contributions   (isovector)
4-nucleon contributions (incomplete)
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Contributions to π-4He scattering
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aπ−A =

(
1 +mπ/mN

1 +mπ/AmN

) (
Aa(+) + 2T3a

(−)
)

O
((

mπ

Λχ

)2
)

O
((

mπ

Λχ

)4
)

O
((

mπ

Λχ

)3
)

(isovector) (isoscalar)

+ ...

O
((

mπ

Λχ

)4

π2

)

O
((

mπ

Λχ

)6
)
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Results for  π-4He
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Λ/Λ̃

AV18 — -49.5(7) -1.29(2) 5.00(5) 2.73(84)
N2LO 450/500 -54.4(4) 1.92(1) 6.98(2) 3.00(20)
N2LO 600/500 -52.0(8) -0.09(2) 6.16(3) 2.13(11)
N2LO 550/600 -52.7(6) 0.50(1) 6.42(3) 2.31(31)
N2LO 450/700 -52.7(7) 1.81(1) 6.68(3) 2.56(10)
N2LO 600/700 -53.9(8) 0.36(1) 6.34(2) 2.81(17)

• cutoff dependence in line with naive expectations 
                                         (below 5 % of leading 2N contribution)
• 2N contribution only twice as large as for the deuteron 
                                       (np and pp/nn pairs enter with opposite sign)
• 4N term finally comparable to counter term contribution (can be neglected)

• few-nucleon contributions larger than naively expected



mπ

Λχ
≈ 1

5
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Relative scaling of few-nucleon diagrams
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Λ/Λ̃ a(2N)
π−3He/a

(1N)
π−3He a(3N)

π−3He/a
(2N)
π−3He a(4N)/a(3N)

AV18 — 0.222 0.194 0.307

N2LO 450/500 0.212 0.222 0.297
N2LO 600/500 0.220 0.194 0.239
N2LO 550/600 0.215 0.224 0.225
N2LO 450/700 0.207 0.236 0.245
N2LO 600/700 0.216 0.224 0.266

• relative suppression of two-nucleon contributions are completely in agreement    
      with expansion parameter                  &  naive dimensional analysis              

                                                                      (cutoff dependence, triple scattering) 
• few-nucleon contributions are suppressed by much less than expected
• suppression is comparable  for 1N:2N:3N:4N 

systematically understandable?

impact for other few-nucleon operators / three-nucleon interactions?
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Conclusions & Outlook
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• systematic overview of few-nucleon contributions to πA scattering at low energies

• π-2H

• no significant cutoff dependence of the most prominent diagrams

• binding momentum is not driving the power counting (no Q-counting)

• toy model based on Hulthén wf indicates early breakdown of Hπ-EFT

• enhancement of specific topolgy could be visible in other processes 

• π-3He

• complete set of 3-nucleon diagrams 

• leading 3-nucleon diagrams are isovector

• no significant cutoff dependence 

• prediction of π-3He scattering length up to the accuracy possible

• π-4He

• studied the probably most important 4-nucleon contribution

• accurate results for all relevant few-nucleon contributions

• isospin violation needs to be take into account 

• check systematics of  π-2H, probably no further constraints on π-N

• naive counting good for estimate of subleading A-nucleon contributions

• relative suppression of A and A+1-nucleon contributions smaller than expected 


