

### Few-nucleon contributions to $\pi$ -nucleus scattering

Andreas Nogga, Forschungszentrum Jülich

INT Program on "Simulations and Symmetries: Cold Atoms, QCD, and Few-hadron Systems"

- Motivation
- Q-versus W-counting: a closer look to the deuteron
- Numerical approach
- 3-nucleon corrections
- Results for  $\pi$ -<sup>3</sup>He
- 4-nucleon corrections
- Results for  $\pi^{-4}$ He
- Conclusions & Outlook

#### **Motivation**



 $\pi$ -N scattering length



pattern of chiral symmetry and its breaking

LO ChPT (PCAC, Weinberg, 1966)

$$a^{(+)} = 0 \qquad \qquad a^{(-)} = \frac{1}{8\pi(1 + \frac{m_{\pi}}{m_N})} \frac{m_{\pi}}{f_{\pi}^2} \approx 90 \cdot 10^{-3} m_{\pi}^{-1}$$

Higher order results have been calculated

Experimentally not so well known,

requires very accurate determination of scattering lengths in two isospin channels, e.g.

$$a^{(-)} = \frac{1}{2} \left( a_{\pi^- p} - a_{\pi^- n} \right) \qquad a^{(+)} = \frac{1}{2} \left( a_{\pi^- p} + a_{\pi^- n} \right) \approx \mathbf{0}$$

Most accurate determination from pionic atoms using

$$a_{\pi^- A} = \left(\frac{1 + m_{\pi}/m_N}{1 + m_{\pi}/Am_N}\right) \left(Aa^{(+)} + 2T_3a^{(-)}\right)$$

+ IV corrections + few-nucleon corrections

(for IV corrections see Hoferichter et al., NPA 2010, Baru et al. arXiv:1003.4444 [nucl-th])

### **Motivation**



ChPT calculation of few-nucleon corrections (Weinberg, 1992)

perturbative expansion of the transition operator

 $a_{\pi A} \propto \langle \Psi_A | \hat{O} | \Psi_A \rangle$ 

phenomenological few-nucleon wave functions or chiral wave functions (Beane at al., 1998)

Result (for A=2): some of the few-nucleon corrections are smaller than expected but they are in general somewhat larger than expected

Is this a systematic deviation from the power counting?

Beane at al., 2003 : consequence of a second scale entering

$$q_d = \sqrt{m_N |E_d|} \approx 45 \text{ MeV} \ll m_\pi$$

 $\hat{O}$ 

 $|\Psi_A\rangle$ 

"Q-counting"

consequences for error estimates, power counting in complex nuclei ?

# Contributions to $\pi$ -<sup>2</sup>H scattering

"Weinberg-counting" - typical momenta  $\propto m_\pi$ 



4

**1-nucleon contributions** 

$$a_{\pi^{-}A} = \left(\frac{1 + m_{\pi}/m_N}{1 + m_{\pi}/Am_N}\right) \left(Aa^{(+)} + 2T_3a^{(-)}\right) \qquad \propto \frac{m_{\pi}}{f_{\pi}^2}$$

**2-nucleon contributions** 

(Beane et al., 2003)



boost & dispersive corrections almost cancel each other (Lensky et al. 2007, Baru et al. 2008) April 14, 2010 Page

### Numerical results (Beane et al.)



2-nucleon contributions have different sizes than expected by power counting



#### Solution of Beane at al.

assume that the typical momentum is the binding momenta of the deuteron

$$q_d = \sqrt{m_N |E_d|} \approx 45 \text{ MeV} \ll m_\pi \quad \longrightarrow \quad \frac{q}{\Lambda} \propto \left(\frac{m_\pi}{\Lambda}\right)^2$$

#### **Q-counting**

#### Numerical results seem to fit expectations!





First counter term is very much suppressed compared to few-nucleon contributions Boost corrections are of the order  $O(Q^5)$  (Is the kinetic energy measurable?) Is Weinberg counting restored for <sup>3</sup>He, <sup>4</sup>He ?

## **Physical & unphysical deuterons**



LO chiral interaction

$$V_{LO} = -\left(\frac{g_a}{2F_{\pi}}\right)^2 \frac{\vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_2 \cdot \vec{q}}{q^2 + m_{\pi}^2} \, \tau_1 \cdot \tau_2 + C_S + C_T \vec{\sigma}_1 \cdot \vec{\sigma}_2$$

small deuteron binding energy is fine-tuning effect

undo fine-tuning of  $C_s$  and fit to range of binding energies (here  $C_T=0$ )

|                                                                                                                     |                                                                                     |                                                                                  | $E_d[MeV]$                                       | $C_S[\text{GeV}^{-2}]$                                               |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|
| large range of cutoffs in LO to study<br>size of first $\pi\pi4N$ contribution                                      | $\begin{array}{c} 0.002 \\ 0.005 \\ 0.01 \\ 0.02 \\ 0.05 \\ 0.1 \\ 0.2 \end{array}$ | -71.7689<br>-72.1400<br>-72.5574<br>-73.1460<br>-74.3088<br>-75.6126<br>-77.4471 |                                                  |                                                                      |
|                                                                                                                     | $\Lambda [{\rm fm}^{-1}]$                                                           | $C_S[\text{GeV}^{-2}]$                                                           | $\begin{array}{c} 0.5 \\ 1.0 \end{array}$        | -81.0703<br>-85.1564                                                 |
| $C_S$ is in general of natural size ( $\approx 100 \text{ GeV}^{-2}$ )<br>except close to new spurious bound states | 3.0<br>4.0<br>5.0<br>10.0<br>20.0                                                   | -34.2225<br>48.1751<br>562.089<br>-50.9683<br>-92.1179                           | $5.0 \\ 10.0 \\ 20.0 \\ 30.0 \\ 40.0 \\ 50.0 \\$ | -103.225<br>-118.793<br>-147.032<br>-178.149<br>-217.147<br>-271.056 |

### Cutoff dependence - $\pi$ -<sup>2</sup>H





#### Energy dependence - π-<sup>2</sup>H







#### Energy dependence - π-<sup>2</sup>H





Explicit calculation strongly disagrees with Q-counting expectations

Q-counting is not realized in low energy pion scattering

## Toy model - π-<sup>2</sup>H: Hulthén wf



 $\beta = 1.7m_{\pi}$ 

binding momentum is not the only scale entering the deuteron wf Hulthén wf allows one to incorporate second scale

$$\psi(\vec{p}) = N(\gamma, \beta) \frac{1}{\vec{p}^2 + \beta^2} \frac{1}{\vec{p}^2 + \gamma^2}$$

fit to normalized s-wave part of the LO wave function second scale is binding energy independent



## Toy model - π-<sup>2</sup>H: Hulthén wf





$$a_{\pi^{-2}H}^{(1a)} = \kappa x \frac{(1+x)}{(1-x)^2} \ln\left(\frac{4x}{(1+x)^2}\right)$$
$$\kappa = \beta \frac{1}{8\pi^2 (1+m_\pi/2m_N)} \frac{m_\pi^2}{f_\pi^4} \quad x = \gamma/\beta$$
$$\beta \to \infty \qquad \longrightarrow \qquad a_{\pi^{-2}H,LO}^{(1a)} = \kappa x \ln(4x)$$

- for double scattering diagram: Hulthén wf is a reasonable approximation
- energy dependence is logarithmic
- ratio is qualitatively reproduced (if restricted to S-wave)
- "contact wf" is not a good approximation convergence of HPEFT breaks down much earlier than expected



### **Triple scattering enhancement**



Q-counting is not confirmed!

How to explain deviations of the numerical results from W-counting expectations?



probably accidental cancelations



look at the corresponding loop function

$$I_0(\omega, v \cdot Q, Q^2) = \frac{1}{i} \int \frac{d^d l}{(2\pi)^d} \frac{1}{v \cdot l - \omega - i\epsilon} \frac{1}{m_\pi^2 - l^2 - i\epsilon} \frac{1}{m_\pi^2 - (l - Q)^2 - i\epsilon}$$

(Dmitrasinovic et al., 1999)

$$I_0(m_{\pi}, 0, -\vec{q}^{\,2}) = \frac{1}{8|\vec{q}|} + \delta I_0 \gg \frac{1}{8\pi^2 |\vec{q}|} \quad \text{naive dimensional analysis}$$

 $\pi^2$  enhancement compared to power counting from integrable singularities

Similar topologies lead to similar enhancements in NN interaction, nucleon form factor, π<sup>0</sup> photoproduction (Friar et al., 2003; Becher et al., 1999; Bernard et al., 1991)

### **π** scattering on A=3 and A=4

same strategy as before

obtain wave functions from solutions of the Schrödinger equation

(or Faddeev/Yakubovsky equations)

fold with  $\pi$  scattering operator (based on W-counting)

| following calculations are based on a set of wf                                                              |               |                                              |                                                             |                                                     | $\Lambda \ / \ 	ilde{\Lambda}$              | $B(^{3}\mathrm{He})$                          | $B(^{4}\mathrm{He})$                        |
|--------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-----------------------------------------------|---------------------------------------------|
| LOt                                                                                                          | o che         | eck dependence on                            | cutoffs                                                     | LO<br>LO                                            | 2.0 / -<br>3.0 / -                          | $\begin{array}{c} 11.042\\ 6.878\end{array}$  | $39.88 \\ 20.25$                            |
|                                                                                                              | $\Lambda$ [fr | $\mathrm{m}^{-1}$ ] $C_S[\mathrm{GeV}^{-2}]$ | $C_T [\text{GeV}^{-2}]$                                     | LO<br>LO                                            | 4.0 / -<br>5.0 / -                          | $6.068 \\ 5.987$                              | $\begin{array}{c} 17.08\\ 16.48\end{array}$ |
|                                                                                                              | $2.0 \\ 3.0$  | -83.6941<br>-29.0931                         | $2.63787 \\ 16.3942$                                        | LO<br>LO                                            | 10.0 / -<br>20.0 / -                        | $\begin{array}{c} 5.611 \\ 5.429 \end{array}$ | 15.05<br>—                                  |
|                                                                                                              | $4.0 \\ 5.0$  | 86.3303<br>-435.354                          | 52.6427<br>-122.611                                         | NLO<br>NLO                                          | 400/500<br>550/500                          | 7.678<br>6.991<br>7.051                       | 28.57<br>24.38                              |
|                                                                                                              | 10.0<br>20.0  | ) -39.8356<br>) -66.2861                     | $6.36715 \\ -4.03158$                                       | NLO<br>NLO<br>NLO                                   | 550/600<br>400/700<br>550/700               | 7.051<br>7.699<br>7.090                       | $24.72 \\28.77 \\24.94$                     |
| NLO/N <sup>2</sup> LO consistent with operator<br>3nf in N <sup>2</sup> LO<br>binding energies well describe |               | berator<br>well described                    | $N^{2}LO$ $N^{2}LO$ $N^{2}LO$ $N^{2}LO$ $N^{2}LO$ $N^{2}LO$ | 450/500<br>600/500<br>550/600<br>450/700<br>600/700 | $7.717 \\ 7.740 \\ 7.722 \\ 7.726 \\ 7.808$ | $28.04 \\ 28.11 \\ 28.28 \\ 27.65 \\ 28.57$   |                                             |
| models in                                                                                                    |               | include 3nf's                                |                                                             | CD-Bonn<br>AV18<br>Expt.                            |                                             | 7.719<br>7.736<br>7.718                       | 28.28<br>28.36<br>28.30                     |
| April 14, 2010                                                                                               | )             | 0                                            | 0                                                           |                                                     |                                             |                                               | P                                           |

Page 14



## **Numerical approach**



- Most involved calculation: 4-nucleon operator in 4-nucleon system
- Avoid partial wave decomposition (tedious!)
- Need to calculate expectation value

$$\langle \hat{O} \rangle = \sum_{\alpha \alpha'} \int d^3 p_{12} d^3 p_3 d^3 q_4 d^3 p'_{12} d^3 p'_3 d^3 q'_4 \langle \Psi | \vec{p}_{12} \vec{p}_3 \vec{q}_4 \alpha \rangle \langle \dots | \hat{O} | \dots \rangle \langle \vec{p}_{12} \,' \vec{p}_3 \,' \vec{q}_4 \,' \alpha' | \Psi \rangle$$

$$= \sum_{\alpha\alpha'} \int d^3 p_{12} d^3 p_3 d^3 q_4 d^3 p'_{12} d^3 p'_3 d^3 q'_4 w(p_{12}, p_3, q_4; p'_{12}, p'_3, q'_4)$$

$$\frac{\langle \Psi | \vec{p}_{12} \vec{p}_3 \vec{q}_4 \alpha \rangle \langle \dots | \hat{O} | \dots \rangle \langle \vec{p}_{12} ' \vec{p}_3 ' \vec{q}_4 ' \alpha' | \Psi \rangle}{w(p_{12}, p_3, q_4; p_{12}', p_3', q_4')}$$



• <sup>4</sup>He wave function  $\Psi\left(ec{p_{12}}ec{p_{3}}ec{q_{4}},lpha
ight)$ 

• spin-isospin channels  $|\alpha\rangle \equiv |m_1m_2m_3m_4m_1^tm_2^tm_3^tm_4^t\rangle$ 

- 4NF matrix element  $\langle \vec{p}_{12}\vec{p}_{3}\vec{q}_{4}\alpha|\hat{O}|\vec{p}_{12}\,'\vec{p}_{3}\,'\vec{q}_{4}\,'\alpha'\rangle$  generated using *Maple/Mathematica*
- Metropolis walk for evaluation based on weight function

$$w(p_{12}, p_3, q_4; p'_{12}, p'_3, q'_4) \propto$$

## Contributions to $\pi$ -<sup>3</sup>He scattering



"Weinberg-counting" - typical momenta  $\propto m_\pi$ 

#### **1-nucleon contributions**

$$a_{\pi^{-}A} = \left(\frac{1 + m_{\pi}/m_N}{1 + m_{\pi}/Am_N}\right) \left(Aa^{(+)} + 2T_3a^{(-)}\right) \propto \frac{m_{\pi}}{f_{\pi}^2}$$

#### **2-nucleon contributions**



#### **3-nucleon contributions**



#### Does the explicit calculation support this power counting?

## Cutoff dependence for $\pi$ -<sup>3</sup>He





- no unexpected cutoff dependences for LO wave functions
- cutoff dependence seems to be relevant: much larger variation than for deuteron

## **Binding energy dependence**



JÜLICH FORSCHUNGSZENTRUM

binding energy dependence



Estimate cutoff dependence from variation of N<sup>2</sup>LO interactions

## **Results for** $\pi$ -<sup>3</sup>He



- results do not strongly dependent on cutoff when binding energies are OK
- counter term estimate based on naive dimensional analysis larger
- cutoff dependence might result in low estimate since leading few-nucleon contribution is isoscalar

| $\Lambda/	ilde\Lambda$ |           |           |                     |            |           |
|------------------------|-----------|-----------|---------------------|------------|-----------|
| CD Bonn —              | -25.08(6) | -0.329(1) | 2.769(2)  0.890(1)  | -4.020(73) | -0.789(6) |
| AV18 —                 | -24.13(9) | -0.884(1) | 2.286(3)  0.788(1)  | -3.536(36) | -0.728(4) |
| $N^{2}LO = 450/500$    | -25.76(4) | 0.642(1)  | 3.189(2) = 0.987(1) | -3.979(7)  | -0.721(2) |
| $N^{2}LO = 600/500$    | -25.60(5) | -0.021(1) | 3.039(3)  0.779(1)  | -3.826(58) | -0.496(4) |
| $N^{2}LO = 550/600$    | -25.55(2) | 0.233(1)  | 3.104(3)  0.952(1)  | -4.057(75) | -0.708(4) |
| $N^{2}LO = 450/700$    | -25.25(4) | 0.611(1)  | 3.104(1) 1.052(1)   | -4.038(15) | -0.806(1) |
| $N^{2}LO = 600/700$    | -25.51(7) | 0.094(1)  | 3.022(2) - 0.985(1) | -4.056(53) | -0.734(2) |
|                        |           |           |                     |            |           |

$$a_{\pi^{-3}\text{He}}^{(2N+3N)} = ((-25.6 + 4.0 + 0.3) + (-4.0 - 0.7) \pm 7) \cdot 10^{-3} m_{\pi}^{-1} = (-26.0 \pm 7) \cdot 10^{-3} m_{\pi}^{-1}.$$

 $\tilde{a}^{(+)} = (1\pm 1) \times 10^{-3} m_{\pi}^{-1}, \ a^{(-)} = (86.5\pm 1.2) \times 10^{-3} m_{\pi}^{-1}$  (from Hoferichter et al., 2009)

$$a_{\pi^{-3}\text{He}}^{(1N+2N+3N)} = (62 \pm 4 \pm 7) \times 10^{-3} m_{\pi}^{-1} \begin{bmatrix} \text{R. Abela et al.} & 56 \pm 6 \\ \text{G. R. Mason et al.} & 43 \pm 5 \\ \text{I. Schwanner et al.} & 41 \pm 4 \end{bmatrix}$$

## **Contributions to π-<sup>4</sup>He scattering**



#### **1-nucleon contributions**

$$a_{\pi^{-}A} = \left(\frac{1 + m_{\pi}/m_N}{1 + m_{\pi}/Am_N}\right) \left(Aa^{(+)} + 2T_3a^{(-)}\right)$$

#### **2-nucleon contributions**







**3-nucleon contributions** (isovector) **4-nucleon contributions (incomplete)** 



$$\mathcal{O}\left(\left(\frac{m_{\pi}}{\Lambda_{\chi}}\right)^{6}\right)$$

### **Results for** $\pi$ -<sup>4</sup>He





• cutoff dependence in line with naive expectations

(below 5 % of leading 2N contribution)

• 2N contribution only twice as large as for the deuteron

(np and pp/nn pairs enter with opposite sign)

- 4N term finally comparable to counter term contribution (can be neglected)
- few-nucleon contributions larger than naively expected

## Relative scaling of few-nucleon diagrams

• relative suppression of two-nucleon contributions are completely in agreement with expansion parameter  $\frac{m_{\pi}}{\Lambda_{\chi}} \approx \frac{1}{5}$  & naive dimensional analysis

(cutoff dependence, triple scattering)

- few-nucleon contributions are suppressed by much less than expected
- suppression is comparable for 1N:2N:3N:4N

|           | $\Lambda/	ilde\Lambda$ | $a_{\pi^{-3}\text{He}}^{(2N)}/a_{\pi^{-3}\text{He}}^{(1N)}$ | $a_{\pi^{-3}\text{He}}^{(3N)}/a_{\pi^{-3}\text{He}}^{(2N)}$ | $a^{(4N)}/a^{(3N)}$ |
|-----------|------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------|
| AV18      |                        | 0.222                                                       | 0.194                                                       | 0.307               |
| $N^{2}LO$ | 450/500                | 0.212                                                       | 0.222                                                       | 0.297               |
| $N^{2}LO$ | 600/500                | 0.220                                                       | 0.194                                                       | 0.239               |
| $N^{2}LO$ | 550/600                | 0.215                                                       | 0.224                                                       | 0.225               |
| $N^{2}LO$ | 450/700                | 0.207                                                       | 0.236                                                       | 0.245               |
| $N^{2}LO$ | 600/700                | 0.216                                                       | 0.224                                                       | 0.266               |

systematically understandable?

impact for other few-nucleon operators / three-nucleon interactions?

# **Conclusions & Outlook**



- systematic overview of few-nucleon contributions to  $\pi A$  scattering at low energies •  $\pi$ -<sup>2</sup>H
  - no significant cutoff dependence of the most prominent diagrams
  - binding momentum is not driving the power counting (no Q-counting)
  - toy model based on Hulthén wf indicates early breakdown of  $\ensuremath{\mathsf{H}\pi}\xspace$ -EFT
  - enhancement of specific topolgy could be visible in other processes
- π-<sup>3</sup>He
  - complete set of 3-nucleon diagrams
  - leading 3-nucleon diagrams are isovector
  - no significant cutoff dependence
  - prediction of  $\pi$ -<sup>3</sup>He scattering length up to the accuracy possible
- π-<sup>4</sup>He
  - studied the probably most important 4-nucleon contribution
  - accurate results for all relevant few-nucleon contributions
  - isospin violation needs to be take into account
  - check systematics of  $\pi$ -<sup>2</sup>H, probably no further constraints on  $\pi$ -N
- naive counting good for estimate of subleading A-nucleon contributions
- relative suppression of A and A+1-nucleon contributions smaller than expected