1/39

Universal few/many-body physics in mixed dimensions

Yusuke Nishida (MIT)

March 16, 2010 @ INT program

"Simulations and Symmetries: Cold Atoms, QCD, and Few-hadron Systems"

Introduction

Remarkable progress in ultracold atoms are owing to the tunability of various parameters

- Interaction strength by Feshbach resonances
 - Superfluid-Mott insulator transition in Bose gases
 - Collapse & phase separation in Bose-Fermi mixtures
 - BCS-BEC crossover in Fermi gases
 - Efimov effect
- Dimensionality of space by strong optical lattices
 - 3D : BCS-BEC crossover and etc.
 - 2D : Berezinsky–Kosterlitz–Thouless transition
 - 1D : Tomonaga-Luttinger liquids
 - ... and more?

Mixed dimensions

2-species mixture of A atom • & B atom • confine "only" A atoms in lower dimensions (2D or 1D)

Choose laser frequency close to the resonance of A atoms but far from the resonance of B atoms with low intensity

Brane world in cold atoms?

Idea of mixed dimensions often appears in physics ...

graphene in condensed matter

Photons in 3D induce 3D Coulomb int. between electrons confined in 2D

physicsworld.com (2007)

brane world in cosmology

We live in 3D brane but gravitons in extra dimensions

M. Cavaglia, Int. J. Mod. Phys. A (2003)

Mixed D = new type of imbalance

Fermi gas with equal number of \uparrow and \downarrow fermions BCS-BEC crossover (s-wave superfluid for any coupling) But if we introduce an imbalance ($n \uparrow \neq n \downarrow$) ...

5/39

Imbalance leads to new and rich physics

- density imbalance $(n \uparrow \neq n \downarrow)$ mass imbalance $(m_{K} \neq m_{Li})$
- dimensionality of space (d_K≠d_{Li})

Rich physics in mixed dimensions

Rich few-body & many-body physics can be realized in mixed dimensions

2D-3D mixture

1D-3D mixture

6/39

 Modification of scattering properties

 confinement-induced 2-body & 3-body resonances
 Interesting and rich many-body phase diagram
 induced s-wave & p-wave superfluidity, dimer BEC, (stable) trimer Fermi gas, ...

Table of contents

1. Introduction

2. Few-body physics in mixed D

- 2-body scattering confinement-induced 2-body resonances
- 3-body scattering

3-body (Efimov) resonances for bosons & fermions critical mass ratios, scaling dimensions, ...

- 3. Many-body physics in 2D-3D mixture
 - single-layer Fermi gas intralayer p-wave superfluidity, dimer BEC, ...
 - double-layer Fermi gas

interlayer s-wave superfluidity, (stable) trimer Fermi gas, ...

4. Summary

8/39

Few-body physics in mixed D 2-body scattering

Effective scattering length

2-body scattering in 3D

$$H_{3\mathrm{D}} = -\frac{\boldsymbol{\nabla}_{\boldsymbol{x}_{A}}^{2}}{2m_{A}} - \frac{\boldsymbol{\nabla}_{\boldsymbol{x}_{B}}^{2}}{2m_{B}} + V_{a}(\boldsymbol{x}_{A}, \boldsymbol{x}_{B})$$
$$\Psi(\boldsymbol{x}_{A}, \boldsymbol{x}_{B}) \rightarrow \frac{1}{|\boldsymbol{x}_{A} - \boldsymbol{x}_{B}|} \left(-\frac{1}{a}\right)$$

3D scattering length "a" tunable by Feshbach resonance

$$\mathcal{A}_{3\mathrm{D}}(k) \propto \frac{1}{ik - \frac{1}{a} + \cdots}$$

2-body scattering in mixed D

$$H_{\text{mixed D}} = H_{3\text{D}} + \frac{1}{2}m_A\omega^2 z_A^2$$

$$\Psi(\boldsymbol{x}_A, \boldsymbol{x}_B) \rightarrow \left[\frac{1}{||\boldsymbol{x}_A - \boldsymbol{x}_B||} + \frac{1}{a_{\text{eff}}} \right] e^{-z_A^2/2l^2}$$

Effective scattering length " a_{eff} " depending on "a" and " $l = (m_A \omega)^{-1/2}$ "

$$\mathcal{A}_{ ext{mixed D}}(k) \propto rac{1}{ik - rac{1}{a_{ ext{eff}}} + \cdots}$$

First experiment @ Florence

Scattering in mixed dimensions with ultracold gases

2/39

 G. Lamporesi¹, J. Catani^{1,2}, G. Barontini¹, Y. Nishida³, M. Inguscio^{1,2}, and F. Minardi^{1,2}
 ¹LENS - European Laboratory for Non-Linear Spectroscopy and Dipartimento di Fisica, Università di Firenze, via N. Carrara 1, I-50019 Sesto Fiorentino, Italy
 ²INO-CNR, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
 ³ Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Dated: January 31, 2010)

First experiment @ Florence

13/39

Universality

When " $a_{eff} \gg l$ ", the confinement length "l" can be neglected

Then the system is universal, being characterized only by "aeff"

E.g., binding energy of AB dimer

$$E_{\rm dimer} = -\frac{1}{2m_{AB}a_{\rm eff}^2} \quad \text{for} \quad a_{\rm eff} > 0$$

(Cf. universality in 3D required "a » ro")

• $a_{eff}>0$: strong attraction ("BEC") side with AB bound state $E_{dimer} = -\frac{1}{2m_{AB}a_{eff}^2}$

Universal limit

At finite density & temperature, the universality requires

a_{eff} & any other scales » *l*

15/39

We will work in the "universal limit" $l \rightarrow 0$

$$H_{\text{mixed D}} \Rightarrow -\sum_{i=1}^{N_A} \frac{\boldsymbol{\nabla}_{\tilde{\boldsymbol{x}}_{A_i}}^2}{2m_A} - \sum_{j=1}^{N_B} \frac{\boldsymbol{\nabla}_{\boldsymbol{x}_{B_j}}^2}{2m_B} + V_{a_{\text{eff}}} \qquad \tilde{\boldsymbol{x}}_A = \begin{cases} (x,y) & \text{for } 2D\\ (z) & \text{for } 1D \end{cases}$$
$$\boldsymbol{x}_B = (x,y,z)$$

($ilde{x}_A$ is 2D or 1D coordinate while x_B is 3D coordinate)

Field theoretical description

$$H = \int d\mathbf{x} \,\psi_A^{\dagger}(\mathbf{x}) \left(-\frac{\nabla^2}{2m_A} - \mu_A \right) \psi_A(\mathbf{x}) \quad \longleftarrow \quad \text{A atoms } \bullet \text{ in 2D}$$
$$+ \int d\mathbf{x} dz \,\psi_B^{\dagger}(\mathbf{x}, z) \left(-\frac{\nabla^2 + \nabla_z^2}{2m_B} - \mu_B \right) \psi_B(\mathbf{x}, z) \quad \longleftarrow \quad \text{B atoms } \bullet \text{ in 3D}$$
$$+ g_0(a_{\text{eff}}) \int d\mathbf{x} \,\psi_A^{\dagger}(\mathbf{x}) \psi_B^{\dagger}(\mathbf{x}, 0) \psi_B(\mathbf{x}, 0) \psi_A(\mathbf{x})$$

6/39

scattering of A and B atoms occurring in 2D plane (z=0)

• μ_A and μ_B control the densities of A and B atoms

17/39

Few-body physics in mixed D 3-body scattering

Efimov effect in 3D

3 bosons

When 2 atoms resonantly interact, 3 atoms form Efimov trimers with a geometric spectrum $E_n/E_{n+1}|_{a\to\infty} = \lambda^2$

E \xrightarrow{B} 1/a < 01/a > 00 1/a * 1/aA+A+A $a^{(0)}$ $a^{(1)} a^{(2)}$ A+A+A 1/a a.(2) T⁽²⁾ *a*⁽¹⁾ **T**(1) A+D Energy $\times 22.7^{2}$ **T**(0) a.(0) $a^{(n+1)}/a^{(n)} = a^{(n+1)}_*/a^{(n)}_* = 22.7$ $a_{\star}^{(n+1)}/a_{-}^{(n)} \approx 1.06$ λ RbRbK = 131 λ KKRb = 3.48 × 10⁵ Inverse scattering length 1/a

Innsbruck group, Nature (2006)

Florence group, PRL (2009)

heteronuclear system

18/39

Efimov effect exists only in 3D (2.3<d<3.8) but not in 2D or 1D ... How about mixed dimensions ?

3-body problems in mixed D

$$\left[-\sum_{i=1}^{N_A} \frac{\nabla_{\tilde{x}_{A_i}}^2}{2m_A} - \sum_{j=1}^{N_B} \frac{\nabla_{x_{B_j}}^2}{2m_B} + V_{a_{\text{eff}}}\right] \Psi = E\Psi \quad \text{with} \quad N_A + N_B = 3$$

2D-3D mixture

1D-3D mixture

4 types of 3-body problems...

 $N_{A}=2$ in 2D/1D & $N_{B}=1$ in 3D

N_A=1 in 2D/1D & N_B=2 in 3D

19/39

Efimov effect in mixed D

- · If majority atoms are bosons, Efimov effect occurs for any m_A/m_B
- If majority atoms are fermions, Efimov effect occurs for ...

 $m_A/m_B > 2.06$

 $m_A/m_B < 0.00646$

Compare those critical mass ratios with 3D values: m_A/m_B > 13.6 m_A/m_B < 0.0735

Implication for ⁴⁰K-⁶Li mixture

Interesting possibility in Fermi-Fermi mixture of $A=^{40}K$ and $B=^{6}Li$ when ^{40}K is confined in lower dimensions ...

21/39

Confinement induces the Efimov effect III Such trimers are long lived : $\tau^{-1} \sim \frac{1}{mr_0^2} \left(\frac{r_0}{l}\right)^{4.39} \ll \varepsilon_{\text{trimer}} \sim \frac{1}{ml^2}$

3-body recombination rate

3-body recombination (A+A+B->A+AB) results in atom losses $\dot{n}_A \approx -2\,\alpha\,n_A^2 n_B$

22/39

Its rate constant α has the characteristic log-periodic behaviors with the scaling factor $\lambda = 22.0$ for $A = {}^{40}K$ in 1D & $B = {}^{6}Li$ in 3D

Scaling factor for fermions

Scaling factor is expressed by $\lambda = e^{\pi/s_0}$ with $E_n/E_{n+1} = \lambda^2$

Confinement induces the Efimov effect !

23/39

Scaling factor for bosons

Confinement greatly reduces the scaling factor !

Table of contents

1. Introduction

2. Few-body physics in mixed D

2-body scattering

confinement-induced 2-body resonances

3-body scattering

3-body (Efimov) resonances for bosons & fermions critical mass ratios, scaling dimensions, ...

- 3. Many-body physics in 2D-3D mixture
 - single-layer Fermi gas intralayer p-wave superfluidity, dimer BEC, ...
 - double-layer Fermi gas

interlayer s-wave superfluidity, (stable) trimer Fermi gas, ...

4. Summary

26/39

Many-body physics in mixed D single-layer Fermi gas

Fermi gas in 2D-3D mixture

Fermi-Fermi mixture (e.g. ⁴⁰K and ⁶Li) in 2D-3D mixed dimensions

27/39

Investigate the phase diagram in terms of (aeffkF)⁻¹ [kF~kFA~kFB]

- $a_{eff}k_F \rightarrow -0$: weak attraction ("BCS") limit
- $|a_{eff}k_F| \rightarrow \infty$: resonant (unitarity) limit with scale inv.
- $a_{eff}k_{F} \rightarrow +0$: strong attraction ("BEC") limit with AB dimer $E_{dimer} = -\frac{1}{2m_{AB}a_{eff}^{2}}$

Weak attraction (BCS) limit

28/39

Strong attraction (BEC) limit

Possible phase diagram

If p_x + ip_y pairing extends to the unitarity limit : $a_{\text{eff}}k_{\text{F}} \rightarrow \infty$ $\frac{\Delta(p)}{\varepsilon_{\text{F}A}} \propto (\hat{p}_x + i\hat{p}_y) e^{-\#/(a_{\text{eff}}k_{\text{F}B})^2} \rightarrow (\hat{p}_x + i\hat{p}_y) \times O(1)$

- Majorana fermions @ vortices
- Non-Abelian statistics
- Topological quantum computation ...

N.Read & D.Green, PRB (2000) A.Y.Kitaev, AnnPhys (2003)

30/39

31/39

Many-body physics in mixed D double-layer Fermi gas

Bilayer Fermi gas

Optical lattice creates many layers ... parameters of the system $\cdot a_{eff}$ $\cdot m_A/m_B < 6.35$ $\cdot k_{FA} \equiv (4 \pi n_A)^{1/2}$ $\cdot T=0$

 $\cdot \mathbf{k}_{\text{FB}} \equiv (6\pi^2 n_{\text{B}})^{1/3} \cdot \mathbf{d}$

 $\left(\right)$

 $-\infty$

32/39

Interlayer correlation induced by B atoms would lead to rich physics (even without tunneling)

 $+\infty a_{\rm eff}k_{\rm F}$

Bilayer Fermi gas

Optical lattice creates many layers ... parameters of the system

• aeff

- m_A/m_B < 6.35
- $k_{FA} \equiv (4 \pi n_A)^{1/2}$ T=0
- $\cdot \mathbf{k}_{\text{FB}} \equiv (6 \pi^2 n_{\text{B}})^{1/3} \cdot \mathbf{d}$

33/39

Interlayer correlation induced by B atoms would lead to rich physics (even without tunneling)

Weak attraction (BCS) limit

Strong attraction (BEC) limit

35/39

Interlayer trimer formation

Phases of bilayer Fermi gas

Very rich but "minimal" phase diagram!!!

37/39

Possible many-body approaches

38/39

- mean-field approximation
- ε expansion & large-N expansion
- Monte-Carlo simulation
- experiment using ⁴⁰K-⁶Li mixture

Summary

Mixed dimensions = New arena of universal physics!

- confinement-induced 2-body resonances (observed)
- 3-body (Efimov) resonances, critical mass ratio for fermions
- rich phase diagram including dimer BEC, trimer Fermi gas, intralayer p-wave & interlayer s-wave superfluidity, ...

Idea of mixed dimensions can be extended to Bose-Fermi mixtures, Bose-Bose mixtures, multilayer geometry, multiwire geometry

New interesting research direction !

References

Mixed dimensions : Y.N. & S.Tan, PRL 101, 170401 (2008) Efimov effect : Y.N. & S.Tan, PRA 79, 060701(R) (2009) P-wave superfluidity : Y.N., Ann. Phys. 324, 897 (2009) Bilayer Fermi gas : Y.N., arXiv:0906.4584

40/39

Backup slides

41/39 Resonances in mixed D ($m_A/m_B=6.67$) 2D-3D mixture 1D-3D mixture A=40K in 2D & B=6Li in 3D $A = {}^{40}K$ in 1D & $B = {}^{6}Li$ in 3D 10 10 $a_{\rm eff}/l$ $a_{\rm eff}/l$ 5 \overline{a} 2 a -10

Infinite series of confinement-induced resonances Resonance is shifted to "a<0" side

Weak attraction (BCS) limit

42/39

• B atoms in 3D induce V_{ind}(r) between A atoms in 2D

or

P-wave pairing of A atoms in the same layer for large d

S-wave pairing of A atoms in different layers for small d

Other bilayer systems

bilayers in condensed matter

- bilayer semiconductors
- bilayer quantum hall systems
- bilayer graphenes ...

interplay between intralayer & interlayer correlation interlayer exciton condensation

bilayer of the universe?

J. Gauntlett, Nature 404, 28 (2000)