Second Application: Trapped Unitary Fermions Second Application: Trapped Unitary Fermions

- Relevant for trapped cold atom systems
- Results from other theory calculations available

Benefits of the SHO

- Choice of source/sink less crucial
- Tunable scales to explore finite volume, finite lattice spacing effects
 - $\omega b_t \rightarrow$ temporal discretization errors
 - b_s/L_0 \rightarrow spatial discretization errors
 - L_0/L -- finite volume errors

$$L_0 = (mk)^{-1/4}$$
 $\omega = \sqrt{k/m}$

Temporal Errors

Discretization errors set by choice of transfer matrix

Simplest choice to implement:

 $1 - Vb_t \rightarrow 1 - V_{int}b_t - V_{SHO}$

So far, smallest errors seen with

$$V_{SHO} = 1 - e^{-\frac{b_t}{2}m\omega^2 \sum_{i=1}^3 (L_i/2 - x_i)^2}$$

Ensure small b_t errors by choosing small ω

(ω fixed)

Reduce L, keep L_0 fixed $\sim e^{-(L/2)^2/(2L_0^2)}$ L_0 \mathcal{X} L

(ω fixed)

Interactions with image charges lower energy

(ω fixed)

Spatial Errors

- Both finite volume and spatial discretization errors affected by changing L_0
 - Finite volume errors push energy down for large L_0
 - Discretization errors push energy up for small L_0
- Performed tests at various values of L_0 to choose ideal value

L = 32 $\omega = 0.013$

L = 32 $\omega = 0.013$

L = 32 $\omega = 0.013$

Calculation Details

- Parameters:
 - $-\omega = 0.013$
 - $-L_0 = 4.0$
 - -L = 24, 32, 48
- Coefficients tuned using Luscher method
- Wavefunctions chosen to be paired SHO states

$$\psi_{PAIR} = \frac{D(p/2b)}{p/2b}$$
 $b = 1/(2L_0^2)$

Comparison

N

Bertsch Parameter

H. Greene, arXiv:0708.2734

SHO Conclusions

- Tunable scales can be used to control finite volume and discretization errors
- Clean signal allows for high-precision results
- Unitary fermion results consistent for small N, lower values for large N
- Trap confinement may be useful for studying bound states

Future Directions: Steps Toward Nuclei

Steps Toward Nuclei

- Tuning method in principle allows for any $p \cot \delta$ desired
- Adding a second auxiliary field allows you to tune both $^1S_0\,$ and $^3S_1\,$ channels
- Choose physical a, r_0 for each channel

Deuteron

Problems with Tuning

- Tuning for physical channels gives complex couplings
- Only resolved for small mass (large temporal lattice spacing)
- Tuning no longer improved with higher dimension operators

Problems with Tuning

- Tuning for physical channels gives complex couplings
- Only resolved for small mass (large temporal lattice spacing)
- Tuning no longer improved with higher dimension operators
- Wigner bound?

Possible Solutions

- Take $b_s > r_0$
- Use cutoff in momentum space as physical scale
- Use KSW expansion
 - LO: tune $p \cot \delta$ to give physical scattering length, add 3-body interaction non-perturbatively
 - NLO: add r_0 perturbatively

Three Body Interactions

 $y\varphi_{3}\psi_{t}^{*}\psi_{t+1}$ $\varphi_{3}\in Z_{3}$

Three Body Interactions

$$y\varphi_{3}\psi_{t}^{*}\psi_{t+1}$$

$$\varphi_3 \in Z_3$$

- Complex field Noise!
- How bad is it?
 - Performed checks at various values of y
 - Ok for y $\lesssim 1$

Tuning – Solve Integral Equation

Conclusions

- Lattice method provides computationally efficient calculations of large systems of interacting fermions
- Promising results for fermions in a box and in a harmonic potential show method can give high precision results
- First steps toward calculations of properties of nuclei underway

Conclusions

- Lattice method provides computationally efficient calculations of large systems of interacting fermions
- Promising results for fermions in a box and in a harmonic potential show method can give high precision results
- First steps toward calculations of properties of nuclei underway
- Much of this work performed on New York Blue/L

$$f_p = \kappa^2 \left(\frac{e^{-iE_D} e^{\frac{3p^2}{4M}}}{1 - e^{iE_D} e^{\frac{p^2}{4M}}} + \frac{y^3}{\kappa^2} g(p, 0) \right)$$

$$G_{pq} = \kappa^2 \frac{e^{iE_D} e^{-\frac{3p^2}{4M}} e^{-\frac{q^2}{2M}}}{1 + \kappa^2 g(p,q)} \left(\frac{e^{-iE_D} e^{\frac{3p^2}{4M}}}{1 - e^{\frac{q^2}{M}} e^{iE_D} e^{\frac{pq}{M}}} + \frac{y^3}{\kappa^2} g(p,q) \right)$$

$$g(p,q) \equiv \frac{1}{V} \sum_{\{|q'|\}} \frac{\mathcal{R}(|q'|)}{1 - e^{iE_D} e^{-\frac{3p^2}{4M}} e^{\frac{3q^2}{4M}} e^{\frac{q'^2}{M}}},$$

Alpha

Temporal Errors

Some improvement found for

$$V_{SHO}b_t \to 1 - e^{V_{SHO}b_t}$$

Can also tune "bare" ω to eliminate b_t errors to all orders for non-interacting fermions

$$(\omega')^2 = \frac{\cosh^{-1}[1 + \omega^2 b_t^2/2])^2}{b_t^2}$$

Ensure small b_t errors by choosing small ω

Bertsch Parameter

Other Methods

