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Second Application:
Trapped Unitary Fermions

● Relevant for trapped cold atom 
systems

● Results from other theory calculations 
available



  

Benefts of the SHO

● Choice of source/sink less crucial
● Tunable scales to explore finite volume, finite 

lattice spacing effects
–             temporal discretization errors

–               spatial discretization errors

–               finite volume errors



  

Temporal Errors

Ensure small     errors by choosing small

Discretization errors set by choice of transfer matrix

Simplest choice to implement:

So far, smallest errors seen with



  

Position space potential: PeriodicBC
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Interactions with image charges lower energy
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Momentum Space: Hard Cutoff
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Reduce       - more sensitivity to infinite potential walls 
increases energy
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Spatial Errors

● Both finite volume and spatial discretization 
errors affected by changing

– Finite volume errors push energy down for large 
 

– Discretization errors push energy up for small     

● Performed tests at various values of       to 
choose ideal value



  

N=3

 D. Blume, J. von Stecher, Chris 
H. Greene, arXiv:0708.2734
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N=5

L = 32
 = 0.013

 D. Blume, J. von Stecher, Chris 
H. Greene, arXiv:0708.2734



  

N=6

L = 32
 = 0.013

 D. Blume, J. von Stecher, Chris 
H. Greene, arXiv:0708.2734



  

Calculation Details

● Parameters:
–     = 0.013

–     = 4.0

–    = 24, 32, 48

● Coefficients tuned using Luscher method
● Wavefunctions chosen to be paired SHO states

L



  

L = 32

N = 19

N = 3 N = 7

N = 20



  

(preliminary)

N = 19

E/    = 4.270(2)(4)

N = 20

N = 3 N = 7

E/    = 10.781(4)(5)

E/    = 39.84(3)(1)E/    = 38.447(30)(8)



  

L = 24



  

L = 32



  

L = 48



  

Comparison

FN-DMC: D. Blume, J. von Stecher, Chris H. Greene, arXiv:0708.2734

GFMC: S. Y. Chang and G. F. Bertsch, arXiv:physics/0703190



  

Bertsch Parameter



  

Fit Result: 0.438    0.01  (preliminary)
FN-DMC ~ 0.465
GFMC ~ 0.500

Bertsch Parameter



  

Gap



  

Gap

FN-DMC: D. Blume, J. von Stecher, Chris 
H. Greene, arXiv:0708.2734



  

SHO Conclusions

● Tunable scales can be used to control finite 
volume and discretization errors

● Clean signal allows for high-precision results
● Unitary fermion results consistent for small N, 

lower values for large N
● Trap confinement may be useful for studying 

bound states



  

Future Directions:
Steps Toward Nuclei



  

Steps Toward Nuclei

r0

● Tuning method – in principle allows 
for any              desired

● Adding a second auxiliary field allows 
you to tune both        and         
channels

● Choose physical a,     for each 
channel 



  

Deuteron

Single particle
Paired



  

Problems with Tuning

● Tuning for physical channels gives 
complex couplings

● Only resolved for small mass (large 
temporal lattice spacing)

● Tuning no longer improved with higher 
dimension operators



  

Problems with Tuning

● Tuning for physical channels gives 
complex couplings

● Only resolved for small mass (large 
temporal lattice spacing)

● Tuning no longer improved with higher 
dimension operators

● Wigner bound?



  

Possible Solutions

● Take      >    
● Use cutoff in momentum space as physical 

scale
● Use KSW expansion

– LO: tune               to give physical scattering 
length, add 3-body interaction  non-
perturbatively

– NLO: add       perturbatively



  

Three Body Interactions



  

● Complex field                       Noise!

● How bad is it?

– Performed checks at various values of y

– Ok for y    1 

Three Body Interactions



  

Tuning – Solve Integral Equation



  

Conclusions

● Lattice method provides computationally 
efficient calculations of large systems of 
interacting fermions

● Promising results for fermions in a box and in a 
harmonic potential show method can give high 
precision results

● First steps toward calculations of properties of 
nuclei underway



  

Conclusions

● Lattice method provides computationally 
efficient calculations of large systems of 
interacting fermions

● Promising results for fermions in a box and in a 
harmonic potential show method can give high 
precision results

● First steps toward calculations of properties of 
nuclei underway

● Much of this work performed on New York 
Blue/L



  

A=f+G A



  

Alpha

y = 0.0



  

Phase

y = 0.1

Triton
Alpha



  

Phase

y = 0.5

Triton
Alpha



  

Phase

y = 1.0

Triton
Alpha



  



  

Temporal ErrorsTemporal Errors

Some improvement found for

Ensure small      errors by choosing small

Can also tune “bare”        to eliminate      errors to all orders for 
non-interacting fermions 



  

This Work ~ 0.432
FN-DMC ~ 0.465
GFMC ~ 0.508

Bertsch Parameter



  

Other Methods

FN-DMC: D. Blume, J. von Stecher, Chris H. Greene, arXiv:0708.2734

DFT: A. Bulgac, arxiv:cond-mat/0703526
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