

Laser Trapping and Probing of Exotic Helium Isotopes

Peter Müller

Outline

- Nuclear Charge Radii of ⁶He and ⁸He
 - Neutron Halo Isotopes ^{6,8}He
 - Charge Radii and Isotope Shift
 - Atom Trapping of Helium
 - -⁸He Experiment at GANIL
- Laser Spectroscopy of Light Isotopes (@ Mainz University)
 - ¹¹Li with Two-photon Spectroscopy (+ TRIUMF)
 - ¹¹Be with Collinear Spectroscopy (+ ISOLDE/CERN)
- Beyond Halo Isotopes
 - Neutron Rich Isotopes at CARIBU/FRIB
 - ⁶He beta-neutrino correlation

Laser Spectroscopy of Radioactive Isotopes

Light Nuclei & Neutron Halos

GFMC - Neutron and Proton Densities in ^{4,6,8}He

Neutron Halo Nuclei ⁶He and ⁸He

Isotope	Half-life	Spin	Isospin	Core + Valence
He-6	807 ms	0 ⁺	1	$\alpha + 2n$
He-8	119 ms	0 ⁺	2	α + 4n

Core-Halo Structure $\sigma_{I} (6He) - \sigma_{I} (4He) = \sigma_{-2n} (6He)$

Gordon Drake, Phys. Scripta (1999)

Atomic Energy Levels of Helium

He discharge

He energy level diagram

Field (Volume) Shift

Atomic Isotope Shift

For $2^{3}S_{1} - 3^{3}P_{2}$ transition @ 389 nm: $\delta v = \delta v_{MS} + C_{FS} \delta < r^{2} >$ ⁶He - ⁴He : $\delta v_{6,4} = 43196.202(16)$ MHz + 1.008 ($< r^{2} >_{He4} - < r^{2} >_{He6}$) MHz/fm² ⁸He - ⁴He : $\delta v_{8,4} = 64702.519(1)$ MHz + 1.008 ($< r^{2} >_{He4} - < r^{2} >_{He8}$) MHz/fm² G.W.F. Drake, Univ. of Windsor, *Nucl. Phys. A737c, 25 (2004)*

100 kHz error in IS $\leftarrow \rightarrow \sim 1\%$ error in radius

Laser Cooling and Trapping

Technical challenges:

- Short lifetime, small samples (<10⁶ atoms/s available)
- Low metastable population efficiency (~ one in 100.000)
- Precision requirement (100 kHz = Doppler shift @ 4 cm/s)

Magneto-Optical Trap (MOT)

- Cooling: Temperature ~ 1 mK,
 - \rightarrow avoid Doppler shift / width
- Long observation time: 100 ms
- Spatial confinement: trap size < 1 mm
 - \rightarrow single atom sensitivity
- Selectivity: → no isotopic / isobaric interference

Where to find ⁸He?

GANIL Caen, France

June 14th Trip to Brittany

20

June 15th.... ⁶He + ⁸He Sample Spectra

21

Experimental Uncertainties and Corrections

		⁶ He	⁸ He
_	Photon Counting	8 kHz	32 kHz
Statistical {	Laser Alignment	2 kHz	12 kHz
	Reference Laser	2 kHz	24 kHz
C	Probing Power Shift	0 kHz	15 kHz
Systematic	Zeeman Shift	30 kHz	45 kHz
	Nuclear Mass	15 kHz	1 kHz
	TOTAL	35 kHz	63 kHz
	Recoil Effect	+110(0) kHz	+165(0) kHz

Corrections

Recoil Effect	+110(0) kHz	+165(0) kHz
Nuclear Polarization	-14(3) kHz	-2(1) kHz

TITAN Penning Trap @ TRIUMF, V. L. Ryjkov et al., PRL 101, 012501 (2008)

⁶He & ⁸He RMS Charge Radii

	⁶ He	⁸ He
Field Shift, MHz	-1.464(34)	-1.026(63)
RMS R _{CH} , fm	2.072(9)	1.961(16)
Total Uncertainty	0.4 %	0.9 %
- Statistical	0.1 %	0.6 %
- Trap Systematics	0.3 %	0.6 %
- Mass Systematics	0.1 %	0.0 %
- He-4: 1.681(4) fm	0.1 %	0.1 %

$$\langle r^2 \rangle_{\rm pp} = \langle r^2 \rangle_{\rm ch} - \langle R_{\rm p}^2 \rangle - \frac{3}{4M_{\rm p}^2} - \frac{N}{Z} \langle R_{\rm n}^2 \rangle$$

- $\delta_{\rm so} - MEC$

P. Mueller *et al.*, PRL **99**, 252501 (2007)

- + V. L. Ryjkov et al., PRL 101, 012501 (2008): He-8 mass
- + I. Sick PRC 77, 041302(R) (2008): He-4 Charge Radius
- $\langle R_P^2 \rangle = 0.766(12) \text{ fm}^2$ $\langle R_N^2 \rangle = -0.120(5) \text{ fm}^2$

⁶He & ⁸He RMS Point Proton and Matter Radii

⁴u~

	⁶ He	⁸ He	⁶ He
Field Shift, MHz	-1.464(34)	-1.026(63)	
RMS R _{pp} , fm	1.930(9)	1.843(16)	ю
Total Uncertainty	0.4 %	0.9 %	ю
- Statistical	0.1 %	0.6 %	
- Trap Systematics	0.3 %	0.6 %	
- Mass Systematics	0.2 %	0.0 %	
- He-4: 1.465(4) fm	0.1 %	0.1 %	
	-		

matter

Experiment

rms point-proton

RMS Charge Radii : ⁴He - ⁶He - ⁸He

1.681(4) fm 2.072(9) fm 1.961(16) fm

Resonance Ionization of Lithium

Nuclear Charge Radii - Comparison with Theory

Limitations for Light Elements

The Solution

Experimental Setup

Anticollinear

Beryllium: Nuclear Charge Radii

Electron Scattering: $r_c({}^{9}Be) = 2.519(12) \text{ fm}$, J.A. Jansen et al., Nucl.Phys.A **188**, 337 (1972). Muonic Atoms: $r_c({}^{9}Be) = 2.39(17) \text{ fm}$, L.A. Schaller, Nucl.Phys.A **343**, 333 (1980).

Berylium Charge Radii in FMD Calculations

Laser Spectroscopy @ CARIBU

To ATLAS

Laser Spectroscopy @ CARIBU

- concentrate on developing new techniques
- extend isotopic chains to more neutron rich isotopes
- access to refractory elements
- -> techniques applicable to FRIB setup

Laser Spectroscopy of Radioactive Isotopes

Stopped Beams Area at FRIB

- ~2m x 2m floor space for traps or cryostat
- use mass separated beams after RF cooler/buncher
- charge-exchange cell
- Ti:Sa laser system w/ frequency doubler
- 4' x 8' laser table
- fiber coupling ok

Beta-Neutrino Correlation in the Decay of ⁶He

$$N(E_{\beta}, \theta_{\beta\nu}) \propto 1 + \frac{a}{E_{\beta}} \cos \theta_{\beta\nu}$$

Best experimental limit:

 $a = -0.3343 \pm 0.0030$ $\frac{|C_T|^2 + |C_T'|^2}{|C_A|^2 + |C_A'|^2} \le 0.4\%$

Johnson et al., Phys. Rev. (1963)

Beta-Decay Study with Laser Trapped ⁶He

- Simple ... atom, nucleus, decay mode
- Sensitive to tensor couplings

⁶He yields:

- ATLAS: 1×10⁶ s⁻¹ with ¹²C(⁷Li,⁶He)¹³N @ 50 pnA
- CENPA: ~1×10⁹ s⁻¹ with ⁷Li(d, ³He)⁶He @ 1 pµA

Assume ⁶He trapping rate of 1×10^4 s⁻¹, with 1×10^{-6} trapping efficiency 15 minutes, 2×10^5 coincidence events, $\delta a = \pm 0.008$. ($\delta a/a = 0.1\%$ in ~1 week)

Thank You!

⁸He Collaboration

 K. Bailey, R. J. Holt, R. V. F. Janssens, Z.-T. Lu, P.M., T. P. O'Connor, I. Sulai Physics Division, Argonne National Laboratory, USA

 M.-G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari, J.A. Alcantara-Nunez, R. Alvez-Conde, M. Dubois, C. Eleon, G. Gaubert, N. Lecesne GANIL, Caen, France

 G. W. F. Drake - University of Windsor, Windsor, Canada L.-B. Wang – Los Alamos National Laboratory, USA

www.phy.anl.gov/mep/atta/

GFMC - What happens to the α -core?

AV18 + IL2 GFMC proton-proton distributions

GFMC - Binding Energy vs. Charge Radius

