Applications of AdS/CFT correspondenceto cold atom physics

Sergej Moroz

in collaboration with Carlos Fuertes

ITP, Heidelberg

Outline

- Basics of AdS/CFT correspondence
- Schrödinger group and correlation functions
- Nonrelativistic AdS/CFT and cold atoms
- Holographic Efimov effect

Holographic principle

• We have some evidence that

Quantum field theory in d spacetime dimensions

Quantum gravity in
higher dimensions higher dimensions

 $\leftrightarrow\leftrightarrow$

• Holographic radial direction – RG scale

't Hooft 93, Susskind ⁹⁵

AdS spacetime and its relation to CFT

• Einstein-Hilbert gravity action

$$
S = \frac{1}{2\kappa} \int dz d^d x \sqrt{-g} \left(R + \frac{d(d-1)}{L^2} \right)
$$

• Most symmetric solution is Anti-de Sitterspacetime

$$
ds^2 = L^2 \frac{dz^2 + \eta_{\mu\nu} x^\mu x^\nu}{z^2}
$$

- Isometry group of AdS_{d+1} is $SO(d,2)$
- Conformal group in $Mink$ $\,d$ $_{d}$ is also $SO(d,2)$!

AdS/CFT correspondence

Maldacena ⁹⁷

 $\mathcal{N}=4, \; SU(N_c)$ in $d = 4$ Minkowski IIB string theory in AdS $_5\times S_5$

- Parameters on gauge side: g_{YM} and N_c
Parameters on gravity side: $I J$ and κ Parameters on gravity side: L, l_{st} and κ
- Mapping

$$
\frac{L}{l_{st}} \sim g_{YM}^2 N_c \qquad \frac{L^8}{\kappa} \sim N_c^2
$$

 $\leftrightarrow\rightarrow$

- It is a weak/strong duality
- Classical supergravity is valid if N_c^2 $\mathcal C$ $\frac{2}{c}$, $g_{\bar{Y}}$ $\, 2$ YM $N_c\gg1$

Holographic dictionary

Boundary QFT Bulk gravity operator $\mathscr O$ $\mathscr O$ dynamical field ϕ scaling dimension $\Delta_\mathscr{O}$ global symmetry σ mass m_{ϕ} y gauge symmetry finite T $T = |$ Hawking T of a black hole entropy Hawking entropy chemical potentialU(1) gauge field

• Correlation functions can be calculated from

 $\langle e^\int \phi$ 0 $\mathscr{O}% _{M_{1},M_{2}}^{\alpha,\beta}(\varepsilon)$ $\langle CFT\rangle$ = $Z_{gravity}[\phi$ $\rightarrow \phi_0]$

Schrödinger group

- Spacetime symmetries of free Schrödinger/diffusionequation form Schrödinger group $Sch(D)$ Niederer 72, Hagen 72
- Schrödinger group comprises
	- translations P_i and H
	- spatial rotations M_{ij}
	- Galilean boosts K_i
	- number operator N
	- scale transformation $D \Rightarrow$ dynamical exponent $z = 2$
	- special conformal transformation C
- •• Theory symmetric under $Sch(D)$ is called NRCFT
- \bullet • Example: two particles with conformal $1/r^2$ potential

Schrödinger group

• Nonrelativistic primary operators $\mathscr O$ have well-defined scaling dimension $\Delta_\mathscr{O}$ $\mathscr O$ and particle number $N_{\mathscr O}$ Nishida& Son 08

$$
[D,\mathscr{O}] = i\Delta_{\mathscr{O}} \qquad [N,\mathscr{O}] = N_{\mathscr{O}}
$$

and commute with Galilean boosts K_i and special conformal transformation C

$$
[K_i, \mathscr{O}] = 0 \qquad [C, \mathscr{O}] = 0
$$

Descendants are formed by commutators with P_i and H

• Kinematic invariants of $Sch(D)$ group

Volovich&Wen ⁰⁹

- mixed invariants $v_{ijn} = \frac{(\vec{x}_{in})}{\sqrt{2}}$ t_{jn} $-\vec{x}_{jn}$ $t_{in})$ 2 $\frac{v_{jn} - v_{jn}v_{in}}{2t_{ij}t_{in}t_{jn}}$ $i < j < n$
- time cross-ratios $\frac{t_{ij}t_{kl}}{t_{ik}t_{jl}}$

Correlators in Euclidean NRCFT

- Schrödinger symmetry and causality impose constraints on the•correlators of the primary fieldsHenkel ⁹⁴
- •• 2-point function is fixed up to a constant $(\bar{x} = (\vec{x}, t))$

$$
G_2(\bar{x}_1, \bar{x}_2) = C\delta_{\Delta_1, \Delta_2}\delta_{M_1, M_2}\theta(t_{12})t_{12}^{-\Delta_1} \exp\left[-\frac{M_1}{2}\frac{\vec{x}_{12}^2}{t_{12}}\right]
$$

•• 3-point function is determined up to a function $\Psi(v_{123})$

$$
G_3(\bar{x}_1, \bar{x}_2, \bar{x}_3) = \delta_{M_1 + M_2, M_3} \theta(t_{13}) \theta(t_{23}) \prod_{i < j} t_{ij}^{-\Delta_{ij, n}/2} \times \exp\left[-\frac{M_1}{2} \frac{\vec{x}_{13}^2}{t_{13}} - \frac{M_2}{2} \frac{\vec{x}_{23}^2}{t_{23}} \right] \Psi(v_{123})
$$

 \bullet 4-point function is determined up to ^a non-universal function $\Psi(\frac{t_{12}}{t_{14}}%)=\frac{t_{12}}{t_{14}}\left(\frac{t_{12}}{t_{14}}\right) =\frac{t_{12}}{t_{14}}\left(\frac{t_{12}}{t_{14}}\right)$ t_{34} $\frac{t_{12}t_{34}}{t_{14}t_{32}},v_{124},v_{134},v_{234})$ Volovich&Wen ⁰⁹

Two-component fermions at unitarity

• Vacuum theory is defined by action

$$
S[\psi, \phi] = \int dt d^{D}x \, \left[\sum_{i=1}^{2} \psi_{i}^{*} (i\partial_{t} + \frac{\Delta}{2m}) \psi_{i} - \frac{1}{c_{0}} \phi^{*} \phi \right. \\ + (\phi^{*} \psi_{1} \psi_{2} + \phi \psi_{2}^{*} \psi_{1}^{*})]
$$

- •• Bare parameter c_0 is related to scattering length a and cut-off Λ
- •• Unitarity regime a^{-1} $\rightarrow 0 \Rightarrow$ no intrinsic length scale in theory
- \bullet • Exact propagators and scaling dimensions of ψ and ϕ can be determined analytically
- Fermions at unitarity are believed to be symmetric under the fullSchrödinger groupMehen et al. ²⁰⁰⁰
- It is believed to be NRCFT (primary operators, operator/statecorrespondence, conformal Ward identities)Nishida&Son ⁰⁸

Nonrelativistic AdS/CFT

- NRCFT in D dimensions \Leftrightarrow gravity theory in higher dimensions?
- •• Schrödinger algebra $Sch(D)$ is a subalgebra of the conformal algebra $so(D+2, 2)$ in $Mink$ $_{D+2}$ that commutes with the light-cone momentum P^+
- Deformation of AdS_{D+3} in light-cone coordinates leads to the new Sch $D{+}3$ Son 08, Balasubramanian&McGreevy 08

$$
ds^{2} = -\frac{dt^{2}}{z^{4}} + \frac{-2dt d\xi + dx^{i} dx^{i} + dz^{2}}{z^{2}} \quad i = 1, ..., D
$$

- Isometries of Sch_{D+3} obey the Schrödinger albegra $Sch(D)$
- ∂_{ξ} corresponds to the particle number generator N and coordinate ξ is possibly compact

3-point function G_3 **in cold atoms**

• We compute $G_3=$ position space by performing integration over \bar{x} $\langle \psi_1(\bar{x}_1) \psi_2(\bar{x}_2) \phi^*(\bar{x}_3) \rangle$ at unitarity regime in

- Two important points
	- 1. no condensate in non-relativistic vacuum $\langle \psi_i \rangle = 0, \langle \phi \rangle = 0$
	- 2. Yukawa vertex is not renormalized in vacuum
- \bullet • G_3 is completely determined by $\Delta_{\psi} = \frac{D}{2}$ 2 $\frac{D}{2}$ and $\Delta_{\phi} = 2$

3-point function G_3

 Agreement with Schrödinger Ward identities•

Henkel ⁹⁴

•• We determined the non-universal scaling function for $D > 2$

$$
\Psi(y)\sim y^{-\tfrac{D}{2}+1}\gamma(\frac{D}{2}-1,y),
$$

where $\gamma(n,y) = \int_0^y$ t^n −1 $1e^{-t}dt$

• AdS/CFT gives non-universal scaling function

$$
\Psi(y) \sim \int_{\mathbf{R} + i\epsilon} dv \int_{\mathbf{R} + i\epsilon'} dv' e^{-iM_1v - iM_2v'} \times \n(v - v' + iy)^{-\Delta_{12,3}/2}(v')^{-\Delta_{23,1}/2}v^{-\Delta_{13,2}/2},
$$

where $\Delta_{ij,k}=\Delta$ $i + \Delta_j - \Delta_k$

3-point function G_3 **from AdS/CFT**

• We take unitarity scaling Δ_1 double contour integration $_1 = \Delta$ $_{2}=$ $=D/2, \Delta_3=2$ and perform

$$
\Psi(y)\sim y^{-\frac{D}{2}+1}\gamma(\frac{D}{2}-1,y)
$$

- Non-universal scaling function $\Psi(y)$ agrees with unitarity cold atoms result!Fuertes& SM ⁰⁹
- We take free scaling dimension Δ_1 and perform double contour integration $_1 = \Delta$ $_{2}=$ $D/2$ and $\Delta_3 = D$

$$
\Psi(y) = \text{const}
$$

- \bullet Agreement with free QFT
- \bullet • Possibly AdS/CFT describes both free and unitarity regime Son 08

Bosons at unitarity

• The action is similar

$$
S[\psi,\phi] = \int dt d^D x \, \left[\psi^*(i\partial_t + \frac{\Delta}{2m})\psi - \frac{1}{c_0} \phi^*\phi \right. \\ \left. + (\phi^*\psi\psi + \phi\psi^*\psi^*) \right]
$$

- Unitarity regime a^{-1} $\rightarrow 0 \Rightarrow$ no intrinsic length scale in theory
- Can be prepared in cold atoms experiments, e.g. $7Li$, $133Cs...$
- Two-body problem is similar to fermions
- It is not NRCFT due to the Efimov effect

Three-body problem and the Efimov effect

Energy spectrum near the unitarity regime

Efimov ⁷⁰

• At unitarity $a = \pm \infty$ spectrum becomes geometric

 \boldsymbol{E} $\overset{(n+1)}{T}$ \overline{E} $\mathop{T}\limits^{(n)}$ $\rightarrow e$ $^{2\pi/s_0}$ as $n \to \infty$ s 0≈1.0062

- \bullet The spectrum is manifestation of scale quantum anomaly
- In RG language \rightarrow limit cycle solution

$\bf{Breitenlohner-Freedman}$ $\bf{ bound\ in}\ AdS_{d+1}$

• Free complex scalar

$$
S[\phi, \phi^*] = -\int dz d^d x \sqrt{-g} \left(g^{\mu\nu} \partial_\mu \phi^* \partial_\nu \phi + m^2 \phi^* \phi \right)
$$

in AdS_{d+1} spacetime

$$
ds^2 = \frac{dz^2 + \eta^{\mu\nu} dx_{\mu} dx_{\nu}}{z^2}
$$

• Fourier transform x^{μ} $(1 \mu\rightarrow q^{\mu}$ on the boundary and change variables $\psi=z^{(1-a)/2}$ $=z^{(1-d)/}$ 2 $^2\phi$

$$
-\partial_z^2 \psi + \frac{m^2 + \frac{d^2 - 1}{4}}{z^2} \psi = -q^2 \psi, \qquad q^2 \equiv -(q^0)^2 + \vec{q}^2
$$

 \bullet Map onto 1D QM problem with inverse square potential!

Inverse square potential in QM

$$
-\partial_z^2\psi-\frac{\kappa}{z^2}\psi=E\psi
$$

- The potential is singular and must be regularized•
- \bullet Two branches of solution
	- $\kappa < \kappa_{cr}=\frac{1}{4}$ 4 \rightarrow no bound states, continuous spectrum
	- $\kappa > \kappa_{cr} \rightarrow$ infinite geometric bound state spectrum
- •In our mapping

$$
E < 0 \Rightarrow (q^0)^2 < 0
$$

$$
\kappa > \kappa_{cr} \Rightarrow m^2 < m_{BF}^2 = -\frac{d^2}{4}
$$

 The bound was first derived from positivity of conserved \bullet energy functional of scalar fluctuations Breitenlohner&Freedman ⁸²

\bf{No} \bf{BF} \bf{bound} \bf{in} Sch_{D+3}

• Free complex scalar in Sch_{D+3}

$$
S[\phi, \phi^*] = -\int dz dt d\xi d^D x \sqrt{-g} \left(g^{\mu\nu} \partial_\mu \phi^* \partial_\nu \phi + m_0^2 \phi^* \phi \right)
$$

 \bullet Mapping onto Schrödinger equation

$$
-\partial_z^2 \psi + \frac{m^2 + \frac{(D+2)^2 - 1}{4}}{z^2} \psi = -\tilde{q}^2 \psi, \qquad \tilde{q}^2 \equiv -2M\omega + \bar{q}^2
$$

 \bullet Due to nonrelativistic dispersion

$$
E<0\Rightarrow\omega<0
$$

- •• Nothing special happens at $m^2 = m_{BF}^2 = -\frac{(D+2)^2}{4}$
- No stability bound in nonrelativistic AdS/CFT!

Son

Two-point correlator $\langle O O^{\dagger} \rangle$ \rangle for m 2 $\zeta < m$ 2 BF

• Using standard AdS/CFT machinery we can calculateSM ⁰⁹

 $\langle O O^\dagger \rangle \sim \tan{\left\{|\nu| \ln{\widetilde{q}} + \gamma\right\}}\,,$

where
$$
\nu = \sqrt{\frac{(D+2)^2}{4} + m^2}
$$
 and $\tilde{q}^2 \equiv -2M\omega + \bar{q}^2$

- •**Properties**
	- $\langle O O^\dagger \rangle$ is log-periodic in \widetilde{q}
	- \bullet • Operator O describes infinitely many particles

$$
\frac{\omega_{n+1}}{\omega_n} = \exp\left(-\frac{2\pi}{|\nu|}\right)
$$

- \bullet • Continuous scale symmetry is broken \rightarrow limit cycle solution
- γ determines initial UV position on RG limit cycle

$\boldsymbol{\Delta}$ $\boldsymbol{\Delta}$ $\boldsymbol{\Delta}$ $\boldsymbol{\Delta}$ $\boldsymbol{\Delta}$ $\boldsymbol{\Delta}$ $\boldsymbol{\Delta}$ $\boldsymbol{\Delta}$

- Efimov effect
	- Trimer operator $O=$ $= \psi \phi$ has

$$
\Delta_{\pm} = \frac{5}{2} \pm i s_0
$$

- QM with $1/r^2$ potential in D dimensions
	- For $\kappa > \kappa_{cr}=\frac{(D)}{2}$ complex scaling dimension $-2)$ 2 $\overline{4}$ $\frac{(-2)}{4}$, composite $O=$ $= \psi \psi$ acquires

$$
\Delta_{\pm} = \frac{D+2}{2} \pm \sqrt{\frac{(D-2)^2}{4} - \kappa}
$$

• If described by AdS/CFT $\rightarrow m$ $^2 < m^2_{I}$ BF

Conclusion and outlook

- AdS/CFT was extended to nonrelativistic physics
- Schrödinger symmetry is powerful
- • Agreement of specific 3-point function, but betterunderstanding?
- Limit cycles can be realized in nonrelativisticAdS/CFT
- Calculate limit cycle two-point function in QMand compare with holographic prediction

Extra slides

Applications to condensed matter physics

- Holographic systems with Schrödinger symmetry
- Holographic superfluids
- Holographic non-Fermi liquids
- Holographic systems with Lifshitz symmetry

Schrödinger algebra

- Centrally extended Galilei algebra $[M_{ij},M_{kl}]=i(\delta_{ik}M_{jl}$ $\delta_{jk}M_{il}+\delta_{il}M_{kj}$ $\delta_{jl}M_{ki}) \quad ,$ $[M_{ij},K_k]=i(\delta_{ik}K_j$ $[P_i, K_j] = -i\delta_{ij}N \quad , \qquad [H, K_j] = -iP_j \quad .$ $\delta_{jk}K_{i}),\quad [M_{ij},P_{k}]=i(\delta_{ik}P_{j}% +\delta_{ik}P_{k})-\delta_{ik}P_{k},\quad p_{ij}=1,\label{eq:deltajk}%$ − $\delta_{jk}P_i),$
- Additionally

 $[P_i, D] = -iP_i, \quad [P_i, C] = -iK_i, \quad [K_i, D] = iK_i$, $[D,C]=$ −− $2iC$, $[D, H] = 2iH$, $[C, H] = iD$.

• The generators H, D and C close a subalgebra $sl(2, R)$