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Outline

• Basics of AdS/CFT correspondence
• Schrödinger group and correlation functions
• Nonrelativistic AdS/CFT and cold atoms
• Holographic Efimov effect



Holographic principle ’t Hooft 93, Susskind 95

• We have some evidence that

Quantum field theory in
d spacetime dimensions

!

Quantum gravity in
higher dimensions

• Holographic radial direction – RG scale



AdS spacetime and its relation to CFT

• Einstein-Hilbert gravity action

S =
1

2κ

∫
dzddx

√−g
(
R +

d(d− 1)

L2

)

• Most symmetric solution is Anti-de Sitter
spacetime

ds2 = L2dz
2 + ηµνx

µxν

z2

• Isometry group ofAdSd+1 is SO(d, 2)

• Conformal group inMinkd is alsoSO(d, 2)!



AdS/CFT correspondence Maldacena 97

N = 4, SU(Nc)

in d = 4 Minkowski
!

IIB string theory
in AdS5 × S5

• Parameters on gauge side:gYM andNc

Parameters on gravity side:L, lst andκ
• Mapping

L

lst
∼ g2

YMNc
L8

κ
∼ N 2

c

• It is a weak/strong duality

• Classical supergravity is valid ifN 2
c , g

2
YMNc ≫ 1



Holographic dictionary

Boundary QFT Bulk gravity
operatorO dynamical fieldφ

scaling dimension∆O massmφ

global symmetry gauge symmetry
finite T HawkingT of a black hole
entropy Hawking entropy

chemical potential U(1) gauge field

• Correlation functions can be calculated from

〈e
∫
φ0O〉CFT = Zgravity[φ→ φ0]



Schrödinger group
• Spacetime symmetries of free Schrödinger/diffusion

equation form Schrödinger groupSch(D) Niederer 72, Hagen 72

• Schrödinger group comprises

• translationsPi andH

• spatial rotationsMij

• Galilean boostsKi

• number operatorN

• scale transformationD⇒ dynamical exponentz = 2

• special conformal transformationC

• Theory symmetric underSch(D) is called NRCFT

• Example: two particles with conformal1/r2 potential



Schrödinger group
• Nonrelativistic primary operatorsO have well-defined

scaling dimension∆O and particle numberNO Nishida& Son 08

[D,O] = i∆O [N,O] = NO

and commute with Galilean boostsKi and special

conformal transformationC

[Ki,O] = 0 [C,O] = 0

Descendants are formed by commutators withPi andH

• Kinematic invariants ofSch(D) group Volovich&Wen 09

• mixed invariantsvijn =
(~xintjn−~xjntin)2

2tijtintjn
i < j < n

• time cross-ratiostijtkl

tiktjl



Correlators in Euclidean NRCFT
• Schrödinger symmetry and causality impose constraints on the

correlators of the primary fields Henkel 94

• 2-point function is fixed up to a constant (x̄ = (~x, t))

G2(x̄1, x̄2) = Cδ∆1,∆2
δM1,M2

θ(t12)t
−∆1

12 exp

[
−M1

2

~x2
12

t12

]

• 3-point function is determined up to a functionΨ(v123)

G3(x̄1, x̄2, x̄3) = δM1+M2,M3
θ(t13)θ(t23)

∏

i<j

t
−∆ij,n/2
ij ×

exp

[
−M1

2

~x2
13

t13
− M2

2

~x2
23

t23

]
Ψ(v123)

• 4-point function is determined up to a non-universal function

Ψ( t12t34t14t32
, v124, v134, v234) Volovich&Wen 09



Two-component fermions at unitarity
• Vacuum theory is defined by action

S[ψ, φ] =

∫
dtdDx [

2∑

i=1

ψ∗
i (i∂t +

∆

2m
)ψi −

1

c0
φ∗φ

+ (φ∗ψ1ψ2 + φψ∗
2ψ

∗
1)]

• Bare parameterc0 is related to scattering lengtha and cut-offΛ

• Unitarity regimea−1 → 0 ⇒ no intrinsic length scale in theory

• Exact propagators and scaling dimensions ofψ andφ can be

determined analytically

• Fermions at unitarity are believed to be symmetric under the full

Schrödinger group Mehen et al. 2000

• It is believed to be NRCFT (primary operators, operator/state

correspondence, conformal Ward identities) Nishida&Son 08



Nonrelativistic AdS/CFT
• NRCFT inD dimensions⇔ gravity theory in higher dimensions?

• Schrödinger algebraSch(D) is a subalgebra of the conformal

algebraso(D + 2, 2) in MinkD+2 that commutes with the

light-cone momentumP+

• Deformation ofAdSD+3 in light-cone coordinates leads to the

newSchD+3 metric Son 08, Balasubramanian&McGreevy 08

ds2 = −dt
2

z4
+

−2dtdξ + dxidxi + dz2

z2
i = 1, . . . , D

• Isometries ofSchD+3 obey the Schrödinger albegraSch(D)

• ∂ξ corresponds to the particle number generatorN and

coordinateξ is possibly compact



3-point function G3 in cold atoms
• We computeG3 = 〈ψ1(x̄1)ψ2(x̄2)φ

∗(x̄3)〉 at unitarity regime in

position space by performing integration overx̄

• Two important points

1. no condensate in non-relativistic vacuum〈ψi〉 = 0, 〈φ〉 = 0

2. Yukawa vertex is not renormalized in vacuum

• G3 is completely determined by∆ψ = D
2 and∆φ = 2



3-point function G3

• Agreement with Schrödinger Ward identities Henkel 94

• We determined the non-universal scaling function forD > 2

Ψ(y) ∼ y−
D
2

+1γ(
D

2
− 1, y),

whereγ(n, y) =
∫ y
0 t

n−1e−tdt

• AdS/CFT gives non-universal scaling function

Ψ(y) ∼
∫

R+iǫ
dv

∫

R+iǫ′
dv′ e−iM1v−iM2v′×

(v − v′ + iy)−∆12,3/2(v′)−∆23,1/2v−∆13,2/2,

where∆ij,k = ∆i + ∆j − ∆k



3-point function G3 from AdS/CFT
• We take unitarity scaling∆1 = ∆2 = D/2, ∆3 = 2 and perform

double contour integration

Ψ(y) ∼ y−
D
2

+1γ(
D

2
− 1, y)

• Non-universal scaling functionΨ(y) agrees with unitarity cold

atoms result! Fuertes& SM 09

• We take free scaling dimension∆1 = ∆2 = D/2 and∆3 = D

and perform double contour integration

Ψ(y) = const

• Agreement with free QFT

• Possibly AdS/CFT describes both free and unitarity regimeSon 08



Bosons at unitarity
• The action is similar

S[ψ, φ] =

∫
dtdDx [ψ∗(i∂t +

∆

2m
)ψ − 1

c0
φ∗φ

+ (φ∗ψψ + φψ∗ψ∗)]

• Unitarity regimea−1 → 0 ⇒ no intrinsic length
scale in theory

• Can be prepared in cold atoms experiments, e.g.
7Li,133Cs...

• Two-body problem is similar to fermions
• It is not NRCFT due to the Efimov effect



Three-body problem and the Efimov effect

Energy spectrum near the unitarity regime Efimov 70

• At unitarity a = ±∞ spectrum becomes geometric

E
(n+1)
T

E
(n)
T

→ e−2π/s0 as n→ ∞ s0 ≈ 1.0062

• The spectrum is manifestation of scale quantum anomaly

• In RG language→ limit cycle solution



Breitenlohner-Freedman bound inAdSd+1

• Free complex scalar

S[φ, φ∗] = −
∫
dzddx

√−g
(
gµν∂µφ

∗∂νφ+m2φ∗φ
)

in AdSd+1 spacetime

ds2 =
dz2 + ηµνdxµdxν

z2

• Fourier transformxµ → qµ on the boundary and change

variablesψ = z(1−d)/2φ

−∂2
zψ +

m2 + d2−1
4

z2
ψ = −q2ψ, q2 ≡ −(q0)2 + ~q2

• Map onto 1D QM problem with inverse square potential!



Inverse square potential in QM

−∂2
zψ − κ

z2
ψ = Eψ

• The potential is singular and must be regularized

• Two branches of solution

• κ < κcr = 1
4
→ no bound states, continuous spectrum

• κ > κcr → infinite geometric bound state spectrum

• In our mapping

E < 0 ⇒ (q0)2 < 0

κ > κcr ⇒ m2 < m2
BF = −d

2

4
• The bound was first derived from positivity of conserved

energy functional of scalar fluctuationsBreitenlohner&Freedman 82



No BF bound in SchD+3

• Free complex scalar inSchD+3

S[φ, φ∗] = −
∫
dzdtdξdDx

√−g
(
gµν∂µφ

∗∂νφ+m2
0φ

∗φ
)

• Mapping onto Schrödinger equation

−∂2
zψ +

m2 + (D+2)2−1
4

z2
ψ = −q̃2ψ, q̃2 ≡ −2Mω + ~q2

• Due to nonrelativistic dispersion

E < 0 ⇒ ω < 0

• Nothing special happens atm2 = m2
BF = − (D+2)2

4

• No stability bound in nonrelativistic AdS/CFT! Son



Two-point correlator 〈OO†〉 for m2 < m2
BF

• Using standard AdS/CFT machinery we can calculate SM 09

〈OO†〉 ∼ tan {|ν| ln q̃ + γ} ,

whereν =

√
(D+2)2

4 +m2 andq̃2 ≡ −2Mω + ~q2

• Properties

• 〈OO†〉 is log-periodic inq̃

• OperatorO describes infinitely many particles

ωn+1

ωn
= exp

(
−2π

|ν|

)

• Continuous scale symmetry is broken→ limit cycle solution

• γ determines initial UV position on RG limit cycle



Limit cycles in QM and complex ∆

• Efimov effect

• Trimer operatorO = ψφ has

∆± =
5

2
± is0

• QM with 1/r2 potential inD dimensions

• Forκ > κcr = (D−2)2

4
, compositeO = ψψ acquires

complex scaling dimension

∆± =
D + 2

2
±

√
(D − 2)2

4
− κ

• If described by AdS/CFT→m2 < m2
BF



Conclusion and outlook

• AdS/CFT was extended to nonrelativistic physics
• Schrödinger symmetry is powerful
• Agreement of specific 3-point function, but better

understanding?
• Limit cycles can be realized in nonrelativistic

AdS/CFT
• Calculate limit cycle two-point function in QM

and compare with holographic prediction



Extra slides



Applications to condensed matter physics

• Holographic systems with Schrödinger symmetry
• Holographic superfluids
• Holographic non-Fermi liquids
• Holographic systems with Lifshitz symmetry



Schrödinger algebra
• Centrally extended Galilei algebra

[Mij ,Mkl] = i(δikMjl − δjkMil + δilMkj − δjlMki) ,

[Mij ,Kk] = i(δikKj − δjkKi), [Mij , Pk] = i(δikPj − δjkPi),

[Pi,Kj ] = −iδijN , [H,Kj ] = −iPj .

• Additionally

[Pi, D] = −iPi , [Pi, C] = −iKi , [Ki, D] = iKi ,

[D,C] = −2iC , [D,H] = 2iH , [C,H] = iD .

• The generatorsH,D andC close a subalgebrasl(2, R)
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