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For this talk, I really 
mean two scenarios 

Cubic volume External oscillator 
trap 

L b 
(

=
!2

√
µω

)



Non-perturbative methods 
utilize the box: 

•  LQCD 
•  LEFT 

L b 

Experiments utilize the 
oscillator trap : 
•  Cold atoms 

How can these finite-volume 
systems advance our 

understanding of fundamental 
interactions and few-body 

physics? 
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LQCD, for example, is 
helping us understand 
hadronic interactions at 
the fundamental level of 

quarks and gluons 

NPLQCD, Phys.Rev.D80:074501,2009 NPLQCD, hep-lat:0912.4243 

Luscher, Commun. Math. Phys. 105, 153 (1986) 
Beane et al., hep-lat/0312004 
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For interaction range r0 ! b
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Cold atom traps are 
helping us understand 

the universal 
properties of finely 

tuned systems 

Stöferle et al., Phys. Rev. Lett. 96, 030401 2006 

T. Busch et al., Found. Phys. 28, 549 1998 
T. Mehen, Phys. Rev. A 78, 013614 2008 



No show-stoppers!  Will be 
done—just a matter of time. 

The upshot:  a lot can be gained by 
putting particles in a trap! 

  Cubic volume calculations 
of hadronic interactions (via 
LQCD) have not utilized 
◦  Asymmetric spatial volumes 
◦  Non-zero CM motion 
◦  Excited states  

  These calculations are 
statistically daunting 
◦  Requires big computers 
◦  Advances in algorithms 
◦  New breed of physicists 

  Recently Stetcu, van Kolck 
et al. have proposed a novel 
way for calculating nuclear 
physics observables within 
an oscillator well 
◦  Stetcu, Barrett, van Kolck, Vary, 

Phys. Rev. A 76, 063613 (2007) 
◦  Stetcu, Barrett, van Kolck, Phys. 

Lett. B 653 (2007) 358 
◦  Stetcu, Rotureau, Barrett, van 

Kolck, nucl-th:0912.3015, nucl-
th:1001.5071 

Cubic volume Oscillator well 



  Both equations relate bound state energies to 
continuum phase shifts 
◦  Extracting scattering parameters from bound states! 

  Independent of the form of the interaction 
  Valid not just for ground state, but for excited 

states, but. . . 
  . . . the energy must be below inelastic 

thresholds 
◦  No pion production, etc. . . 
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van Kolck, DOE Nuclear Physics 
Extreme Scale Workshop, 2009 



  We can tune the 
parameters of the 
well to make a 
‘deuteron’ 

  The phase shift is 
known analytically 
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V (r) = VSW (r) + VHO(r)
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Calculations done by J. Vary 

VNN =  JISP potential 

Relative energy 

Luu, Savage, Schwenk, Vary, in preparation 
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For low ω can extract effective range 
parameters from spectrum: 

ω = 1 MeV
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Calculations done by J. Vary 

The finite-volume 
formula generalizes for 

higher partial waves 

Luu, Savage, Schwenk, Vary, in preparation 

Schroedinger 
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•  For higher partial waves, 
the centripetal force 
causes the particles to 
see more of the HO well 

•  The competition 
between the range of VNN 
and the HO well becomes 
more dramatic 

•  This gives finite volume 
corrections that depend 
on the asymptotic part of 
the VNN 

For a given accuracy, the higher the partial 
wave l means one must use a smaller 

trapping frequency ω . . . 

. . . or we could try to 
correct these finite-

volume effects 

Schroedinger 
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∼ .142 ω2 Our numerical 
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that LO power law 
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D-wave errors 

These HO finite-volume corrections are 
fundamentally different from the cubic volume 

corrections! 



  First off, cubic volumes break rotational 
symmetry 
◦  Respect Od symmetry  
◦  Spatial irreps 
◦  Spin irreps 

  Momentum representation of your interaction 
is a little bit off  

A1, A2, E, T1, T2

G1, G2, H

L 

Vfree(p
′, p) Vbox(p′, p)≠ 

But for L>>r, the difference is 
exponentially small 

Group theory tells 
us how to 

construct these 
states and their 
relation to SO(3) 



  The CM and relative coordinates don’t exactly 
decouple 
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Examples: 
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2
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Nonzero CM reduces states 
to subgroups of Od 

Christ et al., Phys. Rev. D 72 114506 (2005) 



Assumption:  short-
ranged repulsive 
interactions of 
‘natural size’ 

a0/L! 1 ; r0/L! 1
a1/L3 ! 1 ; r1L! 1

Let’s look at some ‘P-wave’ cases: 
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Luu, SciDAC 2009 proceedings 



  Obviously working in cubic volumes presents 
its own challenges 

  But we can take advantage of peculiarities of 
the cubic volume! 
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Example: non-zero CM 

Group structure is 
reduced to cubic 

rotations that leave 
the CM vector  
Od → C4v

Opposite spins 

Aligned spins 

| !Ncm >= |0, 0, 1 >

Luu, SciDAC 2009 proceedings 
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  Through LQCD we can probe various aspects 
of hadronic interactions 
◦  Project onto different ‘partial waves’ 
◦  Excited state spectrum 

  We can change the nature of the boundary 
conditions themselves 

  By taking advantage of certain aspects of the 
cubic volume, we can isolate different aspects 
of the interaction 
◦  Non-zero CM motion 
◦  Asymmetric spatial volumes 

But what about the 
oscillator well?  It’s just a 
two-body problem. How 

does it advance many-body 
nuclear physics???   
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Four valence 
quarks in a 

cubic volume: 
2 u and          
2 anti-d 

Interaction: QCD 

LQCD 

L 

π+

π+

Cubic eigen-
energies give us 
isospin-2  pion-
pion scattering 

properties 
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Four nucleons 
in an harmonic 
oscillator trap: 

3 neutrons 
1 proton 

Interaction: VNN + . . . 

Ab-initio methods 

b 

3H

Oscillator eigen-
energies give us 
neutron-triton 

scattering 
properties 

See Stetcu et al., nucl-th:0912.3015 



  We’ve made great progress in bound-state 
nuclear many-body algorithms 
◦  Different algorithms 
◦  Strongly coupled with HPC 

  We are now using a basis that has the correct 
asymptotic behavior! 
◦  The HO basis is no longer “convenient” to use, but 

is mandatory 
  The system is confined 
◦  Can external well increase convergence of 

calculations? 
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??? 

•  Can I set r1 to zero as |a1| infinity? 
•  Can AMR guys tune a and r independently? 
•  How does the spectrum behave as ω zero? 


