

Lattice QCD and Hadron Structure

Huey-Wen Lin University of Washington

WASHINGTON

Human Exploration

§ Matter has many layers of structure

10⁻² m

§ The scientific cycle

Quantum Chromodynamícs

§ The strong interactions of quarks and gluons (SU(3) gauge)

"Confinement" no free quarks allowed

"Asymptotic freedom" weak interactions at large energies

The Nobel Prize in Physics 2004

Dífficulties at Low Energy

- § Strong interactions make analytic calculation impossible
- § Direct QCD calculation is desired → Lattice QCD

Outline

§ The tool = Lattice Gauge Theory § Topics in Hadron Structure

Parton distribution functions

Form factors

§ Summary and Outlook

Huey-Wen Lin — INT Seminar

 b_{\perp}

$$\begin{aligned} & QCD \\ \langle 0|O(\overline{\psi},\psi,A)|0\rangle = \frac{1}{Z} \int [dA] [d\overline{\psi}] [d\psi] O(\overline{\psi},\psi,A) e^{i \int d^4x \, \mathcal{L}^{\mathsf{QCD}}(\overline{\psi},\psi,A)} \end{aligned}$$

Lattice QCD $\langle 0|O(\overline{\psi},\psi,A)|0\rangle = \frac{1}{Z} \int [dA] [d\overline{\psi}] [d\psi] O(\overline{\psi},\psi,A) e^{i\int d^4x \,\mathcal{L}^{\mathsf{QCD}}(\overline{\psi},\psi,A)}$

§ Guided by Symanzik Improvement (order in *a*)

➢ Gauge sector: $O(a^2)$ -improved
➢ Fermion sector: O(a)-improved

§ Guided by Symanzik Improvement (order in *a*)
➢ Gauge sector: O(a²)-improved

 \sim Fermion sector: O(a)-improved

§ Guided by Symanzik Improvement (order in a) \sim Gauge sector: $O(a^2)$ -improved \sim Fermion sector: O(a)-improved Needs a lot more computational Flavor resources Symmetri Domain–Wall Clover (Wilson) Overlap \$\$\$ \$\$ **Mixings and** renormalization \$\$ Chiral Twisted-Mass Symmetric Broken Ś Broken **Complex flavor mixing!** Staggered

The Dark Side...

§ Currently, not running with the physical pion mass \gg Lighter quark simulations require \$➢ Example: BMW Collaboration, Science (2008) 2 1.5 M [GeV] a≈0.125 fm 0.5 a≈0.085 fm a≈0.065 fm physical M_{π} 0.1 0.2 0.3 0.4 0.5 M_{π}^2 [GeV²]

Lattice in the News

§ Post-dictions of well known quantities

Example: BMW Collaboration, Science 2008

§ Proves all the systematics are under control

From Lattice 2009

§ Post-dictions of well known quantities

§ Consistent results from various actions/groups

Prediction

Probing Insights into Hadrons

Probing Insights into Hadrons

Parton Distribution Function

§ Deep inelastic scattering§ Probing nucleon structure

$$\sigma \sim L^{\mu\nu}W_{\mu\nu}, \qquad N =$$

$$W_{\mu\nu} = i \int d^4x e^{iqx} \langle N|T\{J^{\mu}(x), J^{\nu}(0)\}|N\rangle$$

§ The symmetric, unpolarized, spin-averaged

$$W^{\{\mu\nu\}}(x,Q^2) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)F_1(x,Q^2) + \left(p^{\mu} - \frac{\nu}{q^2}q^{\mu}\right)\left(p^{\nu} - \frac{\nu}{q^2}q^{\nu}\right)\frac{F_2(x,Q^2)}{\nu}$$

§ The anti-symmetric, polarized $W^{[\mu\nu]}(x,Q^2) = i\epsilon^{\mu\nu\rho\sigma}q_{\rho}\left(\frac{s_{\sigma}}{\nu}(g_1(x,Q^2) + g_2(x,Q^2)) - \frac{q \cdot sp_{\sigma}}{\nu^2}g_2(x,Q^2)\right)$

Moments of the Structure Function

§ No light-cone operator directly calculated on the lattice§ Operator product expansion

Polarized 2 ∫ dx xⁿg₁(x, Q²) = ∑_{q=u,d} e^(q)_{1,n}(µ²/Q², g(µ))⟨xⁿ⟩_Δq
$$2 ∫ dx xng2(x, Q2) = \frac{n}{(n+1)} \sum_{q=u,d} \left[2e^{(q)}_{2,n}(µ2/Q2, g(µ))d^{q}_{n}(µ) + e^{(q)}_{1,n}(µ2/Q2, g(µ))⟨xn⟩Δq \right]$$

> Unpolarized

$$2\int dx \, x^{n-1} F_1(x, Q^2) = \sum_{q=u,d} c_{1,n}^{(q)}(\mu^2/Q^2, g(\mu)) \langle x^n \rangle_q$$
$$\int dx \, x^{n-2} F_2(x, Q^2) = \sum_{q=u,d} c_{2,n}^{(q)}(\mu^2/Q^2, g(\mu)) \langle x^n \rangle_q$$

§ e_1 , e_2 , c_1 , c_2 are Wilson coefficients § $\langle x^n \rangle_q$, $\langle x^n \rangle_{\Delta q}$, d_n are forward nucleon matrix elements

Green Functions

§ Three-point function with connected piece only

$$C_{3\text{pt}}^{\Gamma,\mathcal{O}}\left(\vec{p},t,\tau\right) = \sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J_{\beta}\left(\vec{p},t\right) \mathcal{O}(\tau) \overline{J}_{\alpha}\left(\vec{p},0\right) \rangle$$
$$O: V_{\mu} = \overline{q} \gamma_{\mu} q, A_{\mu} = \overline{q} \gamma_{\mu} \gamma_{5} q, \text{ or others}$$
$$J = \epsilon^{abc} [q_{1}^{aT}(x) C \gamma_{5} q_{2}^{b}(x)] q_{1}^{c}(x).$$

§ Two topologies:

§ Isovector quantities O^{u-d}

disconnected diagram cancelled

§ The first moment of the quark momentum fraction

M. Guertler et al., PoS(LAT2006)107; D. Pleiter et al., PoS(LAT2006)120;

§ The first moment of the quark momentum fraction

§ The first moment of the quark helicity distribution

§ The first moment of the quark helicity distribution

§ World data: the zeroth moment of the transversity

§ World data: the zeroth moment of the transversity

§ Higher moments?

Yes.... But at $n \ge 4$: mixing with lower-dimension operators

⊷ Getting around W. Detmold et. al. Phys.Rev.D73:014501 (2006) ✤ Direct calculation K. Liu, Phys.Rev.D62:074501 (2000) § Gluon structure 1.5 such as $\langle x \rangle_a$? <mark>⟨x⟩_g</mark> @ m_π≈650 MeV $\approx 2\sigma$ away from zero § "Disconnected"? and the second second 0.5 $5\sigma \langle \mathbf{X} \rangle_{u,d}$ M. Deka et al. (2008), 0811.1779 xQCD, Phys.Rev.D79:094502 (2009)_0.5

3

5

7

15

11

Q

sink time (t₂)

13

Orígín of Nucleon Spín

§ Nucleon total spin is ½, but how does it add up? § Quark contribution 0.4LHPC, QCDSF 0.3 $\Delta\Sigma$: spin $\Delta \Sigma^{u+d}/2$ 0.2 L: orbital L^{u+d} angular 0.1 LHPC, QCDSF momentum \triangleright -0.1 m_{π}^2 0.8 0.2 0.4 0.6 LHPC, arXiv:1001.3620[hep-lat]; 300 MeV M. Ohtani et al, PoS (Lat2007) 158

Orígín of Nucleon Spín

§ Nucleon total spin is ½, but how does it add up?
§ Quark contribution

- § "Disconnected" contribution
- § How much contribution from gluons?

Electromagnetic Form Factors

- § Experimentally studied through elastic scattering process
- § Two definitions

✤ Dirac and Pauli form factors F_1 , F_2

$$\langle N | V_{\mu} | N \rangle(q) = \overline{u}_N(p') \left[\gamma_{\mu} F_1(q^2) + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{2m} \right] u_N(p)^{\kappa_n}$$

p

 \gg Sachs form factors G_E , G_M

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{(2M_N)^2} F_2(q^2)$$

$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

EM Form Factors: Experiment

Higher-Q² Form Factors

§ Higher-Q² data will help us to understand hadrons and challenge QCD-based models

§ Challenge for lattice-QCD calculations
✤ Typical Q² range for nucleon form factors is < 3.0 GeV²
✤ Higher-Q² calculations suffer from poor noise-to-signal ratios
Conventional Calculation

Higher-Q² calculations suffer from poor noise-to-signal ratios

Huey-Wen

§ Problem: traditional approach

simplify to one-state problem

§ Problem: traditional approach

simplify to one-state problem

§ Problem: traditional approach

§ Solution: confront excited states directly and allow operators to couple to both ground and excited states

Form Factors

§ The form factors are buried in the amplitudes

§ n = n' = 0 gives us nucleon Matrix Element $\langle N | V_{\mu} | N \rangle(q)$ and solve linear equations for form factors

Ι

Form Factors

WASHINGTON

§ $N_f = 0$ anisotropic lattices, $M_\pi \approx 480$, 720, 1080 MeV

Huey-Wen Lin — INT Seminar

SHINGTO

§ $N_f = 2+1$ anisotropic lattices, $M_\pi \approx 450$, 580, 875 MeV

Huey-Wen Lin — INT Seminar

SHING

§ $N_f = 2+1$ anisotropic lattices, $M_\pi \approx 450$, 580, 875 MeV

§ For example, how does high- Q^2 affect charge density?

HWL et al., arXiv: 1005.0799

Transverse Charge Density

Proton

Neutron

HWL et al., arXiv: 1005.0799

Transverse Charge Densíty

HWL et al., arXiv: 1005.0799

Transverse Magnetization Density

Proton

Neutron

Transverse Magnetization Density

b (fm)

HWL et al., arXiv: 1005.0799
$$b\sin^2\phi \int_0^\infty \frac{Q^2 \, dQ}{2\pi} J_1(bQ) F_2(Q^2)$$

Nucleon Axíal Form Factors

§ $N_f = 2+1$ anisotropic lattices, $M_\pi \approx 450$, 580, 875 MeV

WASHINGTON

Píon Form Factors

§ $N_f = 2+1$ anisotropic lattices, $M_\pi \approx 875$ MeV

Míscellany

§ Disconnected contribution O(10⁻²) for EM form factor
 Small for most of the form factors but could be significant for neutron electric form factor

§ To get larger momentum, we use O(ap) ≈ 1
≫ Rome was not built in a day...
≫ Methodology for improving a traditional lattice calculation

§ Possible future improvement

 Step-scaling through multiple lattice spacings and volumes
 Higher momentum transfer

Exciting era using LQCD for studying hadron structure

§ Improvement

Huge leaps due to increasing computational resources world-wide and improved algorithms

§ Universality

Different lattice actions/groups with independent calculations provide consistency checks: so far so good...

§ Confidence

 Reproducing well measured experimental values gives us confidence for predicting quantities that haven't/couldn't be measured by experiment

§ Variety

There are many different aspects of hadron structure; only presented a few examples

Backup Slídes

Proton Transverse Densíty

§ We know the proton is composed of up and down quarks

 $\mathcal{G}_{\mathcal{P}}$

§ g_P induced pseudoscalar coupling constant

 ${\mathscr G}_{\mathcal P}$

§ g_P induced pseudoscalar coupling constant $g_P = m_\mu G_P (0.88 m_\mu^2) / 2 m_N$

Proton EM Form Factors: Exp't

Neutron EM Form Factors: Exp't

Polarízed Transverse Dístributions

§ $N_f = 2+1$ anisotropic lattices, $M_\pi \approx 450$, 580, 875 MeV

Nucleon Axíal Radíí

Difficulties at Low Energy

§ Even just the vacuum of QCD is complicated

Classical

Lattice Inputs for LECs

Dynamical Anisotropic Lattices

§ Baryon mass-ratio extrapolation with modified NLO HBXPT

Dimensionless quantities to avoid lattice-spacing ambiguities
 Mass ratios with finite-volume corrections

WASHINGTON

Axíal Charge Coupling

§ Axial-vector-current matrix element

$$\langle B | A_{\mu}(q) | B \rangle = \overline{u}_{B}(p') \left[\gamma_{\mu} \gamma_{5} G_{A}(q^{2}) + \gamma_{5} q_{\nu} \frac{G_{P}(q^{2})}{2M_{B}} \right] u_{B}(p)$$

and axial charge coupling $g_A = G_A^{u-d} (Q^2=0)$

§ Well measured experimentally from neutron beta decay

Axíal Charge Coupling

§ World data: statistical error-bars only

HWL et al., Phys. Rev. D78, 014505 (2008) and Phys. Rev. Lett. 100:171602 (2008); K. Orginos et al., Phys.Rev.D73:094507 (2005); D. Dolgov et al., Phys. Rev. D66, 034506 (2002);

- M. Guertler et al., PoS(LAT2006)107; D. Pleiter et al., PoS(LAT2006)120;
- D. Renner et al., PoS(LAT2006)121

Axíal Charge Coupling

§ Finite-volume effects

 $f_V \sim e^{-m\pi L}$

Systematics: $f_V \sim (m_{\pi}L)^{-3}$ $f_V \sim m_{\pi}^2 e^{-m_{\pi}L} (m_{\pi}L)^{-0.5}$

RBC/UKQCD, Phys. Rev. Lett. 100:171602 (2008)

Axíal Charge Coupling

§ Comparison of lattice calculations

HWL et al., Phys. Rev. D78, 014505 (2008) and Phys. Rev. Lett. 100:171602 (2008); K. Orginos et al., Phys.Rev.D73:094507 (2005); LHPC, arXiv:1001.3620[hep-lat] D. Dolgov et al., Phys. Rev. D66, 034506 (2002); M. Guertler et al., PoS(LAT2006)107; D. Pleiter et al., PoS(LAT2006)120;

πNN Coupling

§ $g_{\pi NN}$ via 2 approaches

Pion-pole domination

$$g_{\pi NN} \approx [(Q^2 + m_{\pi}^2) m_N G_P(Q^2) / f_{\pi}] \text{ at } Q^2 = -m_{\pi}^2$$

Goldberger-Treiman Relation

$g_{\Xi\Xi}$ and $g_{\Xi\Xi}$

- § Has applications such as hyperon scattering, non-leptonic decays, ...
- § Cannot be determined by experiment
- § Existing theoretical predictions:
- Chiral perturbation theory

 $0.35 \leq g_{\Sigma\Sigma} \leq 0.55$ $0.18 \leq -g_{\Xi\Xi} \leq 0.36$ M. J. Savage et al., Phys. Rev. D55, 5376 (1997);

 $rac{}{\sim}$ Large- N_c

 $0.30 \leq g_{\Sigma\Sigma} \leq 0.36 \qquad 0.26 \leq -g_{\Xi\Xi} \leq 0.30$ R. Flores-Mendieta et al., Phys. Rev. D58, 094028 (1998);

- § Loose bounds on the values
- § Lattice QCD can provide substantial improvement

 $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

§ Pion mass: 350–750 MeV HWL and K. Orginos, Phys.Rev.D79:034507,2009 § First lattice calculation of these quantities; mixed-action full-QCD

	m010	m020	m030	m040	m050
m_{π} (MeV)	354.2(8)	493.6(6)	594.2(8)	685.4(19)	754.3(16)
m_{π}/f_{π}	2.316(7)	3.035(7)	3.478(8)	3.822(23)	4.136(20)
m_K/f_{π}	3.951(14)	3.969(10)	4.018(11)	4.060(26)	4.107(21)
confs	612	345	561	320	342
$g_{A,N}$	1.22(8)	1.21(5)	1.195(17)	1.150(17)	1.167(11)
$g_{\Sigma\Sigma}$	0.418(23)	0.450(15)	0.451(7)	0.444(8)	0.453(5)
$g_{\Xi\Xi}$	-0.262(13)	-0.270(10)	-0.269(7)	-0.257(9)	-0.261(7)

§ Combine with g_A for study of

✤ SU(3) symmetry breaking

 \gg SU(3) simultaneous fits among three coupling constants

 \longrightarrow *D*, *F*, and other low-energy constants

Axíal Charge Coupling

§ Comparison of lattice calculations

SU(3)-constrained fit gives
 Lin et al. smaller extrapolated
 statistical error than LHPC

Solution Lighter m_{π} , finer *a*, multiple *V* essential for precise calculation

HWL et al., Phys. Rev. D78, 014505 (2008) and Phys. Rev. Lett. 100:171602 (2008);
HWL et al., Phys.Rev.D79:034507,2009
K. Orginos et al., Phys.Rev.D73:094507 (2005); LHPC, arXiv:1001.3620[hep-lat]
D. Dolgov et al., Phys. Rev. D66, 034506 (2002);
M. Guertler et al., PoS(LAT2006)107; D. Pleiter et al., PoS(LAT2006)120;

 $\pi y y$ Coupling

§ Goldberger-Treiman Relation

 $g_{\pi NN} \approx m_N G_A (Q^2 = 0) / f_{\pi}$

 $\pi Y_1 Y_2$ Coupling

§ Goldberger-Treiman Relation

 $g_{\pi NN} \approx m_N G_A (Q^2 = 0) / f_K$

✤ What's the right relation for this?????

 $g_{\Xi\Sigma}$ and g_{\SigmaN}

§ Matrix element of the hyperon \mathcal{B} -decay process $B_1 \rightarrow B_2 e^- \overline{\nu}$

$$\mathcal{M} = \frac{G_s}{\sqrt{2}} \overline{u}_{B_2} (O^{\mathrm{V}}_{\alpha} + O^{\mathrm{A}}_{\alpha}) u_{B_1} \overline{u}_e \gamma^{\alpha} (1 + \gamma_5) v_{\nu}$$

with

 $g_{\Xi\Sigma}$ and g_{\SigmaN}

§ Matrix element of the hyperon *B*-decay process

$$\mathcal{M} = \frac{G_s}{\sqrt{2}} \overline{u}_{B_2} (O^{\mathrm{V}}_{\alpha} + O^{\mathrm{A}}_{\alpha}) u_{B_1} \overline{u}_e \gamma^{\alpha} (1 + \gamma_5) v_{\nu}$$

with

$$O_{\alpha}^{V} = f_{1}(q^{2})\gamma^{\alpha} + \frac{f_{2}(q^{2})}{M_{B_{1}}}\sigma_{\alpha\beta}q^{\beta} + \frac{f_{3}(q^{2})}{M_{B_{2}}}q_{\alpha}$$
$$O_{\alpha}^{A} = \left(g_{1}(q^{2})\gamma^{\alpha} + \frac{g_{2}(q^{2})}{M_{B_{1}}}\sigma_{\alpha\beta}q^{\beta} + \frac{g_{3}(q^{2})}{M_{B_{2}}}q_{\alpha}\right)\gamma_{5}$$

Hyperon-Decay Experiments

§ Experiments: CERN WA2, Fermilab E715, BNL AGS, Fermilab KTeV, CERN NA48

§ Summary N. Cabibbo et al. 2003	Decay	Rate (µs-1)	g_1/f_1
	$\Lambda \to p e^- \overline{v}$	3.161(58)	0.718(15)
	$\Sigma^- \to n e^- \overline{\nu}$	6.88(24)	-0.340(17)
	$\Xi^- \to \Lambda e^- \overline{\nu}$	3.44(19)	0.25(5)
8 In experiment only measure	$\Xi^0 \to \Sigma^+ e^- \overline{\nu}$	0.876(71)	1.32(+.22/18)

- In experiment, only measure $\frac{d}{d} = \frac{d}{d} \frac{d}{d$
- rightarrow usually assume $g_2 \approx 0$
- § Systematic from ignoring g_2 ?
- § Better g_1/f_1 from lattice calculations?

Lattice Studies

§ Two quenched calculations, different channels

Pion mass > 700 MeV $g_1(0) / f_1(0) = -0.287(52)_{\text{stat.}}$ Exp't: -0.340(17) $g_2(0) / f_1(0) = 0.63(26)_{\text{stat.}}$ Guadagnoli et al., Nucl.Phys.B761:63-91 (2007)

➢ Pion mass ≈ 540–660 MeV
➢ $g_1(0) / f_1(0) = 1.248(29)_{\text{stat.}}$ ➢ Exp't: $1.31(^{21}_{17})$ ➢ $g_2(0) / g_1(0) = 0.68(18)_{\text{stat.}}$ Sasaki et al., 0811.1406[hep-ph]

No systematic error estimate from **quenching** effects!

First Dynamical Study

§ $N_f = 2+1$ mixed action, $M_\pi \approx 350-700$ MeV § Report on $\Sigma^- \rightarrow n$ results for now § Naïve chiral extrapolation $B_0 + B_1 \cdot (M_K^2 + M_\pi^2) + B_2 \cdot (M_K^2 - M_\pi^2)$ We got $g_1(0) / f_1(0) = -0.348(37)_{stat}$ $g_2(0) / f_1(0) = 0.29(20)_{stat}$

Topícs in Nuclear Physics

✤ What happens when we put hadrons together?

§ Nuclear Physics is not essential for our existence but also for universe we live in

> Many new experiments are either under construction or in plan

- § Lattice QCD is a hard probe for the theory (QCD)
- § Helpful in the cases when experimental limitations or challenges
- > Isolated neutrons or pion source (in medium)
- > Unstable particles due to weak decay (hyperons)
- Predictions of new phenomena to guide experiment
- § There is no free lunch
- \sim The difficulties = The opportunities
- And some of them have been concurred, as demonstrated in this talk
- § Filter for New Physics

Summary

§ Nuclear Physics is essential for our existence but also for universe we live in > Investment in experiment continues (12-GeV, FRIB, RHIC or EIC) § Lattice QCD is an excellent probe of the theory (QCD) § Helpful in the cases when experiment is limited > Isolated neutrons or pion source (in medium) ✤ Unstable particles due to weak decay (hyperons) > Predictions of new phenomena to guide experiment § There is no free lunch \gg The difficulties = opportunities And some of them have been conquered, as demonstrated in this talk

§ Filter for New Physics

