Electromagnetic response of nuclei with the LIT method

Outline

- Lorentz integral transform (LIT) method
- Simple Example: deuteron photodisintegration
- Comparison to Lanczos Response
- Applications: $^{3/4}$ He(e,e'), 7 Li(γ)

Motivation of LIT method

Aim: calculation of reactions involving A-body systems in the continuum

Well known: calculation of A-body continuum state tremendously more difficult than A-body bound state calculation

??? is it possible to calculate continuum observables without explicit knowledge of the corresponding continuum wave function ???

YES, via the LIT method! Continuum state problem

 \rightarrow

bound-state like problem

LIT method: V. Efros, W.L., G. Orlandini, PLB 338, 130 (1994), review: V. Efros, W.L., G. Orlandini, N. Barnea, J. of Phys. G 34, R459 (2007)

LIT for Inclusive Reactions

Cross section described by response functions $R(\omega)$

$$R(\omega) = \sum_{n} \left| \langle n | \Theta | 0 \rangle \right|^2 \delta(\omega - E_n + E_0)$$

steps:

1. Solve for many ω_0 and fixed Γ

$$\left(H - E_0 - \omega_0 + i\Gamma
ight) ilde{\Psi} = \Theta \left|0
ight
angle$$

3. Invert transform

$$\begin{split} &\int_{E_{th}}^{\infty} d\omega \quad \frac{R(\omega)}{(\omega - \omega_0)^2 + \Gamma^2} \quad = \int_{E_{th}}^{\infty} d\omega \quad \frac{R(\omega)}{(\omega - \omega_0 - i\Gamma) \; (\omega - \omega_0 + i\Gamma)} \\ &= \int_{E_{th}}^{\infty} d\omega \quad \frac{\int dn \; <0 |\Theta^{\dagger}| n > < n |\Theta| 0 > \; \delta(\omega - E_n - E_0)}{(\omega - \omega_0 - i\Gamma) \; (\omega - \omega_0 + i\Gamma)} \\ &= \int dn \; <0 |\Theta^{\dagger} \; (E_n - E_0 - \omega_0 - i\Gamma)^{-1} \; |n > < n| \; (E_n - E_0 - \omega_0 + i\Gamma)^{-1} \; \Theta \; |0 > \\ &= \langle 0 |\Theta^{\dagger} \; (H - E_0 - \omega_0 - i\Gamma)^{-1} \; (H - E_0 - \omega_0 + i\Gamma)^{-1} \; \Theta \; |0 > \\ &= < 0 |\Theta^{\dagger} \; (H - E_0 - \omega_0 - i\Gamma)^{-1} \; (H - E_0 - \omega_0 + i\Gamma)^{-1} \; \Theta \; |0 > \end{split}$$

LIT for Exclusive Reactions

General form of final state wave function for a given channel

 $|\Psi(E)\rangle = |\Phi(E)\rangle + (E - H + i\eta)^{-1} V |\Phi(E)\rangle$

| Φ(E) > is "channel function" (with proper antisymmetrization),
 in general fragment bound states times their free relative motion,
 V is the sum of potentials between particles belonging to different fragments

Transition matrix element T_n :

Spectral representation for non trivial part

$$\begin{split} \langle \Phi(E) \mid V \ (E - H + i \eta)^{-1} \Theta \mid 0 \rangle &= \sum_{n} (E - E_{n}) F_{fi}(E, E_{n}) \\ &+ \int_{E_{th}}^{\infty} (E - E' + i \eta)^{-1} F_{fi}(E, E') \ dE' \end{split}$$

$$F_{fi}(E,E') = \oint d\gamma \langle \Phi(E) | V | \Psi_{\gamma} \rangle \langle \Psi_{\gamma} | \Theta | 0 \rangle \delta(E-E')$$

 $F_n(E,E')$ has same form as the inclusive response function $R(\omega)$ therefore we can apply the same formalism, however, here left and right hand side are not identical, hence two LIT equations are obtained

1) Calculate LIT for many values of σ_{R} for fixed σ_{I}

- 2) Invert LIT \implies F_{fi}(E,E')
- 3) Calculate T_{FSI}

$T_{FSI}(E) = -i \pi F_{fi}(E,E) + P \int_{E th}^{\infty} (E-E')^{-1} F_{fi}(E,E') dE'$

LIT - Inversion

Standard LIT inversion method

Take the following ansatz for the response function $R(\omega)$ (or $F_{fi}(E,E')$)

$$\mathsf{R}(\omega') = \sum_{m=1}^{\mathsf{M}_{max}} \mathsf{c}_{m} \, \chi_{m}(\omega', \alpha_{i})$$

with $\omega' = \omega - \omega_{_{th}}$, given set of functions $\chi_{_m}$, and unknown coefficients $c_{_m}$

Define:
$$\widetilde{\chi}_{m}(\sigma_{R},\sigma_{I},\alpha_{i}) = \int_{0}^{\infty} d\omega' \frac{\chi_{m}(\omega',\alpha_{i})}{(\omega' - \sigma_{R})^{2} + \sigma_{I}^{2}}$$

Take calculated LIT $L(\sigma_R,\sigma_I) = \langle \widetilde{\psi} | \widetilde{\psi} \rangle$ for many σ_R and fixed σ_I

and expand in set $\tilde{\chi}_{m}$: $L(\sigma_{R},\sigma_{I}) = \sum_{m=1}^{M_{max}} c_{m} \tilde{\chi}_{m}(\omega',\alpha_{I})$ Determine c_{m} via best fit Increase M_{max} up to the point that stable result is obtained for R(ω). Even further increase of M_{max} might lead to oscillations in R(ω)

As basis set $\chi_{\rm m}$ we normally use

 $\chi_{m}(\omega',\alpha_{i}) = (\omega')^{\alpha_{1}} \exp(-\alpha_{2}\omega'/m)$

main point of the LIT : Schrödinger-like equation with a source

$$(H - E_0 - \omega_0 + i\Gamma)\,\tilde{\Psi} = S$$

The $\tilde{\Psi}$ solution is unique and has **bound state like** asymptotic behavior

one can apply **bound state methods**

Our method for calculation of bound states

Hyperspherical Harmonics Expansions (HH): CHH and EIHH

CHH: Additional two-body correlation functions are introduced EIHH: Effective Interaction is constructed via Lee-Suzuki transformation

EIHH: N. Barnea, W.L., G.Orlandini, PRC 61, 054001 (2000)

AB INITIO BOUND STATE CALCULATIONS

BE of ⁴He (exp. 28.296 MeV)

TABLES

TABLE I. The expectation values $\langle T \rangle$ and $\langle V \rangle$ of kinetic and potential energies, the binding energies E_b in MeV and the radius in fm.

Method	$\langle T \rangle$	$\langle V \rangle$	E_b	$\sqrt{\langle r^2 \rangle}$
FΥ	102.39(5)	-1 28.33(10)	-25.94(5)	1.485(3)
CRCGV	102.30	-128.20	-25.90	1.482
SVM	102.35	-128.27	-25.92	1.486
HH	102.44	-128.34	-25.90(1)	1.483
GFMC	102.3(1.0)	-128.25(1.0)	-25.93(2)	1.490(5)
NCSM	103.35	-129.45	-25.80(20)	1.485
EIHH	100.8(9)	-1.26.7(9)	-25.944(10)	1.486

from H.Kamada et al. (18 authors 7 groups) PRC 64 (2001) 044001

LT - Example

As example we consider deuteron photodisintegration calculating the total photoabsorption cross section in unretarded dipole approximation

unretarded dipole approximation
$$\implies \Theta = \sum_{i=1}^{2} z_i \frac{1+\tau_{i,z}}{2}$$
, $Z_i, \tau_{i,z}$: 3rd componts
of position and isospin coordinates
 $\implies \sigma_{\mathbf{y}}(\omega) = 4\pi^2 \alpha R(\omega)$ with $R(\omega) = \oint_{\mathbf{f}} |\langle \mathbf{f}|\Theta|0\rangle|^2 \delta(\omega - E_{np} - E_d)$

with |0> and E, deuteron bound-state wave function and energy |f> and E_{np} wave function and kinetic energy of final np-pair

Hamiltonian is given by $H = \frac{p^2}{M} + V_{1,2}$

p relative momentum M nucleon mass V_{1.2} NN potential

tes

In the following we will use different models for V_{1.2}

(i) Argonne V14 potential

LIT

 $\sigma_{v}(\omega)$ from inversion with various M_{max}

 $\sigma_{\gamma}(\omega)$ from inversion with various $M_{max} = 25$

and result from conventional calculation with explicit np continuum wave functions

(ii) JISP-6 potential

Potential is defined via matrix elements for harmonic oscillator (HO) basis: <n'|V|n>up n=n'=4 (n=0,1,2,...; HO quantum number)

Also deuteron wave function and $\widetilde{\Psi}$ are expanded on HO basis

N _{max} in expansion of deuteron wave function	E _d [MeV]	
10	2.057	
20	2.195	
50	2.2236	
100	2.224555	
150	2.224574	

Slow convergence for E_d

Potential is interesting because HO and hyperspherical harmonic expansions are used for A>2; one can also consider the so-called Lanczos response

Lanczos response

Since the Lorentzian function is a representation of the δ -function one could think of calculating R(ω) as the limit of L($\omega,\sigma_{R},\sigma_{I}$) for $\sigma_{I} \longrightarrow 0$. The extrapolation would give

$$R(\omega) = \sum_{v}^{N} r_{v} \delta(\omega - \epsilon_{v}^{N})$$

Lanczos response: δ -function is replaced by Lorentzian with small σ_{I}

$$R(\omega) = \sum_{v}^{N} r'_{v} L(\omega, \epsilon_{v}^{N}, \sigma))$$

Lanczos technique is used, e.g., for diagonalization of Hamiltonian matrix (dimension: M×M) in a bound-state calculation. Very efficient: total diagonalization is avoided instead only N \ll M Lanczos steps are needed. They lead to N energy eigenvalues , which are very good approximations of the lower energy eigenvalues of H, especially for v \ll N. Lanczos technique is also applicable to solve LIT equation.

$\sigma_{\!\scriptscriptstyle \nu}(\omega)$ from inversion and Lanczos response

LIT Application

Inclusive Electrodisintegration of Three-Body Nuclei Nuclear Interaction: AV18 NN potential + Urbana-IX NN force

Various kinematical regions:

Quasielastic peak region (relativistic effects)

- Breakup threshold region at $q \le 500$ MeV/c (MEC)
- Breakup threshold region at q=860 MeV/c (rel. effects, MEC, Δ)

Motivation

$R_{T}(\omega,q)$ at various q

Potential: BonnRA +TM'

one-body current: dashed
one+two-body current: full

(S. Della Monaca et al., PRC 77, 044007 (2008))

Bad agreement between theory and experiment because of non considered relativistic effects

Motivation

$R_{T}(\omega,q)$ at various q

Potential: BonnRA +TM'

one-body current: dashed
one+two-body current: full

Quasi-elastic kinematics (q=500 MeV/c), Kinetic energy of outgoing nucleon:

non-rel. : $T = q^2/2m = 133 \text{ MeV}$ rel.: $T = (m^2 + q^2)^{1/2} - m = 125 \text{ MeV}$

Bad agreement between theory and experiment because of non considered relativistic effects

Motivation

$R_{T}(\omega,q)$ at various q

Potential: BonnRA +TM'

one-body current: dashed
one+two-body current: full

Quasi-elastic kinematics (q=500 MeV/c), Kinetic energy of outgoing nucleon:

non-rel. : $T = q^2/2m = 133 \text{ MeV}$ rel.: $T = (m^2 + q^2)^{1/2} - m = 125 \text{ MeV}$

Active Nucleon Breit (ANB) frame (nucleus moves with -Aq/2) is better Efros et al., PRC 72, 011002 (2005)

The current operator J

$$J = J^{(1)} + J^{(2)}$$

$$J^{(1)} = J^{(1)}(q,\omega,P_T) = J_{spin} + J_p + J_q + (\omega/M) J_{\omega}$$

for instance spin current $\mathbf{J}_{spin} = \exp(i\mathbf{q} \cdot \mathbf{r}) \ i \ \boldsymbol{\sigma} \times \mathbf{q} / 2M \ [G_{_{\mathbf{M}}}(1 - q^2/8M^2) - G_{_{\mathbf{E}}} \ \kappa^2 q^2/8M^2]$ with $\kappa = 1 + 2P_{_{\mathbf{r}}}/Aq$

> Transformation from ANB frame to LAB frame $R_{T}^{LAB}(\omega^{LAB}, q^{LAB}) = R_{T}^{ANB}(\omega^{ANB}, q^{ANB}) E_{T}^{ANB}/M_{T}$

Efros et al., PRC 81, 034001 (2010)

Results

Comparison of ANB and LAB calculation: strong shift of peak to lower energies! (8.7, 16.7, 29.3 MeV at q=500, 600, 700 MeV/c)

W. Leidemann – INT Seattle April 2010

Results

Rel. contribution:
 reduction of peak
 height
 (6.2%, 8.5%, 11.3 % at
 q=500, 600, 700 MeV/c)

W. Leidemann – INT Seattle April 2010

Results

Comparison with experiment

NR: dashed NR+MEC: dotted Rel.+MEC: full

Exp.: Retzlaff et al.

q = 174 MeV/c q = 324 MeV/c q = 487 MeV/c

R_T close to break-up threshold

(Few-Body Syst., online first; arXiv:0906.0663)

NR+MEC: dotted Rel.+MEC: full

Faddeev calculation Golak et al.: dash-dotted our NR+MEC calc.: full

Incorporation of Δ -Resonance

LIT coupled channel calculation

$$\begin{split} |\tilde{\Psi}\rangle \ &= \ |\tilde{\Psi}^N\rangle + |\tilde{\Psi}^{\Delta}\rangle \\ (T_N + V_{NN} - \sigma)|\tilde{\Psi}^N\rangle \ &= \ -V_{NN,N\Delta} \ |\tilde{\Psi}^{\Delta}\rangle + O_{N\to N}|\Psi_0^N\rangle + O_{\Delta\to N}|\Psi_0^{\Delta}\rangle \\ (\delta m + T_{\Delta} + V_{ND} - \sigma)|\tilde{\Psi}^{\Delta}\rangle \ &= \ -V_{N\Delta,NN}|\tilde{\Psi}^N\rangle + O_{N\to \Delta}|\Psi_0^N\rangle + O_{\Delta\to \Delta}|\Psi_0^{\Delta}\rangle \end{split}$$

 $V_{_{NN,N\Delta}}$ and $V_{_{N\Delta,NN}}$ transition potentials between NNN and NN Δ spaces O_k various diagonal (NN, $\Delta\Delta$) and transition (N Δ , Δ N) current operators

Incorporation of Δ -Resonance

LIT coupled channel calculation

$$\begin{split} |\tilde{\Psi}\rangle &= |\tilde{\Psi}^{N}\rangle + |\tilde{\Psi}^{\Delta}\rangle \\ (T_{N} + V_{NN} - \sigma)|\tilde{\Psi}^{N}\rangle &= -V_{NN,N\Delta} |\tilde{\Psi}^{\Delta}\rangle + O_{N\rightarrow N}|\Psi_{0}^{N}\rangle + O_{\Delta\rightarrow N}|\Psi_{0}^{\Delta}\rangle \\ \\ \textbf{Solve for } \Psi^{\Delta} \left(\delta m + T_{\Delta} + V_{ND} - \sigma\right)|\tilde{\Psi}^{\Delta}\rangle &= -V_{N\Delta,NN}|\tilde{\Psi}^{N}\rangle + O_{N\rightarrow \Delta}|\Psi_{0}^{N}\rangle + O_{\Delta\rightarrow \Delta}|\Psi_{0}^{\Delta}\rangle \end{split}$$

 $V_{_{NN,N\Delta}}$ and $V_{_{N\Delta,NN}}$ transition potentials between NNN and NN Δ spaces O_k various diagonal (NN, $\Delta\Delta$) and transition (N Δ , Δ N) current operators

Incorporation of Δ -Resonance

LIT coupled channel calculation

$$\begin{split} |\tilde{\Psi}\rangle \ &= \ |\tilde{\Psi}^N\rangle + |\tilde{\Psi}^{\Delta}\rangle \\ (T_N + V_{NN} - \sigma)|\tilde{\Psi}^N\rangle \ &= \ -V_{NN,N\Delta} \ |\tilde{\Psi}^{\Delta}\rangle + O_{N\to N}|\Psi_0^N\rangle + O_{\Delta\to N}|\Psi_0^{\Delta}\rangle \\ (\delta m + T_{\Delta} + V_{ND} - \sigma)|\tilde{\Psi}^{\Delta}\rangle \ &= \ -V_{N\Delta,NN}|\tilde{\Psi}^N\rangle + O_{N\to\Delta}|\Psi_0^N\rangle + O_{\Delta\to\Delta}|\Psi_0^{\Delta}\rangle \end{split}$$

 $V_{_{NN,N\Delta}}$ and $V_{_{N\Delta,NN}}$ transition potentials between NNN and NNA spaces O_k various diagonal (NN, $\Delta\Delta$) and transition (NA, Δ N) current operators

New first equation:

$$\begin{split} (H_N^{\text{new}} - \sigma) |\tilde{\Psi}^N\rangle \ &= \ -V_{NN,N\Delta} (H_\Delta - \sigma)^{-1} \left(O_{N \to \Delta} |\Psi_0^N\rangle + O_{\Delta \to \Delta} |\Psi_0^\Delta\rangle \right) \\ &+ O_{N \to N} |\Psi_0^N\rangle + O_{\Delta \to N} |\Psi_0^\Delta\rangle \end{split}$$

L.P. Yuan, V. Efros, WL, G. Orlandini, E. Tomusiak

Inclusive Electrodisintegration of ⁴He

Nuclear Interaction: AV18 NN potential + Urbana-IX NNN force AV18 NN potential + TM' NNN force

> S. Bacca, N. Barnea, W.L., G.Orlandini, PRL 102, 162501 (2009); PRC 80, 064001 (2009)

⁴He (e,e') Longitudinal Response

SMALL EFFECT OF 3-BODY FORCE AT HIGH q

Exp.: Saclay Bates world data

(e,e') Longitudinal Response

SURPRISE: LARGE EFFECT OF 3-BODY FORCE AT LOW q

NO DATA AT LOWER q !!! (wait for Mainz results)

Dependence on different 3-nucleon forces

7-Body total photodisintegration

S.Bacca et al. PLB 603(2004) 159

LIT approach opens up the possibility to calculate continuum observables with bound-state methods

Method is benchmarked with conventional calculations for two- and three-body systems

Various applications for nuclei with A=3-7

Outlook: Search for other integral transform which can be used in GFMC calculations (G. Orlandini, W.L., V.Efros, N.Barnea, J. of Phys. G in print)