From the honeycomb lattice to the square lattice: a new look at graphene

Timo A. Lähde

Helsinki Institute of Physics / Department of Applied Physics, Aalto University (ex HUT), FI-02150 Espoo, Finland

Simulations and Symmetries: Cold Atoms, QCD and Few-Hadron systems, Institute for Nuclear Theory, University of Washington, Seattle, USA, March 15 – May 21, 2010 in collaboration with: Joaquín E. Drut (Ohio State U.) Lauri Suoranta (Aalto U.)

Graphene phenomenology

Origin of the semimetallic band structure ...

Graphene at low energies

Does a gap form due to Coulomb interactions?

Lattice Monte Carlo simulation

From the honeycomb to the square lattice ...

Results

Is suspended graphene an insulator?

Lattice artifacts

Are the simulation results realistic?

Future projects

Where to go from here?

Graphene phenomenology I: what is graphene?

Carbon atoms form strong covalent bonds ...

graphene single graphite layer

> nanotube rolled graphene

graphite stacked graphene

fullerene wrapped graphene

Graphene phenomenology II:

a promising material for applied physics ...

Graphene-based gate-controlled current switch ...

K. Sääskilahti, A. Harju, P. Pasanen, Appl. Phys. Lett. 95, 092104 (2009).

12 (b)**1** (a) 10 8 G/G_Q 6 G_{12} $-G_{13}$ G_{14} 2 0L _3 -2 0 2 3 V/t

Suspended graphene devices ... K.I. Bolotin et al., Phys. Rev. Lett. 101, 096802 (2008), V. Crespi, Physics 1, 15 (2008).

Graphene phenomenology III: ... and for fundamental physics as well!

Direct study of the electronic dispersion relation in graphene and related materials via ARPES ... Ultrarelativistic (Dirac) dispersion relation in a non-relativistic system ...

Pictures: Lanzara research group, UC Berkeley

Graphene phenomenology IV:

not surprisingly, a very active field of study ...

Quarterly # of publications on graphene (yellow) and bilayer graphene (grey) on arXiv ...

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Graphene phenomenology V:

a closer look at the physics ...

Hybridized electron orbitals form a hexagonal "honeycomb" lattice ...

- The hexagonal symmetry leads to linear dispersion at low energies ...
 - P. R. Wallace, Phys. Rev. 71, 622 (1947).

Figure: A.H. Castro Neto, Materials Today 13, 1 (2010).

Graphene

Gapped Graphene

Graphene phenomenology VI:

theory of the electronic band structure ...

S. Reich et al, Phys. Rev. B66, 035412 (2002).

Tight-binding description of the electron-ion interactions in graphene ...

$$egin{aligned} H &= -t \sum_{\langle i,j
angle,\sigma=\uparrow,\downarrow} \left(a^{\dagger}_{\sigma,i}b_{\sigma,j}+ ext{H.c.}
ight) \ &-t' \sum_{\langle\langle i,j
angle
angle,\sigma=\uparrow,\downarrow} \left(a^{\dagger}_{\sigma,i}a_{\sigma,j}+b^{\dagger}_{\sigma,i}b_{\sigma,j}+ ext{H.c.}
ight) \end{aligned}$$

Creation and annihilation operators for electrons on sublattices (A,B)

Conical dispersion around two "valleys", centered around the "Dirac points" (K,K') ...

Theory of non-interacting electrons

Graphene at low energies I: massless Dirac quasiparticles ...

The non-interacting theory describes a gapless semimetal ...

However: the quasiparticle velocity is a fraction of the speed of light in vacuum!

$$E_k \simeq vk$$

$$v\simeq c/300$$

Velocity of quasiparticles

Fermions (in 2+1 dimensions)

Dirac flavors, $N_f = 2$ describes a graphene monolayer ...

$$S_E = -\sum_{a=1}^{N_f} \int d^2x \, dt \, \bar{\psi}_a \, D \, \psi_a$$

 $D = \gamma_0 \partial_0 + v \gamma_i \partial_i, \quad i = 1, 2$ $\gamma^{\mu}, \mu = 0, 1, 2 \quad \{\gamma^{\mu}, \gamma^{\nu}\} = 2\delta^{\mu\nu}$

Graphene at low energies II:

quasiparticles with instantaneous Coulomb interactions ...

$$\begin{split} S_E \ &= \ -\sum_{a=1}^{N_f} \int d^2 x \, dt \, \bar{\psi}_a \, D[A_0] \, \psi_a + \frac{1}{2g^2} \int d^3 x \, dt \, (\partial_i A_0)^2 \\ D[A_0] \ &= \left(\gamma_0 (\partial_0 + iA_0) + v \gamma_i \partial_i, \quad i = 1, 2 \right) \end{split}$$

Gauge field (in 3+1 dimensions)

Electrostatic Coulomb interaction ...

$$A_0 o A_0 + lpha(t) \qquad \psi o \exp\left\{i\int dt lpha(t)
ight\}\psi$$
 Gauge invariance

Whether the Coulomb interaction is significant depends on the dielectric constant of the environment ...

$$g^2 = e^2/\epsilon_0$$
 $\alpha_g \equiv \frac{e^2}{4\pi\epsilon_0\hbar v} \simeq 300\alpha \sim 1$

Fine-structure constant of graphene

Graphene at low energies III:

spontaneous chiral symmetry breaking ...

G.W. Semenoff, Phys. Rev. Lett. 54, 2449 (1984),

C. Burden, A.N. Burkitt, Eur. Phys. Lett. 3, 545 (1987).

The massless quasiparticles possess **chiral symmetry**, which can be spontaneously broken ...

$$U(2N_f) \implies U(N_f) \times U(N_f)$$

$$\langle \bar{\psi}_a(x)\psi_a(x)\rangle$$

Order parameter, chiral condensate

A conjectured electronic phase diagram, as a function of inverse coupling and fermion flavors ...

chiral symmetry **unbroken**, quasiparticles remain **massless**.

chiral symmetry **spontaneously broken**, quasiparticles **massive**.

Lattice Monte Carlo simulation I: evaluating the condensate ...

J.E. Drut, T.A. Lähde, Phys. Rev. B79, 165425 (2009).

Integrate out the fermion fields ...

 $\mathcal{Z} = \int \mathcal{D}A_0 \, \exp(-S_{\text{eff}}[A_0]) \, S_{\text{eff}}[A_0] = -N_f \ln \det(D[A_0]) + S_E^g[A_0]$

Positive definite probability measure for MC calculation

Evaluate observables stochastically by generating snapshots of the gauge field ...

$$\sigma = rac{1}{V \mathcal{Z}} \int \mathcal{D}A_0 \operatorname{Tr}(D^{-1}[A_0]) \exp(-S_{\mathrm{eff}}[A_0])$$

$$\langle ar{\psi}_b \psi_b
angle \ = \ rac{1}{V} \langle {
m Tr} \left[D^{-1} [A_0]
ight]
angle$$

Compute the condensate at different (inverse) interaction strengths ...

Lattice Monte Carlo simulation II:

finding the transition ...

M. Göckeler et al, Nucl. Phys. B487, 313 (1997).

Perform calculations at finite fermion mass (acts as an IR cutoff) ...

 $\int d^2x\,dt\,m_0\bar\psi_a\psi_a$

We want to study the critical region of the the the the the the theory, however:

1) Dirac operator develops small eigenvalues

2) Large finite-volume effects (correlation length diverges)

In practice, extrapolate using results obtained at different masses and couplings ...

Lattice Monte Carlo simulation III: discretized theory ...

H. Rothe, "Lattice gauge theories", World Scientific (2005).

Non-compact gauge action ...

$$S^g_E[heta_0] \;=\; rac{eta}{2} \sum_n \left[\sum_{i=1}^3 ig(heta_{0,n} - heta_{0,n+\hat{e}_i} ig)^2
ight]$$

Doubling problem for chiral lattice fermions: 1 staggered fermion flavor gives 2 continuum flavors!

H.B. Nielsen, M. Ninomiya, Nucl. Phys. B185, 20 (1981); Nucl. Phys. B193, 173 (1981). C. Burden, A.N. Burkitt, Eur. Phys. Lett. 3, 545 (1987).

$$S^f_E[ar{\chi},\chi,U] = -\sum_{\mathbf{n},\mathbf{m}} ar{\chi}(\mathbf{n}) D_{\mathbf{s}}[U,\mathbf{n},\mathbf{m}]\chi(\mathbf{m}) egin{array}{c} \eta^0(\mathbf{n}) &= 1 \ \eta^1(\mathbf{n}) &= (-1)^{n_0} \ \eta^2(\mathbf{n}) &= (-1)^{n_0+n_1} \ \eta^2(\mathbf{n}) &= (-1)^{n_0+n_1} \end{array}$$

$$D_{\mathbf{s}}[U,\mathbf{n},\mathbf{m}] = \frac{1}{2}(\delta_{\mathbf{n}+\mathbf{e}_{0},\mathbf{m}}U(\mathbf{n}) - \delta_{\mathbf{n}-\mathbf{e}_{0},\mathbf{m}}U^{\dagger}(\mathbf{m})) + \frac{v}{2}\sum_{i}\eta^{i}(\mathbf{n})(\delta_{\mathbf{n}+\mathbf{e}_{i},\mathbf{m}} - \delta_{\mathbf{n}-\mathbf{e}_{i},\mathbf{m}}) + m_{0}\delta_{\mathbf{n},\mathbf{m}}$$

Gauge invariance on the lattice: "gauge links" in the fermion action ...

$$U(\mathbf{n}) = \exp\left\{i\theta(\mathbf{n})\right\}$$

Lattice Monte Carlo simulation IV:

generation of gauge configurations, Hybrid Monte Carlo ...

S. Duane et al., Phys. Lett. B 195, 216 (1987).

Add to the Euclidean action a random Gaussian noise component ...

$$H = \sum_{\mathbf{n}} \frac{\pi_{\mathbf{n}}^2}{2} + S_E[\theta]$$

Enables global updates of the lattice gauge potential

Introduce pseudofermions to provide efficient updating of the fermion action ...

$$\det(Q) \propto \int \mathcal{D}\phi^{\dagger} \mathcal{D}\phi \, \exp(-S_{E}^{p}) \qquad S_{E}^{p} = \sum_{\mathbf{n},\mathbf{m}} \phi_{\mathbf{n}}^{\dagger} \, Q_{\mathbf{n},\mathbf{m}}^{-1}[\theta] \, \phi_{\mathbf{m}} = \sum_{\mathbf{n}} \xi_{\mathbf{n}}^{\dagger} \xi_{\mathbf{n}}$$

Evolve the gauge field by numerically integrating the EOM (Molecular Dynamics) ...

$$H = \sum_{\mathbf{n}} \frac{\pi_{\mathbf{n}}^2}{2} + S_E^g + S_E^p$$

Exact method: MD evolution error corrected by Metropolis step ...

$$\begin{split} \dot{\theta}_{\mathbf{n}} &= \frac{\delta H}{\delta \pi_{\mathbf{n}}} = \pi_{\mathbf{n}}, \\ \dot{\pi}_{\mathbf{n}} &= -\frac{\delta H}{\delta \theta_{\mathbf{n}}} \equiv F_{\mathbf{n}}^{g} + F_{\mathbf{n}}^{p} \end{split}$$

Lattice Monte Carlo simulation V: extrapolation to the critical point ...

A. Kocić, J.B. Kogut, K.C. Wang, Nucl. Phys. B398, 405 (1993). M. Göckeler *et al*, Nucl. Phys. B487, 313 (1997).

"Equation of state" analysis ...

$$m_0 = f(\sigma, \beta)$$

 $m_0 = f(\sigma, \beta)$
 $\sigma \equiv \langle \bar{\chi}\chi \rangle$
 $\chi_l \equiv \frac{\partial \sigma}{\partial m_0}$

Simultaneous fit to condensate and susceptibility

Trial function (also for QED4) ...

$$m_0 X(\beta) = Y(\beta) f_1(\sigma) + f_3(\sigma)$$

Dependence on σ : Information on critical exponents δ , β_m !

$$f_1(\sigma) = \sigma^{\delta - 1/\beta_m}$$

$$f_3(\sigma) = \sigma^{\delta}$$

Dependence on β : Information on critical coupling β_c !

$$\begin{split} X(\beta) &= X_0 + X_1 (1 - \beta / \beta_c) \\ Y(\beta) &= Y_1 (1 - \beta / \beta_c) \end{split}$$

Results I: quantum phase transition into a gapped phase ...

J.E. Drut, T.A. Lähde, Phys. Rev. Lett. 102 (2009) 026802 J.E. Drut, T.A. Lähde, Phys. Rev. B79 (2009) 165425

$$\beta_{\rm c} \sim 0.073 \pm 0.002$$

Critical coupling from EOS analysis!

Results II:

is the semimetal-insulator transition observable?

Graphene on a SiO₂ substrate $\beta \sim 0.10$ Our critical coupling $\beta_c \sim 0.073$ Suspended graphene $\beta \sim 0.037$

Figure: A.H. Castro Neto, Physics 2, 30 (2009)

Under ideal circumstances: should be observable for **suspended** graphene samples!!

Results III:

critical exponents, critical # of flavors ...

The EOS extrapolation indicates a secondorder transition, critical exponents:

> $δ = 2.2 \pm 0.1$ $\overline{β} = 0.83 \pm 0.05$ $γ = 1.0 \pm 0.04$

$$\begin{split} \delta &\equiv \left[\frac{\partial \ln \sigma}{\partial \ln m_0} \right]^{-1} \bigg|_{\beta = \beta_c, m_0 \to 0} \\ \bar{\beta} &\equiv \left. \frac{\partial \ln \sigma}{\partial \ln (\beta_c - \beta)} \right|_{m_0 = 0, \beta \nearrow \beta_c} \\ \gamma &\equiv - \left. \frac{\partial \ln \chi}{\partial \ln (\beta_c - \beta)} \right|_{m_0 = 0, \beta \to \beta_c} \end{split}$$

Consistent with $areta(\delta-1)=\gamma$

J.E. Drut, T.A. Lähde, L.J. Suoranta, arXiv:1002.1273

Simulations for $N_f = 4$ show a transition at stronger coupling, for $N_f = 6$ nothing is observed:

$$4 < N_{crit} < 6$$

J.E. Drut, T.A. Lähde, Phys. Rev. Lett. 102 (2009) 026802

Results IV:

supporting results by other groups (some examples) ...

Analytical Dyson-Schwinger calculations: consistent with our results, however infinite-order transition ...

D.V Khveschenko, Phys. Rev. Lett. 87, 246802 (2001) E.V. Gorbar et al., Phys. Rev. B66, 045108 (2002)

Lattice Monte Carlo simulations: strong-coupling limit, closely related to Thirring model in (2+1) dimensions ... S.J. Hands, C. Strouthos, Phys. Rev. B78, 165423 (2008)

S.J. Hands, C. Strouthos, W. Armour, arXiv:0910.5646

Large N_f treatment:

second-order transition verified, critical exponents disagree ...

I. Herbut, V. Juričić, O. Vafek, Phys. Rev. B80, 075432 (2009)

Strong-coupling expansion of the lattice theory: chiral EFT technique, transition to insulating phase confirmed ... Y. Araki, T. Hatsuda, arXiv:1003.1769

Lattice artifacts I: photon self-interactions on the lattice ...

We chose arbitrarily to simulate the non-compact theory of graphene ...

$$S_E^{g,nc}[\theta] = rac{eta}{2} \sum_n \left[\sum_{i=1}^3 \left(heta_{\mathbf{n}} - heta_{\mathbf{n}+\mathbf{e}_i}
ight)^2
ight]$$

Equally well, we could simulate the compact theory instead, identical continuum limit ...

$$S_E^{g,c}[\theta] = \beta \sum_{\mathbf{n}} \left[3 - \sum_{i=1}^3 \Re \left(U_{\mathbf{n}} U_{\mathbf{n}+\mathbf{e}_i}^\dagger \right) \right]$$

Gauge links introduce higher-order vertices (self-interactions, tadpoles) How do these affect the simulation?

Lattice artifacts II:

effects of photon self-interactions in the compact theory ...

J.E. Drut, T.A. Lähde, L.J. Suoranta, arXiv:1002.1273

First order transition, no approach to the continuum limit (!)

As for (3+1) dimensional QED, the compact theory of graphene bears little resemblance to continuum physics ...

Lattice artifacts III:

tadpole improvement ...

G.P. Lepage, P.B. Mackenzie, Phys. Rev. D48, 2250 (1993).

 $U_{\mu}(x) \equiv e^{iagA_{\mu}(x)} \rightarrow 1 + iagA_{\mu}(x)$

However, UV divergent "tadpole" contributions do not vanish as a power of the lattice spacing ...

Integrate out the tadpole contributions by "renormalizing" the gauge links ...

$$U_{\mu} \to u_0 \, e^{iag A_{\mu}^{\mathrm{IR}}} \approx u_0 \, (1 + iag A_{\mu}^{\mathrm{IR}})$$

Renormalized gauge links give results closer to the continuum limit, estimate the correction *a posteriori* ...

$$u_0 \equiv \langle P \rangle^{1/2}, \quad P = \frac{1}{V} \sum_{\mathbf{n}} U_{\mathbf{n}} U_{\mathbf{n}+\mathbf{e}_i}^{\dagger}$$

 $\rightarrow U/u_0$

Lattice artifacts IV:

tadpole improvement of the non-compact theory ...

J. Giedt, A. Skinner, S. Nayak, arXiv: 0911.4316 J.E. Drut, T.A. Lähde, L.J. Suoranta, arXiv:1002.1273

$$\begin{split} D_{\mathbf{n},\mathbf{n}'}^{I}[\theta] &= \frac{1}{2} \left[\delta_{\mathbf{n}+\mathbf{e}_{0},\mathbf{n}'} \, U_{\mathbf{n}} - \delta_{\mathbf{n}-\mathbf{e}_{0},\mathbf{n}'} \, U_{\mathbf{n}'}^{\dagger} \right] \\ &\quad + \frac{v'}{2} \sum_{i} \eta_{i,\mathbf{n}} \left[\delta_{\mathbf{n}+\mathbf{e}_{i},\mathbf{n}'} - \delta_{\mathbf{n}-\mathbf{e}_{i},\mathbf{n}'} \right] + m_{0}' \, \delta_{\mathbf{n},\mathbf{n}'} \end{split}$$

Overall: effectively a shift in the parameters of the theory!

$$\sigma' \equiv \sigma/u_0, \quad v' \equiv u_0 v, \quad m'_0 \equiv u_0 m_0 \qquad \chi \equiv \sqrt{u_0} \chi'$$
Additionally,
for the compact theory:
$$g' \equiv u_0 g$$
Average plaquettes in the non-
compact and compact theories ...

0.1

0.15

β

0.2

0.05

0.2 0.4 0.6 0.8

β

1

Lattice artifacts V: unimproved results for the non-compact theory ...

J.E. Drut, T.A. Lähde, L.J. Suoranta, arXiv:1002.1273

$\beta_c \sim 0.074 \pm 0.001$

Data at strong coupling cannot be fitted, "scaling violations" ...

Lattice artifacts VII: tadpole-improved compact theory?

$$\beta\equiv \frac{v}{g^2}=\frac{v'/u_0}{g'^2/u_0^2}=u_0\beta'$$

J.E. Drut, T.A. Lähde, L.J. Suoranta, arXiv:1002.1273

 $\beta_c \sim 0.40 \xrightarrow{TI} \beta_c \sim 0.25$

Transition becomes less likely – effect of TI very different from the non-compact case!

Lattice artifacts VIII:

staggered fermions and chiral symmetry ...

Our objective is to study the following chiral symmetry breaking pattern ...

U(4) 📥 U(2) x U(2)

However, using one flavor of staggered fermions at finite lattice spacing, we have only a smaller symmetry ...

$$U(I) \times U(I) \longrightarrow U(I)$$

C. Burden, A.N. Burkitt, Eur. Phys. Lett. 3, 545 (1987).

The full symmetry is restored in the continuum limit, but is the extrapolation reliable?

Ultimately: simulate graphene with

overlap fermions!!

Future projects I: fermion velocity renormalization ...

Collaboration: Lauri Suoranta (Aalto U.), master's thesis project Joaquín Drut (Ohio State U.)

S.J. Hands, C. Strouthos, W. Armour, arXiv:0910.5646

Future projects II: conductivity of graphene ...

Collaboration: Eero Tölö, Lauri Suoranta (Aalto U.) Joaquín Drut (Ohio State U.)

K.I. Bolotin et al., Phys. Rev. Lett. 101, 096802 (2008), V. Crespi, Physics 1, 15 (2008).

Future projects III:

exciton condensation in bilayer graphene ...

Collaboration: Joaquín Drut (Ohio State U.) Allan MacDonald (UT Austin) ...

M.Yu. Kharitonov, K. Efetov, arXiv:0903.4445