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Motivation

- Successful derivation of nuclear potentials using method of unitary
transformation & chiral perturbation theory in recent
yearsEpelbaum et al. ’98

- Consistent derivation of electromagnetic-current Jµ

ψf ψi

+ +

...

+

- ~∇ · ~J = −i [H , ρ]

- Treat em-interaction as
perturbation

- Convolute between wave-
functions.

- Define effective current with unitary transformation

ηVeffη = ηU ′†ηU†(H − H0)UηU ′η, U =

(

η
“

1 + A†A
”− 1

2 −A†
“

1 + AA†
”− 1

2

A
“

1 + A†A
”− 1

2 λ
“

1 + AA†
”− 1

2

)

ηJ
µ
eff

η = ηU ′†ηU†JµUηU ′η,

with projectors η (λ) on the purely nucleonic (rest) subspace.
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Two-Pion exchange currents

Class 1:

Class 2:

Class 3:

Class 4:

Class 7:

Class 5:

Class 6:
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Two-Pion exchange currents in configuration-space

~Jc1 (~r10,~r20) = e
g2
A M7

π

128π3F 4
π

h

~∇10 [~τ1 × ~τ2]
3

+ 2
h

~∇10 × ~σ2

i

τ
3
1

i

δ(~x20)
K1(2x10)

x2
10

+ (1 ↔ 2) ,

~Jc2 (~r10,~r20) = − e
g4
A M7

π

256π3F 4
π

“

3∇
2
10 − 8

”

»

~∇10 [~τ1 × ~τ2 ]
3

+ 2
h

~∇10 × ~σ2

i

τ
3
1

–

δ(~x20)
K0(2x10)

x10

+ e
g4
A M7

π

32π3F 4
π

h

~∇10 × ~σ1

i

τ
3
2 δ(~x20)

K1(2x10)

x2
10

+ (1 ↔ 2) ,

~Jc3 (~r10,~r20) = − e
M7

π

512π4F 4
π

[~τ1 × ~τ2]
3

(~∇10 − ~∇20)
K2(x10 + x20 + x12)

(x10 x20 x12)(x10 + x20 + x12)
+ (1 ↔ 2) ,

~Jc5 (~r10,~r20) = − e
g2
A M7

π

256π4F 4
π

“

~∇10 − ~∇20

”

»

[~τ1 × ~τ2]
3 ~∇12 · ~∇20 − 2τ

3
1 ~σ2 ·

h

~∇12 × ~∇20

i

–

×
K1(x10 + x20 + x12)

(x10 x20 x12)
+ (1 ↔ 2) ,

~Jc7 (~r10,~r20) = e
g4
A M7

π

512π4F 4
π

“

~∇10 − ~∇20

”

»

[~τ1 × ~τ2]
3 ~∇12 · ~∇10

~∇12 · ~∇20 + 4τ
3
2 ~σ1 ·

h

~∇12 × ~∇10

i

× ~∇12 · ~∇20

–

x10 + x20 + x12

x10 x20 x12

K0(x10 + x20 + x12) + (1 ↔ 2)

~J4 (~r10,~r20) = ~Jc6 (~r10,~r20) = 0 ,

with ~r1/2/0 the positions of the first/second nucleon/the photon, and ~x10 = Mπ (~r1 −~r0), ~x20 = Mπ (~r2 −~r0),

~x12 = Mπ (~r1 −~r2) and ~∇ij ≡ ∂/∂xij and xij ≡ |~xij |.
All derivatives have to be evaluated as if the variables were independent.
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Two-Pion exchange currents in configuration-space Ctd.

ρc1 (~r10,~r20) = ρc2 (~r10,~r20) = ρc3 (~r10,~r20) = 0 ,

ρc4 (~r10,~r20) = e
g2
A M7

π

256π2F 4
π

τ
3
1 δ(~x20)

“

∇
2
10 − 2

” e−2x10

x2
10

+ (1 ↔ 2) ,

ρc5 (~r10,~r20) = − e
g2
A M7

π

256π2F 4
π

τ
3
2 δ(~x20)

“

∇
2
10 − 2

” e−2x10

x2
10

+ (1 ↔ 2) ,

ρc6 (~r10,~r20) = − e
g4
A M7

π

256π2F 4
π

δ(~x20)

»

τ
3
1

“

2∇
2
10 − 4

”

+ τ
3
2 ~σ1 · ~∇10 ~σ2 · ~∇10 − τ

3
2 ~σ1 · ~σ2

–

e−2x10

x2
10

− e
g4
A M7

π

128π2F 4
π

δ(~x20) τ
3
1

“

3∇
2
10 − 11

” e−2x10

x10

+ (1 ↔ 2) ,

ρc7 (~r10,~r20) = − e
g4
A M7

π

512π3F 4
π

»

(τ
3
1 + τ

3
2 )

„

~∇12 · ~∇10
~∇12 · ~∇20 + ~∇12 ·

h

~∇10 × ~σ1

i

~∇12 ·
h

~∇20 × ~σ2

i

«

+ [~τ1 × ~τ2]
3 ~∇12 · ~∇10

~∇12 ·
h

~∇20 × ~σ2

i

–

e−x10

x10

e−x20

x20

e−x12

x12

+ (1 ↔ 2) .

- Results also available in momentum-space, expressed in standard
loop-function L(q), A(q) and three-point functions.

- Can be easily treated numerically.

- Continuity-equation is fulfilled → Current is consistent with
potential obtained within the method of unitary transformation
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Additional unitary transformations
- Okubo-parameterization only gives a minimal unitary

transformation.

- We are free to add additional transformations.

- Consider the 3N-force diagram:

η

×→

U ′ V1π

- Contribution from additional
transformation!

- Write U′ = eS = 1 + S,
with S† = −S and
S = ηSη.

- For this exampleEpelbaum ’07

S = α1S1 + α2S2 ,

S1 = η

"

H
1
21

λ1

Eπ
H

1
21ηH

1
21

λ1

E3
π

H
1
21 − H

1
21

λ1

E3
π

H
1
21ηH

1
21

λ1

Eπ
H

1
21

#

η ,

S2 = η

"

H
1
21

λ1

Eπ
H

1
21

λ2

Eπ
H

1
21

λ1

E2
π

H
1
21 − H

1
21

λ1

E2
π

H
1
21

λ1

Eπ
H

1
21

λ1

Eπ
H

1
21

#

η .

- Renormalizability of the potential

→

ω1

ω2

ω3

ω2

- Divergencies have to absorbed by right diagram.

- Depends only on 1/ω2
2 .

- Can fix α1 = −1/2 and α2 = 1/4.
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Additional transformations Ctd.

- Further additional transformations (not fixed by renormalizability).

α8α7

S7 = α7η

"

H
2
20ηH

1
21

λ1

E2
π

H
1
21 − H

1
21

λ1

E2
π

H
1
21ηH

2
20

#

,

S8 = α8η

"

H
3
21

λ1

E3
π

H
1
21 − H

1
21

λ1

E3
π

H
3
21

#

η .

- Where H2
20 = 1/2mN~p2 , and H3

21 is the 1/mN correction to H1
21 .

- Additional transformations for the em-current

β1

U
′
em = e

S′
, with S

′
(A) → 0 for A → 0 ,

U
′
em s.t. transformed Hamiltonian is block-diagonal

S
′
1 = β1η

"

J
−1
02

λ2

E2
π

H
2
22 − H

2
22

λ2

E2
π

J
−1
02

#

η,

β2

S
′
2 = β2η

"

H
1
21

λ1

E2
π

J
−1
20

λ1

Eπ
H

1
21 − H

1
21

λ1

Eπ
J
−1
20

λ1

E2
π

H
1
21

#

η,
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Additional Contributions for the em current Ctd.

β3

S
′
3 = β3η

"

J
−1
20 ηH

1
21

λ1

E3
π

H
1
21 − H

1
21

λ1

E3
π

H
1
21ηJ

−1
20

#

η ,

→ contribution vanishes in all considered cases!

β4,5,6

S4 = −
β4

2
η

"

J
−1
02

λ2

E2
π

H
1
21

λ1

Eπ
H

1
21−H

1
21

λ1

Eπ
H

1
21

λ2

E2
π

J
−1
02

#

η ,

S5 = −
β5

2
η

"

J
−1
02
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Eπ
H

1
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λ1

E2
π

H
1
21−H

1
21

λ1

E2
π

H
1
21

λ2

Eπ
Jπ

#

η ,

S6 = −β6η

»

H
1
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Eπ
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π

H
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1
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π
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02

λ1

Eπ

H
1
21

–

η ,

- Constraints by renormalizability!

- These diagrams receives contributions from S′
1 .

- The divergent part of the diagrams has to be absorbed
into LECs.

- The divergent part (β-functions) of the LECs is already

knownGasser et al. ’02.

- Nontrivial since β-functions computed in different
formalism.
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Determination of βs

Contributes to:

~Jc5 = e
g2
A i

16F 4
π

(β1 − 1) [~τ1 × ~τ2]
3 ~σ1 ·~q1 ~σ2 ·~q2

q2
2 + M2

π

×

Z

d3 l

(2π)3
~l

ω+ − ω−

ω+ω−(ω+ + ω−)2
+ (1 ↔ 2)

with ω
2
± =

“

~l ±~k
”2

+ 4M
2
π , ~k = Photon-momentum .

- Contributions from LECs vanishes in this case.

- Have to choose β1 = 1 to guaranty renormalizability.

Contributes to:

~Jc7,1 = e
i g4

A

8F 4
π

~σ2 ·~q2

q2
2 + M2

π

[~τ1 × ~τ2]
3
Z

d3 l

(2π)3
~l ~l ·

h

~k × [~q2 × ~σ1]
i

×
ω2

+ + ω+ω− + ω2
−

ω3
+ω3

−(ω+ + ω−)
− e

i g4
A

8F 4
π

[~τ1 × ~τ2]
3 ~σ2 ·~q2

q2
2 + M2

π

(β − 1)

×~q2 · ~σ1

Z

d3 l

(2π)3
~l
“

l
2
− k

2
”

(~σ1 ·~q2)
2ω+ + ω−

ω3
+ω−(ω+ + ω−)2

+(1 ↔ 2) ,
Where, for brevity, we set β4 = β5 = β6 = β.
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Determination of βs Ctd.

Divergent part reads (in dim. reg.)

~Jc7div =−e
i g4

A

32F 4
ππ2

[~τ1 × ~τ2]
3 ~σ2 ·~q2

q2
2 + M2

π

h

~k × [~q2 × ~σ1]
i 1

d − 4

+e
5i g4

A

192F 4
ππ2

[~τ1 × ~τ2]
3 ~σ2 ·~q2

q2
2 + M2

π

(β − 1)~k~q2 · ~σ1
1

d − 4
+ (1 ↔ 2) ,

- Left and right diagram do not contribute.

- The diagram in the middle contributes among other
things the following LECs

~J = −2e
i gA

F 2
π

“

d8τ
3
2 + d9 (~τ1 · ~τ2)

” ~σ2 ·~q2

q2
2 + M2

π

h

~q2 × ~k
i

− e
i gA

4F 2
π

(2d21 + d22) [~τ1 × ~τ2]
3 ~σ2 ·~q2

q2
2 + M2

π

h

~k × [~q2 × ~σ1]
i

+ e
i gA d22

4F 2
π

[~τ1 × ~τ2 ]
3 ~σ2 ·~q2

q2
2 + M2

π

“

~σ2k
2
− ~q2~σ2 ·~k

”

+ (1 ↔ 2)

with the β-functions

di = d
r
i (µ) +

βi

F 2
π

L , li = l
r
i (µ) + γi L

β8 = β9 = β18 = β22 = 0, β16 =
1

2
gA + g

3
A, β21 = −g

3
A, γ4 = 2, γ6 = −

1

3
,

L =
µd−4

16π2

»

1

d − 4
−

1

2

“

Γ
′
(1) + 1 + log (4π)

”

–

.

We have to choose β = 1!
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Determination of βs Ctd.

These diagrams have also a contribution to the charge density
For β = 1

ρc7 = −e
g4
A

8F 4
π

~σ2 ·~q2

q2
2 + M2

π

τ
3
2

Z

d
3
l

1

ω2
+ω2

−

h

~σ1 ·~l ~l ·~q2 − ~σ1 ·~k ~k · ~σ2

i

+(1 ↔ 2) .

. . .

- Omitted most of the diagrams for brevity (in the figure).

- S′
2 and S′

3 could potentially contribute, but do not.

- Diagrams are not divergent.

Contribution to the charge density:

ρc6 = e
g4
A

4F 4
π

τ
3
2

~σ2 ·~q2

q2
2 + M2

π

~σ1 ·~q2
1

3

Z

d3 l

(2π)3

l2

ω4
l

+ (1 ↔ 2).

Partial Summary

By choosing β1 = β4 = β5 = β6 = 1 we can get rid of divergencies. β2 and β3 remain undetermined.

We still have to check that all divergencies cancel!
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Additional loop contributions

- These diagrams cancel exactly!

Class 1:

~Jc1 = −e
i g2

A

16F 4
π

[~τ1 × ~τ2]
3 ~σ2 ·~q2

q2
2 + M2

π

~σ1

Z

d3 l

(2π)3

1

ω3
l

+ (1 ↔ 2) .

+ . . .

Class 2, (Omitted some non-vanishing diagrams in the figure):

~Jc2 = e
i g2

A

2F 4
π

[~τ1 × ~τ2 ]
3 ~σ2 ·~q2

q2
2 + M2

π

~σ1

Z

d3 l

(2π)3

1

ω3
l

+ (1 ↔ 2) .

Class 7:

~Jc7,2 = e
i g4

A

4F 4
π

[~τ1 × ~τ2]
3 ~σ2 ·~q2

q2
2 + M2

π

~σ1 ·~q1

q2
1 + M2

π

(~q2 −~q1) ~σ1

×

Z

d3 l

(2π)3

1

ω3
l

+ (1 ↔ 2) .
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Additional loop contributions Ctd

- However, all of the previous currents are
canceled by these diagrams

- plus the contributions from δZπ and
δ(gA/Fπ).

- LECs d16 and l4 disappear, only remaining
term

~J = e
g2
A i

4F 2
π

[~τ1 × ~τ2]
3


d18

gA

»

~σ2 ·~q2

q2
2 + M2

π

~σ1 ·~q1

q2
1 + M2

π

(~q1 −~q2) −
~σ2 ·~q2

q2
2 + M2

π

~σ1 +
~σ1 ·~q1

q2
1 + M2

π

~σ2

–

− l6 ~σ1 ·~q1 ~σ2 ·~q2 (~q1 + ~q2)

 

1

q2
2 + M2

π

−
1

q2
1 + M2

π

!

+
1

2

 

2k
2
l6 −

Z

d3 l

(2π)3

1

ωl

!

~σ2 ·~q2

q2
2 + M2

π

~σ1 ·~q1

q2
1 + M2

π

(

−
1

4

~σ2 ·~q2

q2
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π

~σ1 ·~q1

q2
1 + M2

π

Z

d3 l

(2π)3
~l ~l · (~q1 −~q2)

1

ω+ω−(ω+ + ω−)

ff

+ (1 ↔ 2) .

The remaining divergence can be absorbed in l6 with the known β-function!
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Summary so far

Current density from LECs

~JLEC = −2e
gA i

F 2
π

“

d8τ
3
2 + d9 (~τ1 · ~τ2)
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q2
2 + M2

π
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i
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3


`
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´
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π
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i
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π

“
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”
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»

1

2

~σ2 ·~q2

q2
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π

~σ1 ·~q1

q2
1 + M2

π
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~σ2 ·~q2

q2
2 + M2

π

~σ1

–

− gA l̄6 ~σ1 ·~q1 ~σ2 ·~q2 (~q1 + ~q2)
1

q2
2 + M2

π

+
1

2
k

2
gA l̄6

~σ2 ·~q2

q2
2 + M2

π

~σ1 ·~q1

q2
1 + M2

π

(~q1 −~q2)

ff

+(1 ↔ 2)

Loop contribution to current density

~JLoop = −e
i g4

A

64F 4
ππ2

[~τ1 × ~τ2 ]
3 ~σ2 ·~q2

q2
2 + M2

π

h

~k × [~q2 × ~σ1]
i

(2L(k) − 1)

+ e
i g4

A

1536F 4
ππ2

[~τ1 × ~τ2]
3 ~σ2 ·~q2

q2
2 + M2

π

~σ1 ·~q1

q2
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π
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»

(4M
2
π + k

2
)L(k) −

1

6
(5k

2
+ 24M

2
π )

–

+ e
i g4

A

768F 4
ππ2k2

~σ1 ·~q1 ~σ2 ·~q2 (~q1 + ~q2)
1

q2
2 + M2

π

„

(4M
2
π + k

2
)L(k) −

1

6
(5k

2
+ 24M

2
π )

«

+ (1 ↔ 2).
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Summary so far Ctd.

Loop contribution to the charge density

ρLoop = e
g4
A

64F 4
ππ

~σ2 ·~q2

q2
2 + M2

π

»

τ
3
2 ~σ1 · ~k ~q2 ·~k

 

2A(k) +
Mπ − (4M2

π + k2)A(k)

k2

!

+ ~q2 · ~σ1(Mπ + (4M
2
π + k

2
)A(k) − 2Mπ )

–

+(1 ↔ 2) ,

A(k) =
1

2k
arctan

„

k

2Mπ

«

, L(k) =
1

2

4M2
π + k2

k
log

0

B

@

q

4M2
π + k2 + k

q

4M2
π + k2 − k

1

C

A
.

One-Pion Exchange current

- All divergencies can be canceled by additional unitary
transformations

- or by LECs with predetermined β-functions

- Contributions from LECs d8, d9, d18, d21, d22 and l6

- Continuity equation is fulfilled.
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One-Pion exchange with LO contact potential

Diagrams with CS and CT

~J = e
g2
A i

16F 2
ππ2

CT

“

τ
3
1 − τ

3
2

” h

(~σ1 − ~σ2) × ~k
i

(2L(k) − 1) ,

ρ = −e
g2
A

32F 4
ππ

CT

“

τ
3
1 + τ

3
2

”

»

~σ1 · ~σ2
`

3Mπ + (3k
2

+ 4M
2
π )A(k)

´

+ ~σ1 · ~k ~σ2 ·~k

 

Mπ − (4M2
π + k2)A(k)

k2
+ 2A(k)

!

–

.

- Contributions from additional unitary transformations cancel!

- Divergent part can be absorbed in contact currents.

. . .

Many non-vanishing diagrams not shown here.

ρ = e
g2
A

8F 4
ππ

CT

“

τ
3
1 + τ

3
2

”

~σ1 · ~σ2Mπ .

Only dependent on CT .

. . . → These diagrams vanish.
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Contact currents
- Seven contact contributions to the potential.

Vcontact = C1q
2

+ C2k
′2

+
“

C3q
2

+ C4k
′2
”

(~σ1 · ~σ2) + iC5
~σ1 + ~σ2

2
·
h

~k
′
×~q

i

+ C6 (~q · ~σ1) (~q · ~σ2) + C7

“

~k
′
· ~σ1

” “

~k
′
· ~σ2

”

,

~k
′

=
~p + ~p ′

2
, ~q = ~p

′
−~p .

- Via a gauge transformation and a Fierz-reshuffling, we obtain

~Jcontact = +i (C2 + 3C4 + C7)
e

16
[~τ1 × ~τ2]

3
(~q1 −~q2)

− i (−C2 + C4 + C7)
e

16
[~τ1 × ~τ2]

3
(~q1 −~q2) ~σ1 · ~σ2

− C5 i
e

16
(τ

3
1 − τ

3
2 ) [(~σ1 + ~σ2) × (~q1 −~q2)]

+ iC7
e

16
[~τ1 × ~τ2]

3
»

~σ1 ~σ2 · (~q1 −~q2) + ~σ2 ~σ1 · (~q1 −~q2)

–

.

Plus two contact currants that cannot be obtained from gauge transformations

~Jcontact = −e i C̃1

h

(~σ1 + ~σ2) ×~k
i

− e i C̃2(τ
3
1 − τ

3
2 )
h

(~σ1 − ~σ2) × ~k
i

.

- We checked, that the divergencies of the two-loop current can be absorbed into the contact currents with
the same renormalization of the Ci as in the case of the potential.

- C̃1 can contribute to elastic ed-scattering, contribution to d-magnetic moment.

- C̃2 from d-breakup reaction at threshold.



Two-Pion exchange Additional transformations One-Pion exchange Summary

Comparison with Pastore et al.

- Pastore et al. (2009) do not take into account these
two diagrams.

- In our formalism, however, the contribution from the
middle diagram is exactly canceled from the left and
right diagrams.

- ⇒ Different isospin structure of the loop contributions!

- They do not comment on the LECs l6 and d18 .

- The LEC d22 only appears in the combination 2d21 + d22 .

- Loops with CS and CT depend on CS .

- This is similar to the situation with the potential.

- Again a different isospin structure!

- They work with a different contact Lagrangian, however their results agree with ours.
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1/mN-corrections

With ~p1/2( ~p ′
1/2) the momentum of the incoming (outgoing) nucleon 1/2.

ρ = e
g2
A

16F 2
πmN

~σ2 ·~q2

q2
2 + M2

π

(1 − 2α8)~σ1 · ~k
h

τ
3
2 + ~τ1 · ~τ2

i

+ e
g2
A i

16F 2
πmN

~σ2 ·~q2

q2
2 + M2

π

[~τ1 × ~τ2 ]
3 ˆ

~σ2 ·
“

~p1 + ~p
′
1 + ~p2 + ~p

′
2

”

+ 2α8~σ2 ·
“

~p1 + ~p
′
1 −~p2 −~p

′
2

”

˜

+ (1 ↔ 2)

ρ = −e
g2
A i

8F 2
πmN

~σ2 ·~q2

q2
2 + M2

π

[~τ1 × ~τ2]
3

~σ2 ·
“

~p1 + ~p
′
1

”

+ (1 ↔ 2)

These diagrams with one insertion

of ~p 2/2mN vanish!
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1/mN-corrections Ctd.

ρ = −e
g2
A

16F 2
πmN

(1 − 2α7)(τ
3
1 + ~τ1 · ~τ2) (~σ1 ·~q1 ~σ2 ·~q2)

~q1 ·~k

(q2
1 + M2

π)2

+ e
g2
A i

16F 2
πmN

[~τ1 × ~τ2]
3

(~σ1 ·~q1 ~σ2 ·~q2)
1

(q2
1 + M2

π )2

×

»

(1 + 2α7)~q1

“

~p1 + ~p
′
1 + ~p2 + ~p

′
2

”

+ (1 − 2α7)~q1

“

~p1 + ~p
′
1 + ~p2 + ~p

′
2

”

− 4β2

“

~q1 ·
“

~p1 + ~p
′
1

”

+ ~q2 ·
“

~p2 + ~p
′
2

””

–

+ (1 ↔ 2) .

- 1/mN-corrections depend on three parameters α7, α8 and β2.

- Give only rise to charge density terms.

- In Epelbaum, Glöckle, Meißner, ’04 the convention α7 = 1/4 and
α8 = 0 has been adopted.
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Determining the LECs

- In NLO one-pion exchange current 6 LECs appear:

l6

- l6 is related to pion vector form factor →
well known.

d18

- d18 is related to Goldberger-Treiman
discrepancy
gπN/mN = gA/Fπ(1 − 2M2

π/gAd18) →

relatively well known.

d8, d9, d21, d22

- d8, d9, d21 and d22 are related to
pion-photoproduction on one nucleon,
poorly known.

. . .

- Calculate full pion-photoproduction
amplitude and fix these constants to data!

- Pastore et. al estimate

d9 = gρπγgρNN

Fπ

4m3
ρ

d8 = gωπγgωNN

Fπ

4m3
ω
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Conclusion and outlook

Conclusion

- We derived the full NLO em-current including two-pion exchange,
one-pion exchange and contact terms.

- An explicit check of renormalizability of the one- and two-pion exchange
contributions was performed.

- Expressions are given in momentum-space in terms of loop-functions
L(q), A(q) and three-point functions.

- We analytically carried out the Fourier-transform to arrive at very
compact expressions in configuration-space.

- The current fulfills the continuity-equation, i.e. is consistent with the
potential.

- The two-pion exchange current corresponds to the result of Pastore et al.

- The one-loop current is different.

Outlook

- Calculation of pion-photoproduction off nucleons to determine LECs.

- Calculation of ed-scattering observables.

- Inclusion of ∆-degrees of freedom.

- Going to the sub-leading loop-order.

- ...
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