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Outline of this talk:

Brief review of Efimov physics for 3 particles (atoms) with short-
range interactions

The four-boson problem and the methods we developed to solve
it

Results for 4-body bound and resonant states predicted in
Nature Physics 5, 417 (2009), and experimentally confirmed by

Ferlaino, Knoop, Berninger, Harm, D’Incao, Nagerl, and Grimm,
Phys. Rev. Lett.102, 140401 (2009)

4-body recombination and its surprising importance

Theory (Mehta et al., PRL 103, 153201 (2009)) of 4-body and N-
body recombination processes, e.g.

A+A+A+AS> A +A

Very recent headway for 3-bodies, a 4-body experiment at Rice
Univ., and new theory for 5, 6, 7...8... bosonic atoms



Universality in Few-Body Physics

When a few particles interact via short-range interactions,
and their scattering length is much larger than the range r,,
their properties are observed to exhibit universality —i.e.
binding energies scale in the same way from one level to the
next, etc.

The behavior is UNIVERSAL in the sense that very different
systems, from nucleons in a nucleus, to atoms in an ultracold
cluster, to molecules, all exhibit these same universal
properties.

In a sense, few-body physics is a great unifier, as it embraces
theoretical (and experimental) studies across the sub-
disciplines of physics, initially nuclear physics (Efimov) but
more recently the torch has been taken up also by atomic
physics, by high-enerqy physics, and even condensed-matter
physics.




To understand the Efimov effect, look at the effective potential
energy curve at unitarity, as a function of the hyperradius:
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Mathematical Detail. Once you have this “effective dipole-type
attractive potential curve”, the rest is ‘TRIVIAL’!

Here, ‘trivial’ means that the solutions are simply Bessel functions (of
imaginary order, and imaginary argument).

E ., =E e’ wheres, =1.00624...is a universal constant.

n



Cross section (Mb)

Aside: It can be helpful to systematize the discussion of long-
range field effects, in order to include as much physics as
possible analytically. Ideas like this have arisen in different
subfields independently, often with different names:

Multichannel effective range theory (centrifugal only)
Bethe, Fermi, Breit...
Multichannel quantum defect theory (attractive Coulomb)
Seaton, Fano... (e.g. Seaton, Rep. Prog. Phys. 46, 1983)
Generalized quantum defect theory (arbitrary long range)

CHG, Fano, Rau, Mies, Gao, Bohn, ... e.g. PRL 81, 3355
(1998); PRA 26, 2441 (1982)

e.g., Ba excited state Ph°t°'°“'zat'°" PHYSICAL REVIEW A 80, 033401 (2009)
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Qualitative and quantitative understanding of Efimov’s result

At a qualitative level, it can be understood in hindsight, because two
particles that are already attracting each other and are infinitesimally close
to binding, just need a bit of additional attraction from a third particle in

order to push them over that threshold to become a bound three-body

system.

Quantitatively, Efimov (and later others) showed that a simple wavefunction
can be written down at each hyperradius,

2 2 2 2
R ocr,+1,+r

Aside: Efimov’s method is
similar to Joe Macek’s 1968
“adiabatic hyperspherical
potential curve” method,
although these two theorists
were not aware of each others’
work until decades later. See
also Werner and Castin’s papers
about the unitary gas limit.

i.e. R measures the SIZE of the 3-
particle triangle, but not its
shape. The shape is measured

by 2 hyperangles, ((9, ¢)

Methodology: diagonalize the fixed-R
Schrodinger equation at each R to
obtain potential curves and couplings,
thus mapping the many-dimensional
Sch. Eqn. onto 1D coupled equations.
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PHYSICAL REVIEW A 75, 062713 (2007)  3-body recombination in *He

J. B. Shepard  Fadeev treatment in momentum space, effective theory,
comparison with hyperspherical calculation:
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FIG. 2. (Color online) K;(L) computed using the form factor
g(g) (FF) and atom-atom potential HFD-B3-FCII. Present results
(dashed) are compared with those of Suno er al. [16] (solid).
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equation,
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1s then solved by evaluating each integral in a different coordinate system. The integral over



The hyperspherical potential curves are obtained as roots of a
transcendental determinantal self-consistency condition:
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FIG. 3: In (a), we show approximately the lowest 300 potential curves up to 3.5¢, while (b) shows an enlarged view of the region
near the E = ¢ threshold, and the attractive R~ diabatic Efimov potential. Note also the series of avoided crossings in (a)
near E = 0.6¢ indicating the presence of a two-body quasi-bound state. In (¢) we show the eigenvalue near E = € converging

to the universal value for two identical bosons and one distinguishable particle A2 — —0.171145 indicated by the dashed red
line,



Zero-range multichannel 3-boson potential curves versus hyperradius:

Efimov effect at excited 3-bodyv dissociation thresholds.
PHYSICAL REVIEW A 78, 020701(R) (2008)

Efimov states embedded in the three-body continuum

N. P. Mehta,}:: Seth T. EELittre:nhcrus,e,+ I P D’Incaﬂf and Chris H. Greene®
(a) 3.5




March 2010 issue of The ability to tune atomic interactions has inspired theorists and
Physics Today: experimentalists to investigate properties of few-particle systems

that hold universally, regardless of the specific nature of the inter-
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Table 1. Special values of the 2-body scattering length:
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Universality in Three- and Four-Body

Science, Dec.2009

Bound States of Ultracold Atoms

Scott E. Pollack,* Daniel Dries, Randall G. Hulet
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Alternative theoretical Physics Reports 428 (2006) 259390

method — low energy Eric Braaten®, H.-W. Hammer
effective field theory

Universality in few-body systems with large scattering length

V2 C Dy
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where the dots represent higher-order derivative terms which are suppressed at low energies.
The strength of the two-body interaction Cy 1s determined by the scattering length a, while
Dy depends on a three-body parameter to be introduced below. For momenta k of the order of
the inverse scattering length 1/|a|, the problem is nonperturbative in ka. The exact two-body

A formula for 3-body recombination into a shallow weakly bound

dimer has been derived by Petrov, and in effective field theory by
Braaten and Hammer, as: 1
12872 (47 — 34/3) fia

sinh” (7s0) + cc-str'[r:s'::;}tauf[sn In(arye) + 7] m

Ushallow =

This improves somewhat over a simplified
version containing much of the same
physical content, derived by Esry, Burke,
and CHG, 1999 PRL



Two independent theoretical studies in 1999 considered the
problem of 3-body recombination (i.e.
Rb+Rb+Rb->Rb,+Rb) from an adiabatic hyperspherical
point of view.

Nielsen and Macek, 1999 PRL
Esry, Greene, and Burke, 1999 PRL

Conclusions:

(1) Both groups found that there should be a series of
minima in the 3-body recombination rate coefficient K;(a)
at zero energy, for positive scattering lengths

(2) Esry et al. further predicted an infinite series of strong
resonances in K;(a) at negative scattering lengths, having
Efimov character.

In subsequent years, these conclusions were confirmed
independently using effective field theory methods, by Braaten,
Bedaque, and Hammer (see, e.g., Physics Reports 2006), who
derived a convenient parameterization at large |A|.
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Other groups have subsequently rederived the Efimov physics in the
universality regime of large two-body scattering lengths, especially
relevant for 3-body recombination, using other methods:

Braaten and Hammer, 2000-2006 — Effective field theory approach

Shepard, 2007 — Fadeev treatment in momentum space, effective theory

Lee, Kohler, Julienne, 2007 — 3-body Green’s function approach based
on a transition matrix, basic formulation was developed in nuclear
physics by Sandhas, Alt, and Grassman.

Gogolin, Mora, Egger, 2008 — Analytic solution of a model

Wetterich and coworkers, 2009 — functional renormalization approach



Observation of
atomic system

an Efimov spectrum in an
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M. Zaccanti'*, B. Deissler!, C. D'Errico’, M. Fattori'?, M. Jona-Lasinio’, S. Miiller?, G. Roati',

M. Inguscio' and G. Modugno'
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Figure 1| Efimov spectrum. a Theoretical binding energy of two consecutive Efimov states (red) and of the dimer state (blue) in the universal regime
versus the scattering length a b, Theoretical three-body recombination rate o (black) and atom-dimer elastic cross-section eep (blue), The vertical
dash-dotted lines indicate the position of the detectable maxima and minima in the three-body observables, for which the relevant scaling rules are
summarized in a. The dashed lines indicate the o behaviour of the three-body recombination rate expected in the absence of Efimov states. €, Measured
recombination coefficient K5 in an ultracold potassium gas (circles), featuring deviations from the bare a* trend (dotted line), and fitted behaviour
assuming a local universal trend for K in the vicinity of the two recombination minima at a = 0 and of the Efimov resonance at a =0 (solid line), see text.
The other two features due to the atom-dimer resonances af and a3, not expected by theory, are locally fitted with a Gaussian profile superimposed to a
constant background and to the universal behaviour, respectively (dashed lines). The various colours correspond to different data sets, For all data points,
the error bars are the root sum squared of the standard error of the mean value resulting from the fit and of the uncertainty on the trap frequencies (see the
Methods section).



Observation of universality in ultracold “Li three-body recombination
arXiv:0906.4731 and PRL

Noam Gross!, Zav Shotan!. Servaas Kokkelmans? and Lev Iﬂlﬂ_\'lﬂ)'\'lt'lll 103, 163202 (2009)

We report on experimental evidence of nniversality in ultracold "Li atoms’ three-hody recom
bination loss in the vicinity of a Feshbach resonance. We observe a recombination minimum and
an Elimov resonance 1n regions ol positive and negative scattering lengths, respectively, which are
connected throngh the pole of the Feshbach resonance. Both observed features lie deeply within the
range ol validity ol the universal theory and we lind that the relations between their properties, 1Le.
widths and locations, are in an excellent agreement with the theoretical predictions.
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PRL 101. 203202 (Eﬂﬂﬁj T. B. Ottenstein,” T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim'

Universal 3-body physics for 3-component Fermionic SLi
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FIG. 1 (color online). Zeeman hyperfine levels of °Li in the
electronic ground state. Transitions between adjacent hyperfine
states can be dnven with extemal rf fields.



PRL 101, 203202 (2008)

Collisional Stability of a Three-Component Degenerate Fermi Gas

T. B. Ottenstein.™ T. Lompe. M. Knhnen A.N. Wenz. and S. Jochim'
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FIG. 4 (color online).  Three-body loss coefficient K5 vs mag.
netic field.



PRL 102, 165302 (2009)

Three-Body Recombination in a Three-State Fermi Gas with Widely Tunable Interactions

J.H. Huckans, J. R. Williams, E. L. Hazlett, R. W. Stites, and K. M. O’Hara
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Typical result of universal theory with the three-body
parameter adjusted to put the Efimov resonance(s) in the
correct place.

FLOERCHINGER, SCHMIDT, AND WETTERICH
PHY %ICﬂLL REVIEW ﬂL T'} {H’%-ﬁ’%’% {”*{}{]9}

107 <! .
- 22 .. .
= 10 3
; ?riﬂ*“.-_ . e e e a w ® = : ’/hﬂl
=] 1_; i .:.-' ¥ ® ® g ® 1 i
g107° / .
X 2E . / | e ]
E / |I
10 25 [ -"'r. N T S S T R T
() 104) 204} 300 A 500 G0
B [G]

FIG. 4. (Color online) Loss coefficient K5 in dependence on the
magnetic field B as measured in [8] (dots). The solid line is the fit of
our model to the experimental curve. We use here a decay width Fx
that 1s independent of the magnetic held B.



PRL 103, 073202 (2009)

Three-Body Recombination of °L i Atoms with Large Negative Scattering Lengths

Eric Hmatcn,] H.-W. Hammer,” Dackyoung l{ang,] and Lucas Platter’
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FIG. 3 (color onhine). The three-body recombination rate con-
stant K4 as a function of the magnetic field B. The two vertical
dotted lines mark the boundaries of the region in which |as| =
M qw. The solid squares and dots are data points from
Refs. [6,7], respectively. The curve i1s a 2-parameter fit to the
shape of the data from Ref. [6].



PRL 103, 073203 (2009)

Possible Efimov Trimer State in a Three-Hyperfine-Component Lithium-6 Mixture

Pascal Naidon™ and Masahito Ueda
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And a third theoretical
study looks similar, with
reasonable overall
qualitative agreement but
again the higher-field
resonance appears to be
Sharper in theory than in
experiment



FHYSICAL REVIEW A 80, 040702(R) (2009)

Universal trimer in a three-component Fermi gas

A.N. Wenz,” T. Lompe, T. B. Ottenstein, E. Serwane, G. Ziirn, and S. Jochim'
UNIVERSAL TRIMER IN A THREE-COMPONENT FERMI GAS
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FIG. 3. (Color online) Measured three-body loss coefficient
(black squares) and different models as a function of the magnetic
field. The dashed line shows the prediction for three-body loss with-
out resonant enhancement due to trimer states, the short dashed line
gives the theoretical result for K3 geeplay,). and the solid line is the
model for K5 including a magnetic field dependence of ..



A very recent preprint > arXiv:1002.4891

Magnetic Field Dependence and Efimov Resonance Broadening in Ultracold

Three-Body Recombination

Seth T. Rittenhouse
ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02158
( Dated: February 25, 2010)

We derwve an analytic formula which describes the final bound state dependence in ultracold
three-body recombination. Using an energv-dependent loss parameter, the recently observed broad
resonance in an ultracold gas of °Li atoms [1, 2] 15 described quantitatively. We also provide an
analytic and approximation for the three-body recombination rate which encapsulates the underlying
phvsics of the universal three-body recombination process.
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Since 2006 — We initiated a concerted effort on the
4-body problem using hyperspherical coordinates

Recent papers either published or about to be:

arXiv:0904.1405 (PRA
Correlated Gaussian Hvperspherical Method for Few-Bodyv Svstems
YPErsl Yoo 80, 022504, 2009)

Javier von Stecher and Chris H. Greene

Universal Four-Boson States in Ultracold Molecular Gases: Resonant Effects in

Dimer-Dimer Collisions arXiv:0903.3348 (PRL
103, 033004, 2009)

J. P. D'Incac, 2 J. von Stecher.! and Chris H. Greene!

arXiv:0903.4145

PRL 103,
N. P. Mehta,"# Seth T. Rittenhouse,' J. P. D’Incao."* J. von Stecher,! and Chris H. Greene’1 53201 (2009)

A general theoretical description of N-body recombination

Slgr)atureg, of unwersa.l four-body phenomena and Nature Phys. June 2009
their relation to the Efimov effect

1. von Stecher, J. P. D'Incac and Chris H. Greene™®

Dimer-dimer collisions at finite energies in two-component Fermi gases
8 P 5 Phys. Rev. A 79,

J. P. D'Incao. Seth T. Rittenhouse. N. P. Mehta.* and Chris H. Greene 030501(R), (2009)



2-component fermions: key observable that has to come
out correctly is that dimer-dimer scattering length A,

Weakly Bound Dimers of Fermionic Atoms

D.S. Petrov,"** C. Salomon.” and G.V. Shlyapnikov'=-

Phys. Rev. Lett 93, 090404 (2004)

Predicted A, ,=0.6 a +/- 0.01a

Previous (ancient) theory had been based on the perturbative result A ;=2 a
Others confirming this 0.6a result include, e.g. Radzihovsky and Gurarie

Subsequent work: von Stecher and Greene, 2007 PRL.:

Our new results, from subtracting the noninteracting energy of two bosonic
molecules from the ground state energy on the BEC side of the crossover, have
now pinned down the second digit:

A, ,=0.608 a +/- 0.003a (distributed Gaussian diagonalization)
Add=0.636 a +/- 0.01a (fixed-node Diffusion Monte Carlo — D. Blume)
Add=0.604 a (4-body hyperspherical calculation)

PRL Referee: “...the accuracy ... was not established in a convincing

manner ...As a matter of fact | know for sure that the present approach is definitely
not accurate enough... | do not believe that the authors can prove it any way, as they
seem to allude, that they can extract the dimer-dimer scattering length using this set of
wave functions. A scattering state can not be expanded in gaussians...



Dimer-dimer scattering length and effective range, versus mass ratio

The dimer-dimer effective range is quite large, and it can be important for the
behavior of the molecular BEC formed. We obtain: r ,,=0.134 a_ in CG (or 0.116 a,
in MC)

J. von Stechehl Chris H. Greenekl and D. EHumleJ'2
PHYSICAL REVIEW A 76, 053613 (2007)

0 5 10 15 20

Y

FIG. 3: (Color online) Circles and crosses show agq/a. as a
function of k extracted from the four-fermion CG and FN-
DMC energies, respectively. For comparison, a solid line
shows the results from Fig. 3 of Ref. [8]. Diamonds and
squares show rgq/as extracted from the four-fermion CG and
FN-DMC energies, respectively.



Four-Bosons

How does Efimov physics
extend to four bosons?



A few details for the specialists, our correlated Gaussian
hyperspherical method (PRA 2009):
Hamiltonian studied: Basis set expansion'

H= Z(?miv + Ve ( ri) ZEDUU W (xp, - ZCA‘I’Aixl ©,Xy)

Ritz variational optimization: | = 2

_ _ Da(x1, - .xy) =do(Roym )& {exp | — Z iy ) /2

I-HE — Eg_'[f}{:'r?__ J=i=1
Expansion in hyperangular basis gives coupled

Def. of hypert%glus R: 1D ordinary diff equations:

o f o
uR2 =3 ma? | Ve 2 Fup(R)2, (R;Q)

i=1 F2 A2 (d—1)(d — 3)Ah?
RZ T SuR?

24 dR?

2 d
- 2B, (R)~= + Qur(R) | Foyrp(R) = EF, (R
9#%:[ (R)— + Quwr }] B(R) B(R)

R d°
[ t +L-';{}?j|] Fyr(R)




Four-body Formulation — How to diagonalize the fixed-hyperradius
Hamiltonian for 4 (or more) particles?

Correlated Gaussian basis set:

\I}T(rlj 2, T3, I'3) — Z O{dij}q}{dq‘.j} (rh ry, I's, I‘4)
{di;} 1

—r2 /2d2, —r2,/2d?, —r2, /2d%, —r2,/2d2., —r2,/2d2, —r2, /2d2,
‘I’{d,,.;_]-}(l'1,1‘251'3=1'4):?X){')(Rcﬂ.f)S{e |2/ 12 |.5/ 13 14/ 14 0 2.5/ 23¢ 24/ 240 ‘34/ 34

S=(1-"Pi5)(1—"Psy) <« e.9., symmetry operator relevant for 4
fermionic atoms in two-components

« The matrix elements can be calculated analytically.

« The same basis set can be used through the complete crossover (for fermions).
 Linear dependence issues.

« Can describe bound states, as usually implemented.



Revisiting the 2006 Grimm group experiment that was the first to see
3-body Efimov states

Signatures of universal four-body phenomena and
their relation to the Efimov effect

Why dﬂ we care ? J. von Stecher, J. P. D'Incao and Chris H. Greene*
MATURE PHYSICS | WVOL 5 | JUNE 2009 | p417




Previous important studies of the 4-boson system in the
universality regime in 3D:

Platter, L., Hammer, H. & Meitsner, U. Four-boson svstem with short-range
interactions. Phys. Kev. A 70, 52101 (2004,
. Hammer, H. W. & Platter, L. Universal properties of the four-body system
with large scattering length. Eur. Phys, [ A 32, 113-120 (2007).
“We have conjectured, that there are always two four-body
resonances between any two three-body states.” (i.e.

below each Efimov state) + Also, no 4-body param.

Hanna, . J. & Blume, 1. -Energetj-::a and structural properties of
three-dimensional bosonic clusters near threshold. Phys. Rev. A 74,
63604 (2006).

...also found general correlations between N-
body bound levels and (N-1)-body bound levels

Yamashita, M. T., Tomio, L., Delfino, A. & Frederico, T. Four-boson scale near

a Feshbach resonance. EEH'-'.(‘-'JDIE}’S. Lett. 75, 5355-5a1 (2006,
...conclude that a “4-body parameter” is in fact needed, but they only studied low

(non-universal states), which is presumably why they reach a different conclusion
from that of Platter and Hammer and also different from ours.



Four-Bosons J. von Stecher and C. H. Greene, arXiv:0904.1405

PRA 80, 022504, (2009)

Hyperspherical Picture

... think Born Oppenheimer Fragmentation
thresholds

U(R)

All particles close
together:

Bound and quasi-
bound states




Four-Bosons J. von Stecher and C. H. Greene, arXiv:0904.1405
PRA 80, 022504, (2009)

Hyperspherical Picture

Example: Even a three-body calculation already gives quite a bit of
complexity, so can we really expect that there could be some simple
physics lurking in the 4-body problem?

1+1+1
~~ 0
=
=
-1
< 2+1
S L
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... the hyperspherical way !!!

1 d? _l_;ﬁ(ﬂ)
2ud?R - 2uR?

H=— + V(R,Q)

Three-body Problem

0 ={0,¢}: 2D PDE
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Two four-body states per
Efimov trimer !!!

(m,m) (n) B —
Edl_-b ={:mE3b m,—l_.Q
n=12,..00

(e1 = 4.58, e = 1.01)

(no four-body parameter)

Our findings
Controversy
Hammer, Platter (2007) Vs Yamasita ef. al (2006)
(no founr-body parameter) (fonr-body parameter)

E9? ~ 1.01EY
E{Y ~ 5.0EY

Elall

Our results are consistent with Hammer & Platter’s insightful conjecture
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Two four-body states per
weef Efimov trimer !!!
1.—!-..
bl 3
Wtk
Wt Ei?‘m} = (:m_Egg’} m=1,2
wf n=12..00

(€1 == 4.58, ez = 1.01)

ino fowr-body parameter)

Four-body physics is truly Universal !!!

(geometric scaling: Efimov physics)




Four-body recombination (a < ()

(B+ B+ B+ B) =mp Before the trimer becomes bound,
at ot a® 1/a we should have formed two four-body states !!!
..; ==‘T5I. i 4h2 Bap
i in 1 = 0.43 a3, oo = 0.90 an,

aﬁb

.

&

(Ba + E]

{B+B+B+B)

g
!

|
W(R)

Q |a| > a3 B+ B+B

W(R)

]
-~
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Four-Bosons J. von Stecher, J. P. D’Incao and C. H. Greene, Nat. Phys. (2009)

Universality study in the
four-boson system

Q=00 Efimov Efimov
scaling scaling

N

3 body

4 body
’ [ N ]
Two four- J
body states
N , o000

same scaling relations!!!



Bird’s-eye view of the higher-energy tetramer, very weakly bound




Four-Bosons

J. von Stecher, J. P. D’Incao and C. H. Greene, Nat. Phys. (2009)
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Spectrum: Extended Efimov plot

‘@~ four-body states ("Hai:
(blagk lines), . ! : :
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» Calculations at
more than 500
scattering lengths!!!
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Four-Bosons

What is the effect of the four-body
states on recombination
processes?



Four-Bosons

J. von Stecher and C. H. Greene, arXiv:0904.1405

Hyperspherical Picture of 4-body recombination

... think Born Oppenheimer Fragmentation
thresholds
- 8g™ 1+1+1+1
© = T ' —
Y \ 2+1+1

@ 2+2

3+1

3+1




Four-Bosons J. von Stecher, J. P. D’Incao and C. H. Greene, Nat. Phys. (2009)

Four-body recombination
Experimental evidence

four-body ay,, = 0.43 ag, lail"’Q = 0.90 a,
recomtiination 0.03 II
r, L, three-body :
041 Q4209 3, recombination
| — 0.025} '
= |
a<0 ~
5 002 |
< <Y} . 9 I
% k5 [
S S 0015 ;
g \/ -
S £ I
& > < oo1} |
1/a 8 | |
: . : @ | |
—>increasingly negative a - ~ 0005} : :
| | 250nK
0 L. I . .
0 0.5 1 1.5 2
» Include four-body effects in the recombination!! |scattering length| (1000 a.u.)

Seealso >  VIEWPOINt  pyiics 2,26 (2009)

Ultracold experiments strike universal physics—again

B. D. Esry
Deparbment of Physics, Kansas State University, Manhattan, K5 66506

2009




Four-Bosons Just a bit later, some experimental evidence!

|24 Selected for a Viewpoint in Physics i et
PHYSICAL REVIEW LETTERS 10 APRIL 2009

£

Evidence for Universal Four-Body States Tied to an Efimov Trimer

PRL 102, 140401 (2009)

I (>~ 1 ; I | , 2.3 e 1 1.2
F. Ferlaino,” S. Knoop, M. Beminger,” W. Harm, J.P. D'Incao,” H.-C. Nigerl,” and R. Grimm

—

loss fraction

Second peak!!

0.0 -
L 1 " 1

1 L 1 " 1 L 1 " 1 L 1 D 1 i 1

0 -200 -400 -600 -800 -1000 -650 -700 -750 -800 -850
scattering length a(a,)

More experimental evidence:

Observation of both four-body resonances!!! M. Zaccanti et al., arXiv: 0904.4453



But before we can actually calculate the rate of 4-body recombination in
an ultracold gas, we have to develop some scattering theory:

PRL 103, 153201 (2009)

A general theoretical description of N-body recombination

N. P. Mehta,':? Seth T. Rittenhouse,! J. P. D'Incao,? J. von Stecher,! and Chris H. Greene!

! Department of Physics and JILA, University of Colorado, Boulder, CO 80509
“Grinnell College, Department of Physics, Grinnell, IA 50112*
( Dated: March 24, 2009)

We present a formula for the cross section and event rate constant describing recombination of
N particles in terms of general S-matrx elements. Our result immediately vields the generahzed
Wigner threshold scaling for the recombination of N bosons. We find that four-boson recombination
1= resonantly enhanced by the presence of metastable states 1n the entrance channel. Hence, recom-
bination into a trimer-atom channel could be an effective mechanism for the formation of Efimov

trimers.

And here it is, THE FORMULA for N-body recombination, i.e. for

the process: A+A+A+....+..A > A +A or A ,+A+A +...etc.
3 I“EJ"-'—"”I F A - AT
K97 — 2mh A 2_1'_ “ (3N — 3)/2) | ot 2
: Nk dpEN—3z |70

e N



And using WKB ideas, we can derive a semi-
analytic expression giving the structure of the N-
body recombination rate at zero energy:
R0+ _ ThiN! 47 cv|al N5 =291 ginh (21)
A unQ3N —3) \3N =5 cos? & + sinh? ]

4-body recomb.

WiR) | 6 e rate versus a
i 5t ] ]
/--____-_""---____ Collision Enerzy E ;1'
- E“.'}: C i _________D: E 10—'27_ :,_ r °|
] H R H-Body Chamnel < _ 4 :
_ L 1k Yinner | £ ]
|II :;JE 0 ) *
| |'I ;E 10—30 L . w5
(4 :E ; -;-
(2-11+1 Channel
10733
FIG. 1: A schematic representation of the N-boson hyp
dial potential curves 15 shown. When a metastable N -1 36|t es
state crosses the collision energy threshold at E' =10, N- 10 15 20 30 ' s0 70 100
recombination into a lower channel with N — 1 atoms b _
plus one free atom is resonantly enhanced. ajrg

FIG. 2: The four-boson recombination rate constant 1z shown
in the region of interest, aipy = a = aiga. Four-boson recoms-
bination into the existing 341 channel 15 resonantly enhanced
at the unersal values given 1in Eq. (16). The dots are numer-
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Considering only three-body recombination ...
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Measurement of

1.2

0B

0.5

0.4

loss fraction

0.2

0.4

Measurement of

four-body state 1 four-body state 2
\
{b)
Estimated size of this 4-body
| | molecule is around 200-400 nm
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F1G. 2 {(color online).

scatlering length a(a_)

Recombination losses in an ultracold
sample of Cs atoms. (a) Loss fraction for a S0-nkK sample after a
storage time of 250 ms. Here we present all individual measure-
ments to give an impression of the scatter of our data. The broad
maximum at about —870a, i1s caused by a triatomic Efimov
resonance [7] and the shaded area highlights the resonant loss
enhancement that we attribute to the four-body state Tetral. The



Scott Pollack, Dan Dries, and Randy Hulet, Science, Dec.2009
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Scott Pollack, Dan Dries, and Randy Hulet, Science, Dec.2009




Calculated 4-body recombination rate, using the theoretical treatment of N-body
recombination from Mehta et al., PRL 103, 153201 (2009), compared with the
experimental measurement published by the Rice group in Science 2009.

Figure prepared by Seth Rittenhouse, 2010
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Ratio Data  Theory %A
a>0 a3/af 225(22) 22,7  —1(9)
af /az  4.40(14)  4.46*  —1(3)
a}/a} 2.4 2.377 +1
as /a3 6.5 6.67 —2
a<0 a;/ay 23.1(9) 227 +2(4)
ai ,/ay 0.39 0.437 -9
af,/a; 1.01 0.90% +12
al1/a; 0.48 0.437 +12
al,/a; 0.99 0.901 +10
a— oo lay|/ai  2.5(2) 4.9* —49(4)
ay|/ag  2.6(3) 4.9+  —47(6)
ai|/as  0.49(2) 097 —49(2)
a, |/a3  11.3(3) 22.0*  —49(1)

Scott Pollack, Dan Dries,
and Randy Hulet,
Science, Dec.2009 —
measured universality
ratios

Loss Feature

a>0 a] =119(11)ag
ag = 2676(67) ag
as = 608(11) ag
a5, ~ 1490 ag

a3 o = 3970 ap

a<0 a7 =-—298(10)ag
a5 = —6869(146) ao

* c¢.f. E. Braaten and H.-W. Hammer, Phys Rep. 428, 259 (2006).
t von Stecher, et. al., Nature Phys. (2009); D’Incao, et. al., PRL (2009).



PRL 103, 033004 (2009)

Energy

D’Incao, von Stecher, and CHG

Predictions of
universal theory: -
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Preprint posted fall 2009:
Weakly Bound Cluster States of Efimov Character

Tavier von Stecher
JILA, University of Colorado and National Institure of Standard and Technology, Boulder, CO S0309-0440

We study the behavior of weakly bound clusters and their relation to the well-known three-body Efimov
states. We propose a mode] Hamiltonian that allow s the independent control of two- and three-body physics. To
test the validity of the model potential, we e produce predictions of three- and four-body universal states. Then
we extend our study to larger cluster systems by combining numerical techniques such as corelate d-Gaussian
and diffusion Monte Carlo methods. We 1dentify a series of universal cluster states that can be qualitatively
mterpreted as adding one particle at a time to an Efimov trimer. Experimental signatures of these clusir states
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von Stecher - arXiv:0909.4056

TABLE I: Energies at unitarity and scattering-length ratios that char-
acterize weakly bound cluster states. The scattering length ratios can
be transformed to an absolute scale using 1/(koaszp) ~ 0.64.

N|EX/E3 |axy/a{n_1y|| N |En/E3
41 4.66(4) 0.42(1) 9 1 49.9(6)
10.64(4) 0.60(1) 10} 60.2(6)
6 | 18.59(5) 0.71(1) 11} 70.1(7)
27.9(2) 0.78(1) 121 79.9(3)
8| 38.9(3) 0.82(1) 13| 88.0(7)

N




Conclusions:

In the “universal regime” where the largest length scale in the system
is the atom-atom scattering length, there should always be 2 four-body
states “attached to” and lying just below each Efimov 3-body state —
this gives strong evidence to support the conjecture of Platter,
Hammer, and MeiRner about such states

The Grimm group experiment that saw a 3-body Efimov resonance now
has additional confirmation that their main resonance is TRULY an
Efimov state

A reanalysis of the Grimm group experiment (and their new Physical
Review Letter!) suggests strongly that it is also seeing universal 4-body
physics for the first time, both 4-body recombination and 4-body bound
states “attached” to a 3-body Efimov state. Their new experiment (PRL
2009) strengthens this interpretation.

No additional 4-body parameter is needed to describe the 4-boson state
energies in the universality regime, supporting the conjecture of
Hammer and Platter.

Experimental and theoretical progress in understanding universality is
suddenly going forward in leaps and bounds.



Other properties from the 4-boson hyperspherical
potential curves and couplings.

Predicted scattering length between two bosonic
dimers a,,, versus the atom-atom scattering length a.

PRL 103, 033004 (2009)
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Predicted thermally averaged inelastic collision rates for two
bosonic dimers, versus the atom-atom scattering length a.

PRL 103, 033004 (2009)
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Comparison between theory and a recent experiment from the Grimm group in
Innsbruck:

F. Ferlaino et al., Phys. Rev. Lett. 101, 023201 (2008

Mfa = B0 an.)

14 T T T
P, {iz = SO0 s
| | e Temperature
12 -
L 00 dependence of the
I Is JU &L . - . -
10 b ' inelastic dimer-dimer

|

(10" em? /s)

. I collision rate, at two
i“r —————— e different scattering
= 6} gl 0 T evE] lengths a.
- il { "
at i °f | .
| ol 1
2 1, : : ' / : O ¥ 2E, |
L5 - 0 02 0.4 06
o L Sy
o1 02 03 04 05 06 07 08 09 1

T or Ecor/ke (1K) FIG. 3: (color online). Comparison between experimental
data [10] (filled circles: a = 800 a.u.; open circle: a = 500 a.u.)
and our model [Eq. (4)] for the temperature dependence of
1;{{‘ In our model, the apparent deviation from the Wigner
threshold law is caused by the presence of a trimer state just
above the dimer-dimer threshold, as indicated by the vertical
lines. Inset: Comparison of our model (black-solid line) with
numerical rates (the red-solid line is our total rate as a fune-
tion of E..;, and the green-dashed line shows the thermally

averaged results as a function of T7).



And now, some applications and questions about interacting
Fermi gases...
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Some highlights from our recent extensions to many-fermion ultracold gases
(with D. Blume, J. von Stecher, S. Rittenhouse)

1. Collapse is predicted to occur for 3-component and 4-component fermi
gases with attraction. (also for more than 4 components)

PHYSICAL REVIEW A 77, 033627 (2008)

Stability of Inhomogeneous Multi-Component Fermi Gases

D. Blume, 2 Seth T. Rittenhouse.® J. von Stecher,® and Chris H. Greene®

! Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-281)
2 JILA, University of Colorado, Boulder, CO 80309-04 40
‘?Dﬂpa-r'z‘.mmt of Physics and JILA, Unwersity of Colorado, Boulder, CO S0309-0440
(Dated: January 12, 2008)

Two-component equal-mass Fermi gases, in which unlike atoms interact through a short-range
two-body potential and like atoms do not interact, are stable even when the inferspecies s-wave
scattering length becomes infinitely large. Solving the many-body Schrodinger equation within a
hyperspherical framework and by Monte Carlo technigues, this paper investigates how the prop-
erties of trapped two-component gases change if a third or fourth component are added. If all



The Hamiltonian H for an atomic Fermi gas with y
components under external spherically symmetric har-
monic confinement is given by

x Ng
1
= ;; ( Qmﬂ o T Emﬂ'“"i";i«;) +
+Y§‘y‘1ﬂf |rnt_'-r_:,{ij|::|- [1‘3

o< 3 i=1 5=1

Qualitative reason why the 3-component (or more) fermi gas with
attraction might be unstable, whereas the 2-component gas is stable
at all negative scattering lengths. Counting argument:
TABLE I: Number N_:: of attractive interactions, number
Nyep of effectively repulsive interactions and ratio Niep/Nase
for finite and infinite N for a y-component Fermi gas (y = 2
through 4) in which all interspecies interactions are equal (or
resonant ).

=2 Y = 3 Yy =4
Nats % N* N7 SN
AN N (N N N N N
Nrep -1 F(E-1) (-1
Nyep/Nage (N finite) N2 S SN
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lllustrations of why we expect collapse of the
3-component or 4-component degenerate
Fermi gas:
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FIG. 1: (Color online) Hyperradial potential curve Vo(R) 4
Virap(R) as a function of the hyperradius R for x = 2 (solic
line), ¥ = 3 (dotted line) and ¥ = 4 (dashed line) in the larg:
N limit. All interactions between unlike atoms are character
ized by an infinite scattering length, and the coetlicient C'g i
taken to be (x — 1) with 7 = —0.58. Both length and energy
are scaled by the corresponding values of the non-interacting
system (see text).
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FIG. 6: (Color online) Circles and squares show the varia-
tional energy Evare for a three-component Fermi gas with
N = 12 atoms interacting through a square well potential
(range Rp = 0.01ap,) with a, = —0.05a5, and —0.1ay, (all
interspecies scattering lengths are equal), respectively, as a
function of the variational parameter b, Ev e is scaled by
the energy Enp of the non-interacting system, Eny = 2THw.
Dotted lines connect data points for ease of viewing.
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FIG. 7: (Color online) Circles and squares show the wvari-
ational energy Eviare for a four-component Fermi gas with
N = 16 atoms interacting through a square well potential
(range Ry = 0.0lay.) with a, = —0.05a, and —0.07as., re-
spectively, as a function of the variational parameter b, Ev e
is scaled by the energy Eny of the non-interacting system,
Eny = 36fiw. Dotted lines connect data points for ease of
viewing.



2. Behavior of energies at unitarity, Castin’s “universal 1/R?
potential curve”, excitation frequencies “exactly” 2 hbar omega.

PHYSICAL REVIEW A 74, 053604 (2006)

Unitary gas in an isotropic harmonic trap: Symmetry properties and applications

Félix Werner and Yvan Castin
Laboratoire Kastler Brossel, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
(Received 31 July 2006; revised manuscript received 15 September 2006; published 6 November 2006)

We consider N atoms trapped in an isotropic harmonic potential, with s-wave interactions of infinite scat-
tering length. In the zero-range limit, we obtain several exact analytical results: mapping between the trapped
problem and the free-space zero-energy problem, separability in hyperspherical coordinates, SO(2.1} hidden
symmetry, existence of a decoupled bosonic degree of freedom, and relations between the moments of the
trapping potential energy and the moments of the total energy.



In our language, the hyperspherical potential curves for an N-
fermion system at unitarity, in a trap, have the form:

hs,(s, +1)

V. (R) = (26

S I: J Ef_-f-_.".;'RE « )
The eigen energies of Eq. (25) are then given by

rel . 3 =

EjL = s +2n+ 5 | Aw, (27)

where n is a non-negative integer, and the hyperradial
wave functions F,,,(R) (not normalized) by

. _ 2
F,.(R) = R LI TU2(R? /0% exp (— ig) , (28)

where £ denotes the oscillator length associated with gy,

S I - .-'+1."l.2.: [
L= /h/(pyw), and L, the Laguerre polynomial.

There are thus families of excitation frequencies exactly equal to 2
hbar omega, but others as well that are different.



(@) Noninteracting

(b) Infinitely
interacting
(unitarity)
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FIG. 8: Hyperradial potential curves V(R) for equal-mass
two-component Fermi systems with (a) vanishing interactions
and (b) infinitely strong interactions as a function of K. The
hyperradial potential curves naturally appear ordered as N
increases: Solid lines correspond, from bottom to top. to V =
4 —20 (N even), while dashed lines correspond, from bottom
to top, to N =3 — 19 (N odd).



Test of the universal behavior predicted by Werner and Castin

0 1 2 3 4 2 §
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FIG. 21: (Color Online) Hyperradial density FZ (R) for n =
1.2 and 3. Here, we choose uy = m (£ = ap,). The solid

lines show the analytical solutions while the circles show the
. - - . - ]

numerical results obtained by integrating ( 1]f’€£j|“ calculated

by the CG method over all coordinates but the hyperradius

R.



Microscopic calculation of the pairing gap at unitarity for a 2-
component equal-mass fermionic gas, compared with Bulgac’s
very recent density-functional theory description.

FIG. 7: (Color Online) Excitation gap A(N) (squares) and
residual energy Eoo(N) — Efi: (circles) for equal-mass Fermi
systems at unitarity as a function of N calculated from the
FMN-DMC energies. Triangles show A(N) caleulated using
density functional theory [75].



