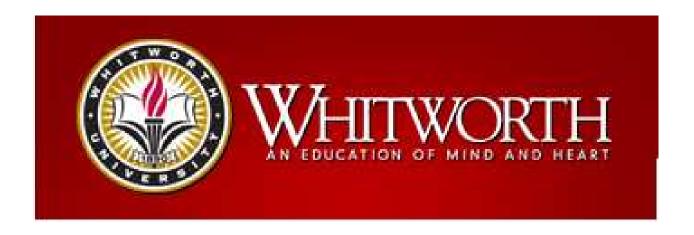
The neutron-neutron scattering length

Anders Gårdestig

agardestig@whitworth.edu



Relevant publications

In collaboration with Daniel Phillips (supported by NSF and DOE):

- A.G. and D.R. Phillips Phys. Rev. C 73, 014002 (2006) arXiv.org/abs/nucl-th/0501049
- A.G. and D.R. Phillips Phys. Rev. Lett. 96, 232301 (2006) arXiv.org/abs/nucl-th/0603045
- A.G. Phys. Rev. C 74, 017001 (2006) arXiv.org/abs/nucl-th/0604035

Review on a_{nn} :

A.G., J. Phys. G: Nucl. Part. Phys. 35, 053001 (2009).

At low energies NN the s-wave phase shift can be written as

$$p\cot\delta = -\frac{1}{a} + \frac{1}{2}r_0p^2$$

where r_0 is the effective range parameter

At low energies NN the s-wave phase shift can be written as

$$p\cot\delta = -\frac{1}{a} + \frac{1}{2}r_0p^2$$

where r_0 is the effective range parameter a and r_0 are independent of potential shape! precursor to (pionless) effective field theory

At low energies NN the s-wave phase shift can be written as

$$p\cot\delta = -\frac{1}{a} + \frac{1}{2}r_0p^2$$

where r_0 is the effective range parameter a and r_0 are independent of potential shape! precursor to (pionless) effective field theory

Current values:

NN	a (fm)	r_0 (fm)
\overline{n}	-18.9 ± 0.4	2.75 ± 0.11
np	-23.740 ± 0.020	2.77 ± 0.05
pp	-17.3 ± 0.4	2.85 ± 0.04

At low energies NN the s-wave phase shift can be written as

$$p\cot\delta = -\frac{1}{a} + \frac{1}{2}r_0p^2$$

where r_0 is the effective range parameter a and r_0 are independent of potential shape! precursor to (pionless) effective field theory

Current values:

NN	a (fm)	r_0 (fm)
\overline{n}	-18.9 ± 0.4	2.75 ± 0.11
np	-23.740 ± 0.020	2.77 ± 0.05
pp	-17.3 ± 0.4	2.85 ± 0.04

Similar, but different! Why?

QCD Lagrangian almost symmetric under $u \leftrightarrow d$ exchange (Charge Symmetry, CS), $P_{CS} = \exp(i\pi\tau_2/2)$ broken by $m_u \neq m_d$ (and EM effects) Charge Symmetry Breaking (CSB)

QCD Lagrangian almost symmetric under $u \leftrightarrow d$ exchange (Charge Symmetry, CS), $P_{CS} = \exp(i\pi\tau_2/2)$ broken by $m_u \neq m_d$ (and EM effects) Charge Symmetry Breaking (CSB)

Experimental evidence:

n-*p* mass difference ρ^0 - ω mixing $(e^+e^- \to \pi^+\pi^-)$ mirror nuclei (e.g. ³He-³H) binding energy, N-S anomaly $np \rightarrow np$: $A_n(\theta_n) \neq A_p(\theta_p)$ analyzing powers

QCD Lagrangian almost symmetric under $u \leftrightarrow d$ exchange (Charge Symmetry, CS), $P_{CS} = \exp(i\pi\tau_2/2)$ broken by $m_u \neq m_d$ (and EM effects) Charge Symmetry Breaking (CSB)

Experimental evidence:

```
n-p mass difference
\rho^0-\omega mixing (e^+e^- \to \pi^+\pi^-)
mirror nuclei (e.g. <sup>3</sup>He-<sup>3</sup>H) binding energy, N-S anomaly
np \rightarrow np: A_n(\theta_n) \neq A_p(\theta_p) analyzing powers
A_{\rm fb}(np \to d\pi^0) (TRIUMF) and dd \to \alpha\pi^0 (IUCF, soon COSY)
```


QCD Lagrangian almost symmetric under $u \leftrightarrow d$ exchange (Charge Symmetry, CS), $P_{CS} = \exp(i\pi\tau_2/2)$ broken by $m_u \neq m_d$ (and EM effects) Charge Symmetry Breaking (CSB)

Experimental evidence:

```
n-p mass difference
\rho^0-\omega mixing (e^+e^- \to \pi^+\pi^-)
mirror nuclei (e.g. <sup>3</sup>He-<sup>3</sup>H) binding energy, N-S anomaly
np \rightarrow np: A_n(\theta_n) \neq A_p(\theta_p) analyzing powers
A_{\rm fb}(np \to d\pi^0) (TRIUMF) and dd \to \alpha\pi^0 (IUCF, soon COSY)
```

CSB reviews:

[Miller, Nefkens, and Slaus, PRt194, 1 (1990); Miller and van Oers, nucl-th/9409013:

Miller, Opper, and Stephenson, ARNPS56, 293 (2006), nucl-ex/0602021]

$$CSB \Rightarrow a_{nn}^{str} \neq a_{pp}^{str}$$

$$a_{nn}^{\rm str} \neq a_{pp}^{\rm str} \leftrightarrow {\rm enhancement\ factor:\ } \frac{\Delta a_{\rm CSB}}{a} = (10-15) \frac{\Delta V_{\rm CSB}}{V}$$

$$CSB \Rightarrow a_{nn}^{str} \neq a_{pp}^{str}$$

$$a_{nn}^{\rm str} \neq a_{pp}^{\rm str} \leftrightarrow {\rm enhancement\ factor:\ } \frac{\Delta a_{\rm CSB}}{a} = (10-15) \frac{\Delta V_{\rm CSB}}{V}$$

Calcs of $B(^3\mathrm{H}) - B(^3\mathrm{He})$ rely on $|a_{nn}^{\mathrm{str}}| < |a_{nn}^{\mathrm{str}}|$, fails if $|a_{nn}^{\text{str}}| > |a_{nn}^{\text{str}}|!$

$$a_{nn}^{\rm str} = -18.9 \pm 0.4$$
 fm, $a_{pp}^{\rm str} = -17.3 \pm 0.4$ fm

$$CSB \Rightarrow a_{nn}^{str} \neq a_{pp}^{str}$$

$$a_{nn}^{\rm str} \neq a_{pp}^{\rm str} \leftrightarrow {\rm enhancement\ factor:\ } \frac{\Delta a_{\rm CSB}}{a} = (10-15) \frac{\Delta V_{\rm CSB}}{V}$$

Calcs of $B(^3\mathrm{H}) - B(^3\mathrm{He})$ rely on $|a_{nn}^{\mathrm{str}}| < |a_{nn}^{\mathrm{str}}|$, fails if $|a_{nn}^{\text{str}}| > |a_{nn}^{\text{str}}|!$

$$a_{nn}^{\rm str} = -18.9 \pm 0.4 \; {\rm fm}, \; a_{pp}^{\rm str} = -17.3 \pm 0.4 \; {\rm fm}$$

Difficulties: EM corrections (a_{NN}^{str}) , no free n target (a_{nn}^{str})

$$a_{nn}^{\rm str} \neq a_{pp}^{\rm str} \leftrightarrow {\rm enhancement\ factor:\ } \frac{\Delta a_{\rm CSB}}{a} = (10-15) \frac{\Delta V_{\rm CSB}}{V}$$

Calcs of $B(^3\mathrm{H}) - B(^3\mathrm{He})$ rely on $|a_{nn}^{\mathrm{str}}| < |a_{nn}^{\mathrm{str}}|$, fails if $|a_{nn}^{\text{str}}| > |a_{nn}^{\text{str}}|!$

$$a_{nn}^{\rm str} = -18.9 \pm 0.4$$
 fm, $a_{pp}^{\rm str} = -17.3 \pm 0.4$ fm

Difficulties: EM corrections (a_{NN}^{str}) , no free n target (a_{nn}^{str})

WHAT TO DO?

Wild idea #1: Simultaneous underground nuclear explosions

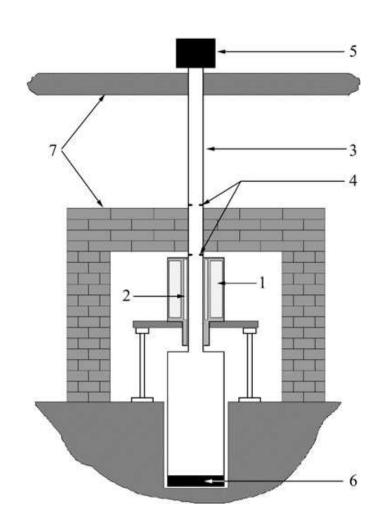
Wild idea #1: Simultaneous underground nuclear explosions

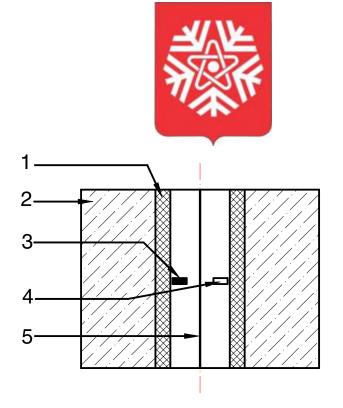
Wild idea #2: Launch a pulsed reactor into orbit

Wild idea #1: Simultaneous underground nuclear explosions

Wild idea #2: Launch a pulsed reactor into orbit

Recent idea: Pulsed reactor YAGUAR in Snezhinsk, Russia





[Furman et al., JPG 28, 2627 (2002); Muzichka et al., NPA 789, 30 (2007)]

Wild idea #1: Simultaneous underground nuclear explosions

Wild idea #2: Launch a pulsed reactor into orbit

Recent idea: Pulsed reactor YAGUAR in Snezhinsk, Russia

Indirect nn experiments:

Implemented idea: Reactions giving nn with small rel. energy

Solutions(?)

Direct measurements:

Wild idea #1: Simultaneous underground nuclear explosions

Wild idea #2: Launch a pulsed reactor into orbit

Recent idea: Pulsed reactor YAGUAR in Snezhinsk, Russia

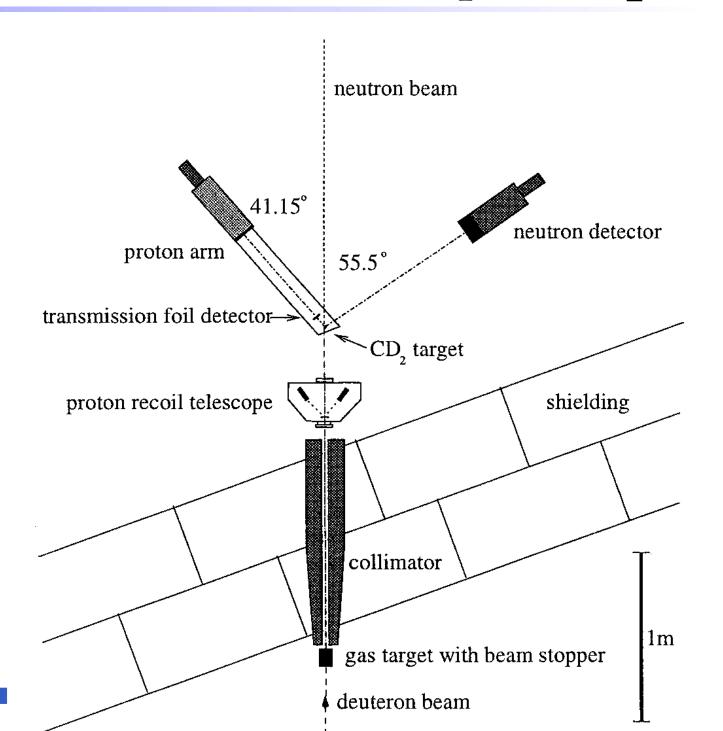
Indirect nn experiments:

Implemented idea: Reactions giving nn with small rel. energy

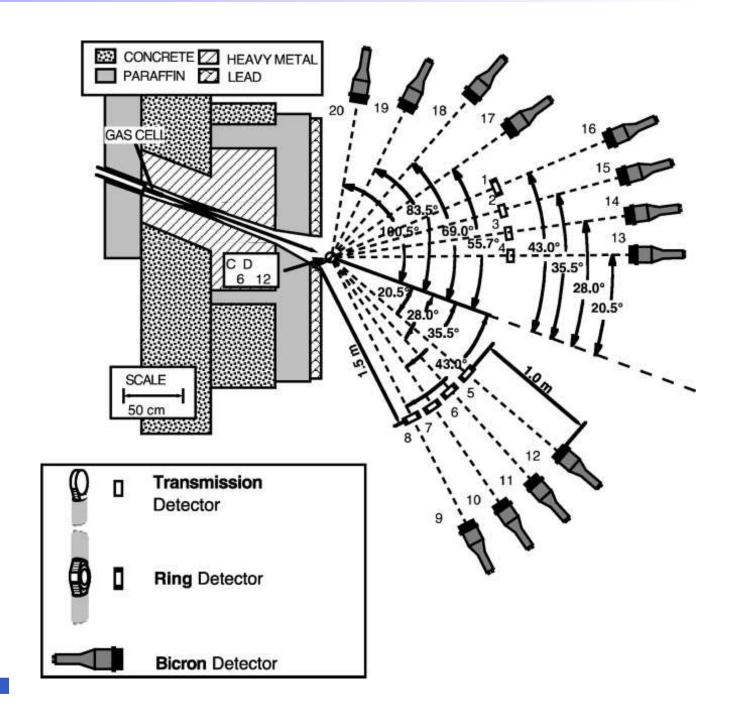
- $nd \rightarrow nnp$: 3-body forces needed, expts differ: $a_{nn} = -16.1 \pm 0.4 \; {
 m fm} \; (n,np)$ [Huhn et al., PRL85, 1190 (2000)] and $a_{nn} = -16.5 \pm 0.9 \; {
 m fm} \; (n,p)$ [von Witsch et al., PRC74, 014001 (2006)] VS $a_{nn} = -18.7 \pm 0.7 \; {
 m fm} \; (n,nnp)$ [González Trotter et al., PRC73, 034001 ('06)]
- $\pi^-d \to nn\gamma$: -18.59 ± 0.40 fm $(\pi^-, n\gamma) \Rightarrow$ standard value (PSI and LAMPF) [Machleidt and Slaus, JPG:NPP27, R69 (2001)]

Need accurate theoretical input for extraction!

Bonn nd oon np set-up

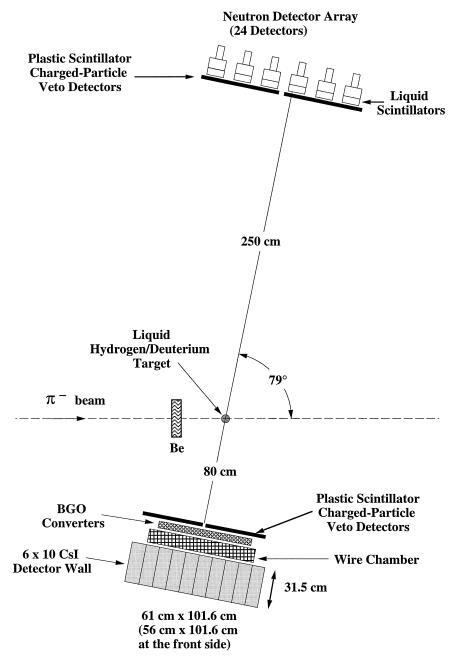


TUNL $nd \rightarrow nnp$ set-up



LAMPF set-up.

Stopped pions captured on d in atomic s-wave orbitals

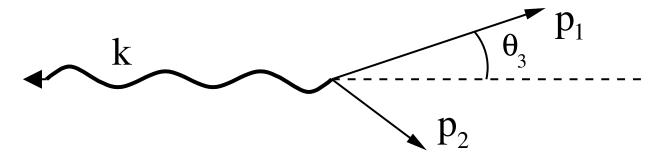


Lab = cm

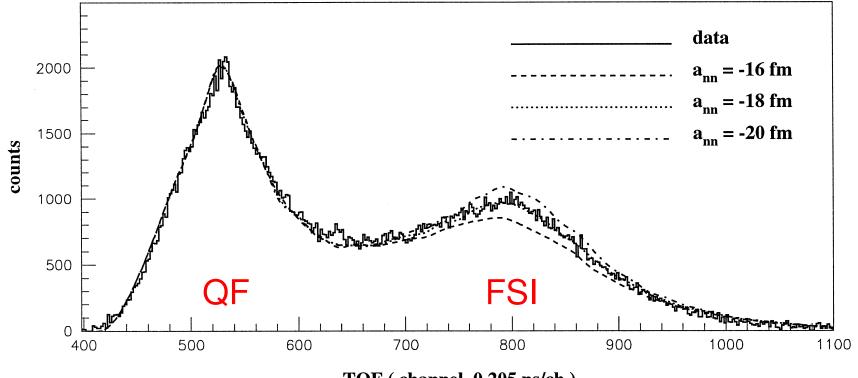
 γ and n detected in coincidence

INT, Seattle, WA, 3/25/20 - p.8/27

$\pi^- d o nn\gamma ext{ data (LAMPF)}.$



 γ and n_1 detected at $0.05 < \theta_3 < 0.1$ (rad) [Howell et al., PLB444, 252 (1998)]



TOF (channel, 0.205 ns/ch)

Unnormalized, but shape fitted to give $a_{nn}!$

Old theory for $\pi^- d o nn\gamma$

Gibbs, Gibson, and Stephenson (GGS) [PRC11, 90 (1975)]:

- \bullet $\pi^- p \to \gamma n$, rel corr up to O(p/M)
- estimated pion rescattering
- tried different wave functions
- theoretical error (mainly SD): $\Delta a_{nn} = \pm 0.3$ fm
- Only accurate under the FSI peak!

de Téramond et al., [PRC16, 1976 (1977);36, 691 (1987)] similar error

Old theory for $\pi^- d o nn\gamma$

Gibbs, Gibson, and Stephenson (GGS) [PRC11, 90 (1975)]:

- \bullet $\pi^- p \to \gamma n$, rel corr up to O(p/M)
- estimated pion rescattering
- tried different wave functions
- theoretical error (mainly SD): $\Delta a_{nn} = \pm 0.3$ fm
- Only accurate under the FSI peak!

de Téramond et al., [PRC16, 1976 (1977);36, 691 (1987)] similar error

Can chiral perturbation theory (χ PT) do better?

Advantages of an effective field theory like χ PT:

- Consistent amplitudes and wave functions
- Recipe to estimate theoretical error
- Systematic improvement possible
- χ PT = low-energy limit of QCD, retains chiral symmetry of QCD

EFT credo

Advantages of an effective field theory like χ PT:

- Consistent amplitudes and wave functions
- Recipe to estimate theoretical error
- Systematic improvement possible
- ho χ PT = low-energy limit of QCD, retains chiral symmetry of QCD

At low E: expansion in $\alpha_S \sim 1$ not possible. Instead: Power counting gives hierarchy of amplitudes. Here:

- ullet $Q \sim m_\pi$ small momentum/energy of problem
- $\Lambda_\chi \sim M \sim 4\pi f_\pi \sim$ 1 GeV energy scale where $\chi {\rm PT}$ breaks down
- lacksquare Expand in Q/Λ_χ

χ PT for $\pi^-d o nn\gamma$.

For $\pi^- d \to nn\gamma$ we get

- $O(Q^3) = GGS + \pi loops + 2-body$
- $O(Q^3)$ $\pi N \to \gamma N$ fitted to data \Rightarrow no free parameters

For capture on d: $q_{\pi} = 0$, only one CGLN amplitude (F_1) survives

χ PT for $\pi^-d o nn\gamma$.

For $\pi^- d \to nn\gamma$ we get

- $O(Q^3) = GGS + \pi loops + 2-body$
- $O(Q^3)$ $\pi N \to \gamma N$ fitted to data \Rightarrow no free parameters

For capture on d: $q_{\pi} = 0$, only one CGLN amplitude (F_1) survives

2B $\mathcal{O}(Q^4)$: π exchanges and contact term

1B $\mathcal{O}(Q^4)$: under investigation

χ PT for $\pi^-d o nn\gamma$.

For $\pi^- d \to nn\gamma$ we get

- $O(Q^3) = GGS + \pi loops + 2-body$
- $O(Q^3)$ $\pi N \to \gamma N$ fitted to data \Rightarrow no free parameters

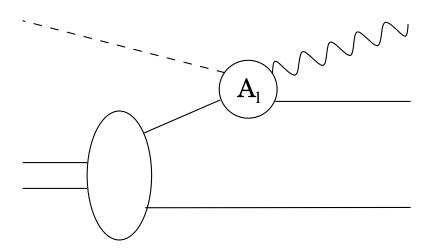
For capture on d: $q_{\pi} = 0$, only one CGLN amplitude (F_1) survives

2B $\mathcal{O}(Q^4)$: π exchanges and contact term

1B $\mathcal{O}(Q^4)$: under investigation

⇒ High precision possible

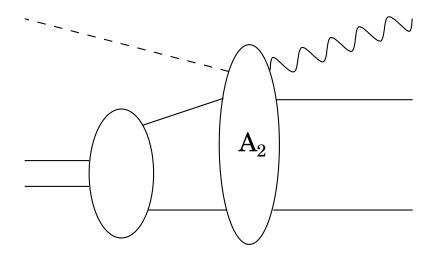
Generic diagrams

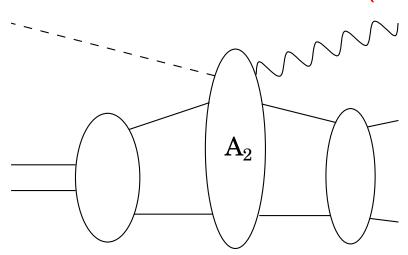


 A_1

Quasifree (QF)

Final State Interaction (FSI)





Two-body effects (2)

$$\Gamma \propto |\mathcal{M}_{
m QF} + \mathcal{M}_{
m FSI} + \mathcal{M}_2|^2$$

Chirally inspired wave functions.

Start from asymptotic wave functions SE integrated in from $r = \infty$ with chiral OPEP and TPEP

[Phillips & Cohen, NPA668, 45 (2000)]:

- Coupled integral equations for d (${}^3S_1 {}^3D_1$)
- Uncoupled integral equations for nn (1S_0 , 3P_J , 1D_2 , no 3F_2)

Chirally inspired wave functions.

Start from asymptotic wave functions SE integrated in from $r = \infty$ with chiral OPEP and TPEP

[Phillips & Cohen, NPA668, 45 (2000)]:

- Coupled integral equations for d (${}^3S_1 {}^3D_1$)
- Uncoupled integral equations for nn (1S_0 , 3P_J , 1D_2 , no 3F_2)

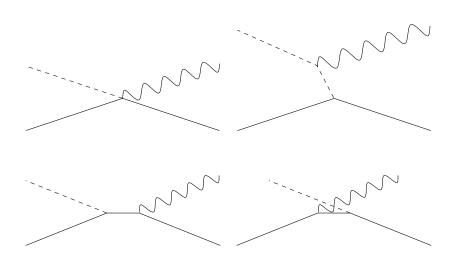
Match with spherical well solution at r = R = 1.4 to 3.0 fm (Regulates unknown short-distance physics)

Calc indep of R?

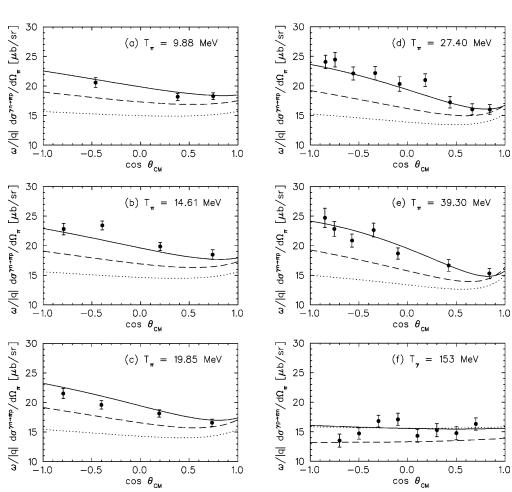
One-body amplitudes.

EFT to $O(Q^3)$

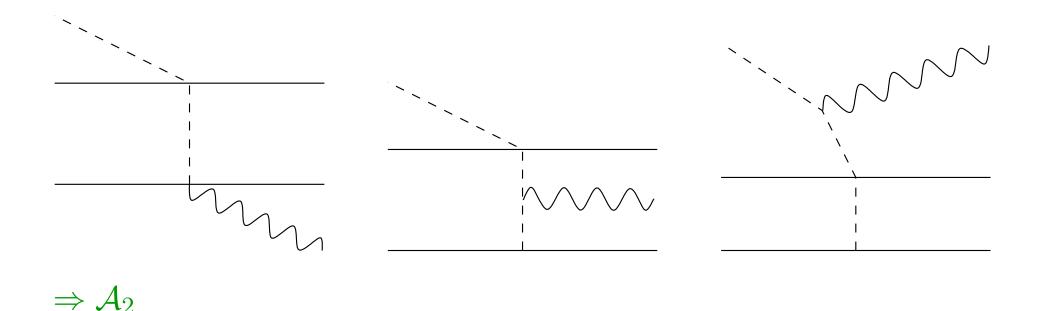
[Fearing et al., PRC62, 054006 (2000)]:



+pion loops at $O(Q^3) \Rightarrow A_1$ all parameters fitted to data

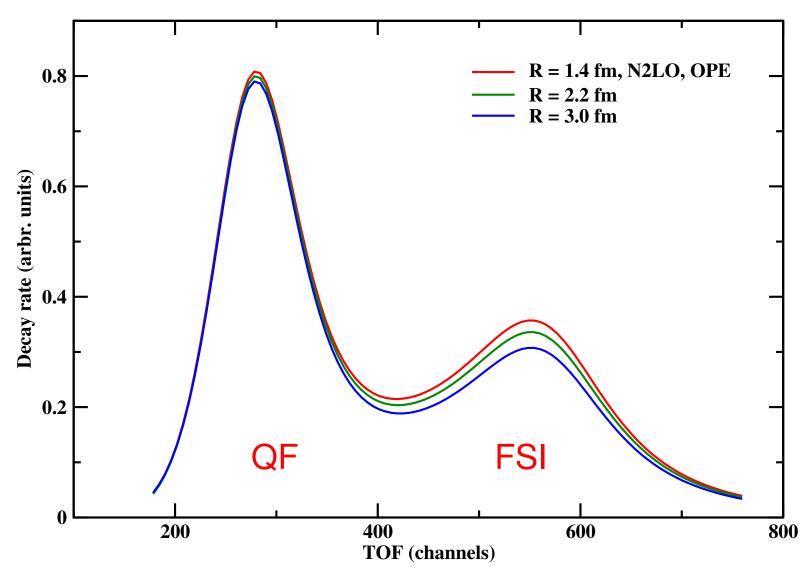


Two-body amplitudes $O(Q^3)$



First diagram has a Coulomb-like propagator, $1/\vec{q}^2$ Second diagram has $1/\vec{q}^2$ and also an off-shell pion prop Third diagram (2 off-shell props) vanishes in Coulomb gauge

R-depertor at $\mathcal{O}(Q^3)$



 $\Delta a_{nn}(\text{theory}) = \pm 0.2 \text{ fm (FSI only)}$ $\Delta a_{nn}(\text{theory}) = \pm 1 \text{ fm (full spectrum)}$

Chiral relations

Chiral Lagrangian:

$$\mathcal{L} = N^{\dagger} (iv \cdot D + g_{\mathbf{A}} S \cdot \mathbf{u}) N$$
$$- 2d_{1} N^{\dagger} S \cdot u N N^{\dagger} N + 2d_{2} \epsilon^{abc} \epsilon_{\kappa \lambda \mu \nu} v^{\kappa} u^{\lambda, a} N^{\dagger} S^{\mu} \tau^{b} N N^{\dagger} S^{\nu} \tau^{c} N \dots$$

where
$$f_{\pi}u_{\mu}=- au^a\partial_{\mu}\pi^a-\epsilon^{3ba}V_{\mu}\pi^b\tau^a+f_{\pi}A_{\mu}+\mathcal{O}(\pi^3)$$

1N (g_A) : Goldberger-Treiman and Kroll-Ruderman

$$\frac{g_{\rm A}}{f_{\pi}} = \frac{g_{\pi NN}}{M} \qquad |\mathcal{A}_{\rm KR}| = \frac{eg_{\rm A}}{f_{\pi}}$$

relate axial coupling to πN coupling and $\gamma \pi N$ coupling

Chiral relations

Chiral Lagrangian:

$$\mathcal{L} = N^{\dagger} (iv \cdot D + g_{A}S \cdot u)N$$
$$- 2d_{1}N^{\dagger}S \cdot uNN^{\dagger}N + 2d_{2}\epsilon^{abc}\epsilon_{\kappa\lambda\mu\nu}v^{\kappa}u^{\lambda,a}N^{\dagger}S^{\mu}\tau^{b}NN^{\dagger}S^{\nu}\tau^{c}N \dots$$

where
$$f_{\pi}u_{\mu}=- au^a\partial_{\mu}\pi^a-\epsilon^{3ba}V_{\mu}\pi^b\tau^a+f_{\pi}A_{\mu}+\mathcal{O}(\pi^3)$$

2N (d_i): Axial isovector coupling to NN (${}^3S_1 \leftrightarrow {}^1S_0$)

Connects π (photo)prod to EW reactions

Chiral relations

Chiral Lagrangian:

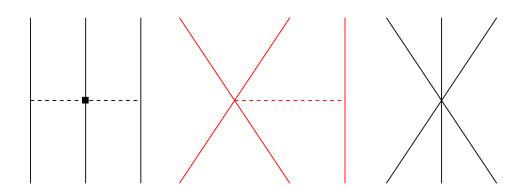
$$\mathcal{L} = N^{\dagger} (iv \cdot D + g_{A}S \cdot u)N$$

$$- 2d_{1}N^{\dagger}S \cdot uNN^{\dagger}N + 2d_{2}\epsilon^{abc}\epsilon_{\kappa\lambda\mu\nu}v^{\kappa}u^{\lambda,a}N^{\dagger}S^{\mu}\tau^{b}NN^{\dagger}S^{\nu}\tau^{c}N \dots$$

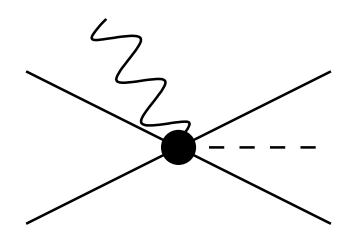
where
$$f_{\pi}u_{\mu}=- au^a\partial_{\mu}\pi^a-\epsilon^{3ba}V_{\mu}\pi^b\tau^a+f_{\pi}A_{\mu}+\mathcal{O}(\pi^3)$$

2N (d_i): Axial isovector coupling to NN (${}^3S_1 \leftrightarrow {}^1S_0$)

Connects π (photo)prod to EW reactions and chiral 3NF!



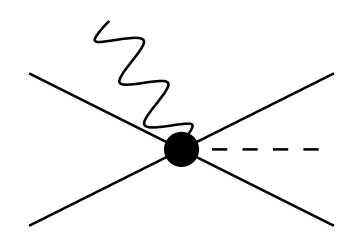
$\mathcal{O}(Q^4)$ axial isovector contact term



For ${}^3S_1 \leftrightarrow {}^1S_0$ one single LEC:

$$\hat{d} \equiv \hat{d}_1 + 2\hat{d}_2 + \frac{\hat{c}_3}{3} + \frac{2\hat{c}_4}{3} + \frac{1}{6}$$

$\mathcal{O}(Q^4)$ axial isovector contact term



For ${}^3S_1 \leftrightarrow {}^1S_0$ one single LEC:

$$\hat{d} \equiv \hat{d}_1 + 2\hat{d}_2 + \frac{\hat{c}_3}{3} + \frac{2\hat{c}_4}{3} + \frac{1}{6}$$

Relates SD physics of

pp fusion, ${}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He}\,e^{-}\bar{\nu}_{e}$ (not EFT):

[Schiavilla et al., PRC58, 1263 (1998)]

p-wave π prod+3NF:

 $\mu^- d \rightarrow nn\nu_{\mu}$:

 $\nu(\bar{\nu})d$ breakup:

pp fusion, hep, ${}^{3}{\rm H} \rightarrow {}^{3}{\rm He}\,e^{-}\bar{\nu}_{e}$:

pp fusion, $\pi^- d \to nn\gamma$, $\gamma d \to nn\pi^+$:

[Hanhart, van Kolck, Miller, PRL85, 2905 (2000)]

[Ando et al., PLB533, 25 (2002)]

[Ando et al., PLB555, 49 (2003)]

[Park et al., PRC67, 055206 (2003)]

[AG+DRP, PRL96, 232301 (2006);

AG, PRC74, 017001 (2006)]

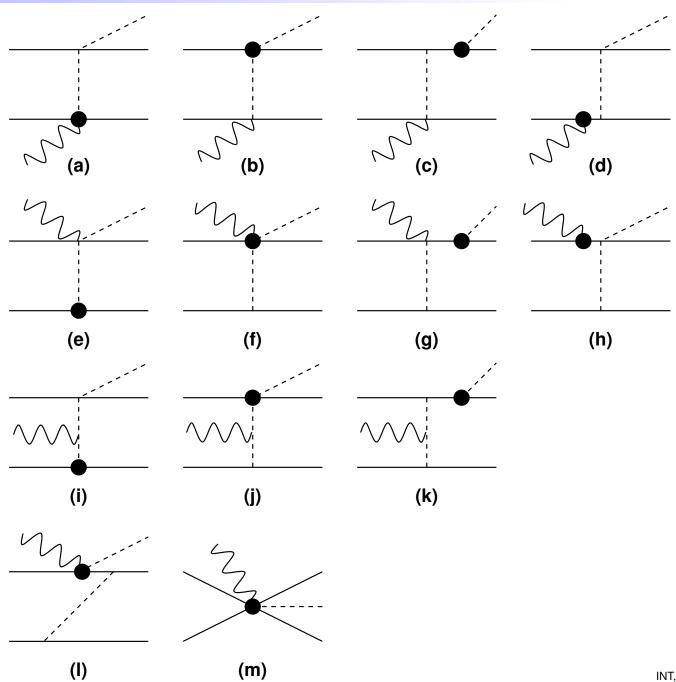
pp fusion, $\nu(\bar{\nu})d$, $\mu^-d \to nn\nu_{\mu}$:

 $\mathsf{T}(\cancel{\pi}): \hat{d} \leftrightarrow L_{1,A}$

[Butler et al., PLB520, 97 (2001);

Chen et al., PRC72, 061001(R) (2005)]

Two-body amplitudes $O(Q^4)$



Constraining contact term

For axial isovector ${}^3S_1 \leftrightarrow {}^1S_0$ (Gamow-Teller) transitions common in NN systems only one LEC combination:

$$\hat{d} \equiv \hat{d}_1 + 2\hat{d}_2 + \frac{\hat{c}_3}{3} + \frac{2\hat{c}_4}{3} + \frac{1}{6}$$

 $\hat{d} \leftrightarrow "g_A"$ for two-nucleon systems, but pot/wf/reg dep!

Constraining contact term

For axial isovector ${}^3S_1 \leftrightarrow {}^1S_0$ (Gamow-Teller) transitions common in NN systems only one LEC combination:

$$\hat{d} \equiv \hat{d}_1 + 2\hat{d}_2 + \frac{\hat{c}_3}{3} + \frac{2\hat{c}_4}{3} + \frac{1}{6}$$

 $\hat{d} \leftrightarrow "g_A"$ for two-nucleon systems, but pot/wf/reg dep!

Possible constrain candidate: $pp \rightarrow de^+\nu_e$ (solar fusion)

Calculated by [Park et al., PRC67, 055206 (2003)] constrained by tritium beta decay

Constraining contact term

For axial isovector ${}^3S_1 \leftrightarrow {}^1S_0$ (Gamow-Teller) transitions common in NN systems only one LEC combination:

$$\hat{d} \equiv \hat{d}_1 + 2\hat{d}_2 + \frac{\hat{c}_3}{3} + \frac{2\hat{c}_4}{3} + \frac{1}{6}$$

 $\hat{d} \leftrightarrow "g_A"$ for two-nucleon systems, but pot/wf/reg dep!

Possible constrain candidate: $pp \rightarrow de^+\nu_e$ (solar fusion)

Calculated by [Park et al., PRC67, 055206 (2003)] constrained by tritium beta decay

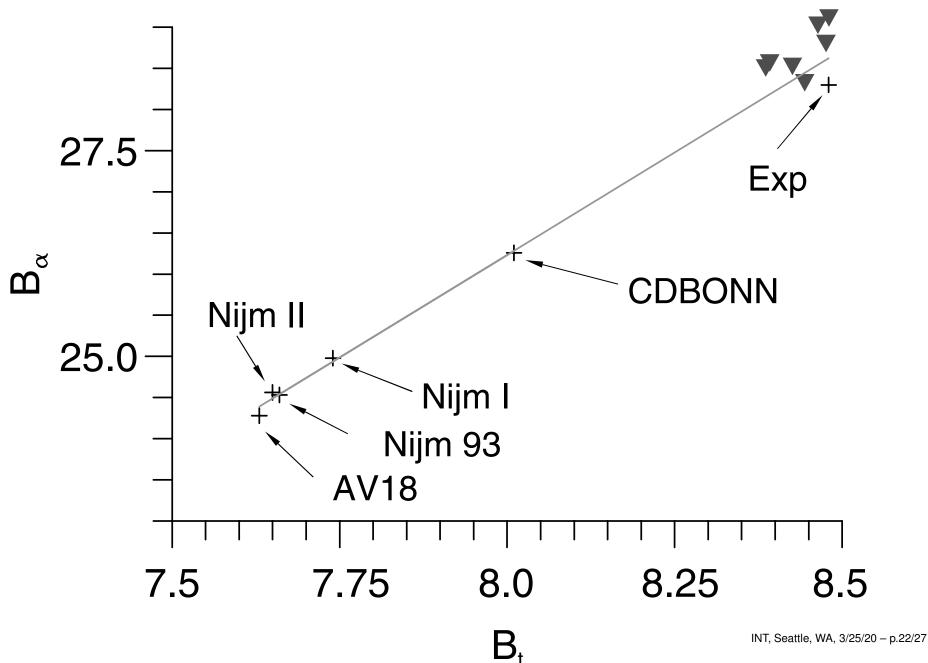
Let's do a numerical experiment!

Remember:

Tjon line: $B(^4\text{He}) \text{ vs } B(^3\text{H})$

 $^2a_{nd}$ vs $B(^3\mathrm{H})$ Phillips line:

Tjon line [Nogga, Kamada, Glöckle, PRL85, 944 (2000)]



Phillips line [Witała et al., PRC68, 034002 (2003)]

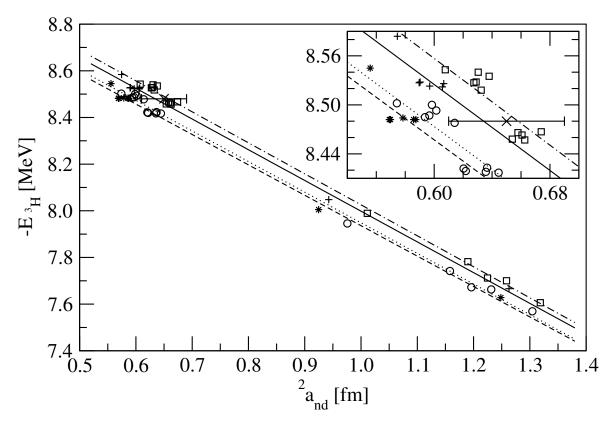
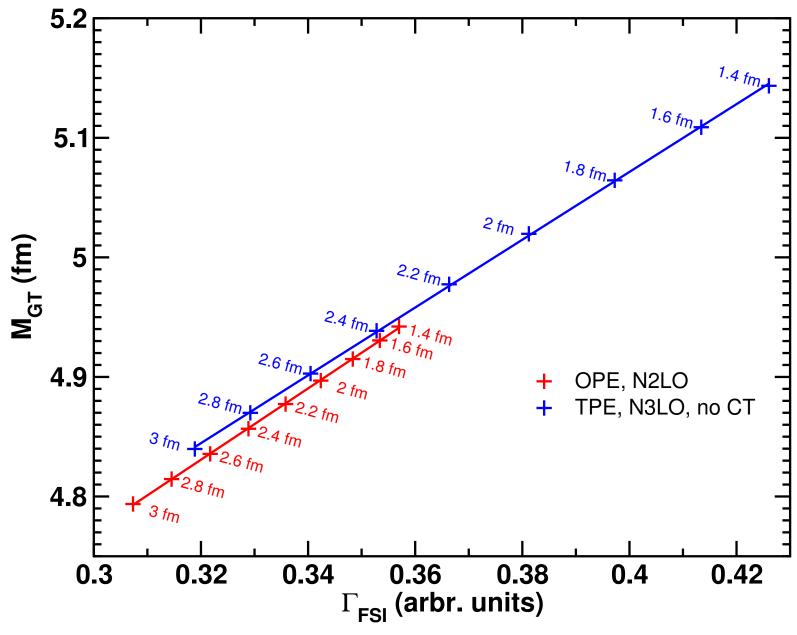
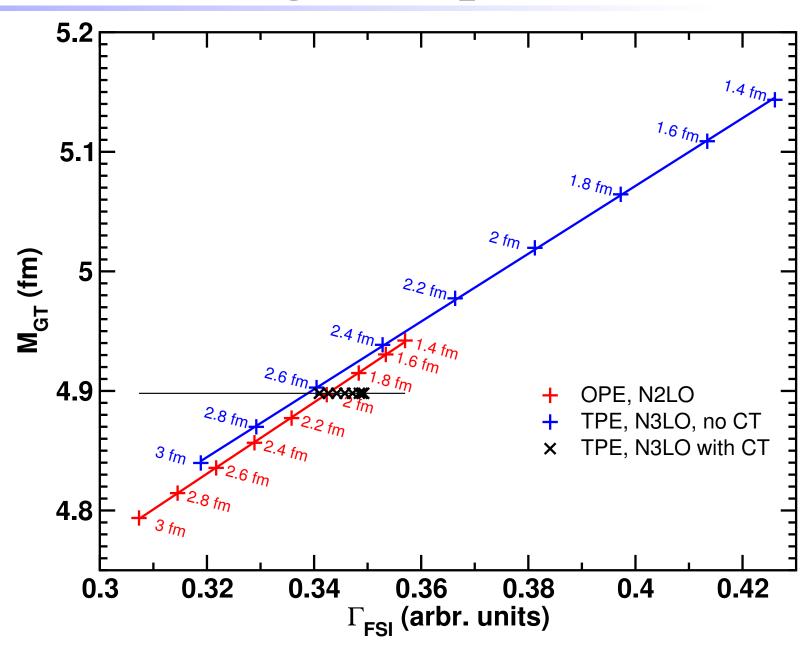


FIG. 4. The results for ${}^2a_{nd}$ and $E_{^3H}$ from Table I: np-nnforces alone (pluses), np-pp forces alone (squares), and np-nnand np-pp forces plus electromagnetic interactions (stars and circles, respectively). The four straight lines (Phillips lines) are χ^2 fits (np-nn, solid; np-pp, dashed-dotted; np-nn withEMI's, dashed; np-pp with EMI's, dotted). The lines with EMI's miss the experimental error bar for ${}^{2}a_{nd}$ [33]. The physically interesting domain around the experimental values is shown in the inset.

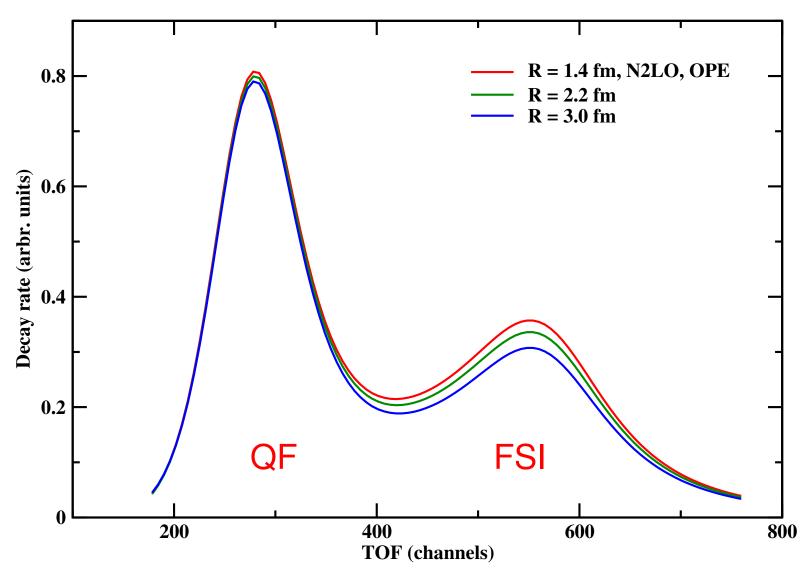
Gamow-Teller vs FSI



Gårdestig-Phillips line(s)

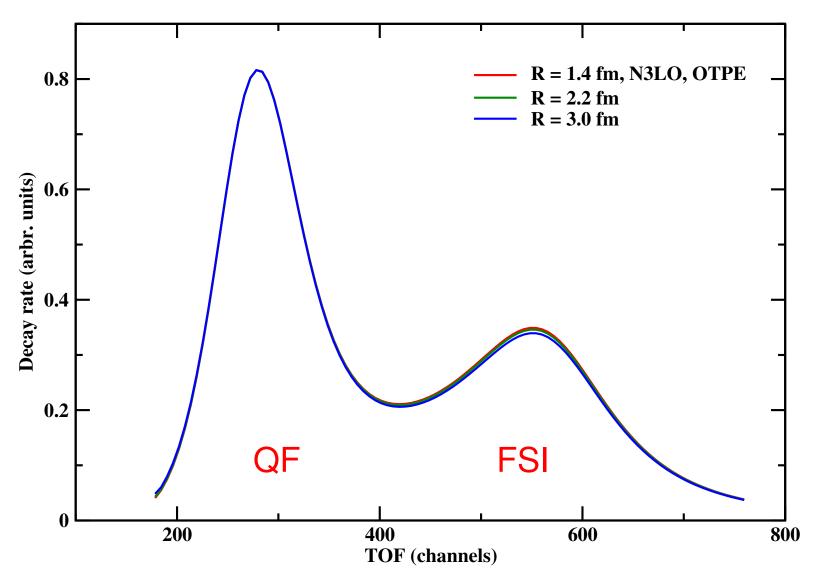


R-depertor at $\mathcal{O}(Q^3)$



 $\Delta a_{nn}(\text{theory}) = \pm 0.2 \text{ fm (FSI only)}$ $\Delta a_{nn}(\text{theory}) = \pm 1 \text{ fm (full spectrum)}$

R-depertor at $\mathcal{O}(Q^4)$



 $\Delta a_{nn}(\text{theory}) = \pm 0.05 \text{ fm (FSI only)}$ $\Delta a_{nn}(\text{theory}) = \pm 0.3 \text{ fm (full spectrum)}$

 \bullet χ S relates SD physics of 2B EW reactions to $(\gamma)\pi NN!$

- \bullet χ S relates SD physics of 2B EW reactions to $(\gamma)\pi NN!$
- Chiral 3NF constrained by EW 2B obs!
- χ PT reduces theory error for a_{nn} , $\Delta a_{nn} = \pm 0.05$ fm, a factor >3 better than previous calcs! [AG+DRP, PRL 96, 232301 (2006)]

- \bullet χ S relates SD physics of 2B EW reactions to $(\gamma)\pi NN!$
- Chiral 3NF constrained by EW 2B obs!
- χ PT reduces theory error for a_{nn} , $\Delta a_{nn} = \pm 0.05$ fm, a factor >3 better than previous calcs! [AG+DRP, PRL 96, 232301 (2006)]
- What remains:

Higher order EM corrections in wfs? N³LO 1B Orthonormalization

- \bullet χ S relates SD physics of 2B EW reactions to $(\gamma)\pi NN!$
- Chiral 3NF constrained by EW 2B obs!
- \bullet χ PT reduces theory error for a_{nn} , $\Delta a_{nn} = \pm 0.05$ fm, a factor >3 better than previous calcs! [AG+DRP, PRL 96, 232301 (2006)]
- What remains: Higher order EM corrections in wfs? N³LO 1B Orthonormalization
- Better input possible from $\gamma d \to nn\pi^+$ or $\mu^- d \to nn\nu_\mu$?

- \bullet χ S relates SD physics of 2B EW reactions to $(\gamma)\pi NN!$
- Chiral 3NF constrained by EW 2B obs!
- χ PT reduces theory error for a_{nn} , $\Delta a_{nn} = \pm 0.05$ fm, a factor >3 better than previous calcs! [AG+DRP, PRL 96, 232301 (2006)]
- What remains:

Higher order EM corrections in wfs? $N^3LO 1B$ Orthonormalization

- Better input possible from $\gamma d \to nn\pi^+$ or $\mu^- d \to nn\nu_\mu$?
- Complete the circle:

 $\mu^- d \to nn\nu_\mu$ (1%) at PSI; expt and calc under way! $\nu(\bar{\nu})d$ breakup (SNO) with chiral wfs $^3{\rm H} \rightarrow {}^3{\rm He}e^-\bar{\nu}_e$ with (r-space) chiral wfs?

• $\pi^- d \to nn\gamma$ under good experimental and theoretical control

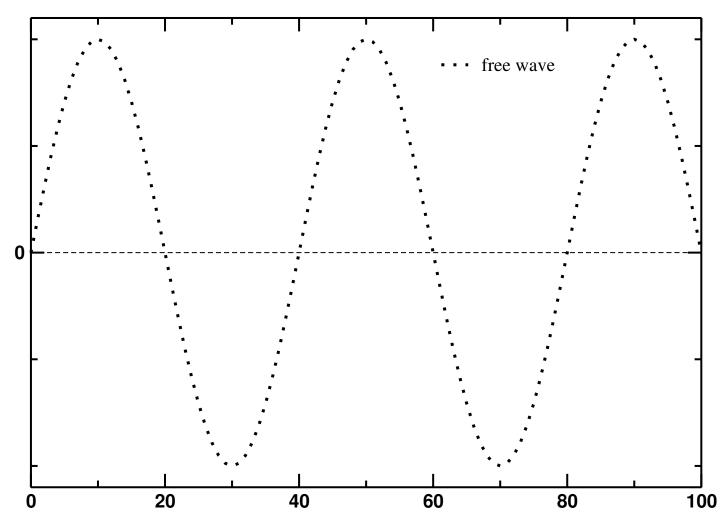
- $\pi^- d \to nn\gamma$ under good experimental and theoretical control
- Bonn-TUNL discrepancy needs to be resolved, work under way

- $\pi^- d \rightarrow nn\gamma$ under good experimental and theoretical control
- Bonn-TUNL discrepancy needs to be resolved, work under way
- \bullet direct measurement of a_{nn} finally possible?

Intro to Phase Shifts

Free wave (radial part of 3D):

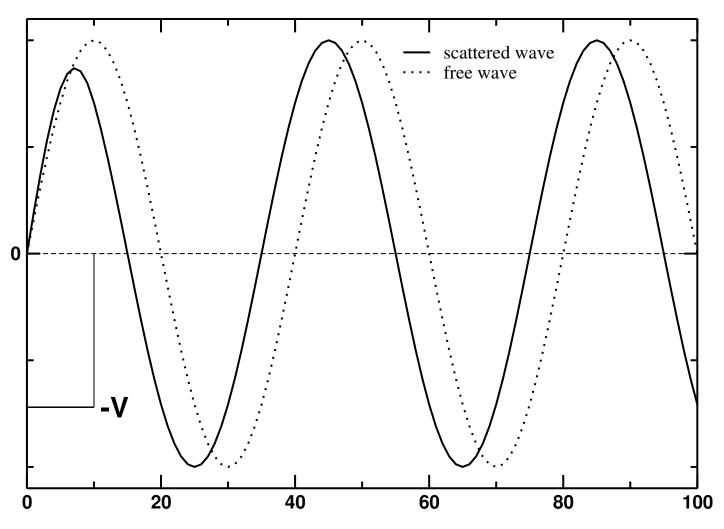
$$u_l \sim \sin(pr - \frac{l\pi}{2})$$



Intro to Phase Shifts

Scattered wave:

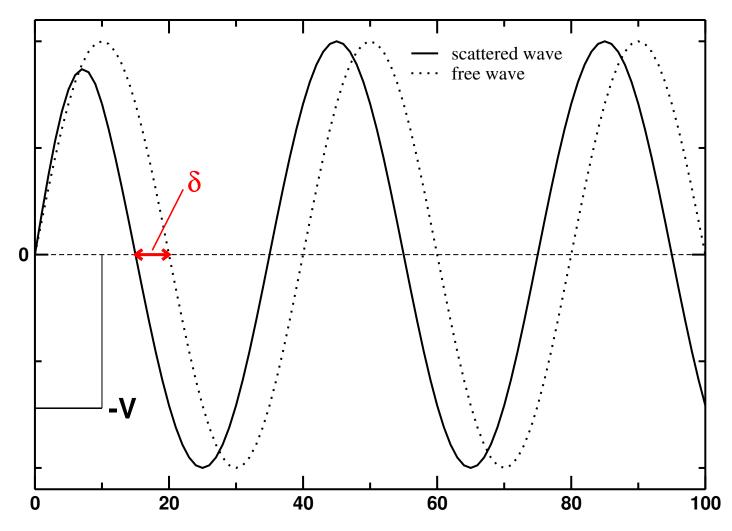
$$u_l \sim \sin(pr - \frac{l\pi}{2} + \delta_l)$$



Intro to Phase Shifts

Scattered wave:

$$u_l \sim \sin(pr - \frac{l\pi}{2} + \delta_l)$$



Interaction $V \Rightarrow$ phase shift:

 $\delta > 0$ attractive potential

 $\delta < 0$ repulsive potential

Definition of Scattering Length

The low energy cross section

$$\frac{d\sigma}{d\Omega} = \frac{1}{p^2} \sin^2 \delta_0 \stackrel{p \to 0}{\to} a^2$$

defining the (S-wave) scattering length

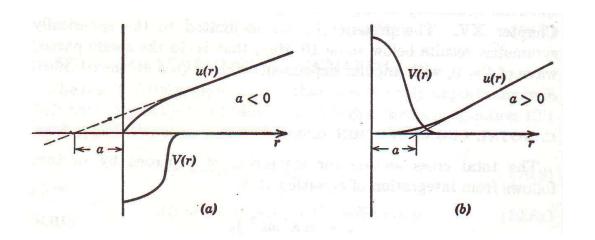
$$\mathbf{a} \equiv -\lim_{p \to 0} \frac{\delta_0}{p}$$

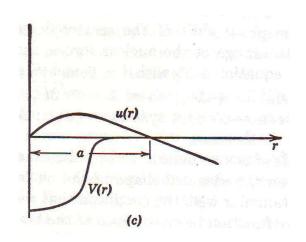
where the sign is conventional.

For impenetrable sphere: a > 0 and $\sigma = 4\pi a^2$

Scattering length and wfs

At zero energy the asymptotic NN wave function behaves as 1 - r/a





- a) a < 0, attractive potential, scattering state
- b) a > 0, repulsive potential
- c) a > 0, attractive potential, bound state

WHITWORTH CGLN amplitudes

Spin decomposition

$$\mathcal{A}_{\mathrm{I}}(\gamma N \to \pi N) = F_{1}(E_{\pi}, x) i\boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}_{\gamma} + F_{2}(E_{\pi}, x) \boldsymbol{\sigma} \cdot \widehat{\mathbf{q}} \, \boldsymbol{\sigma} \cdot (\widehat{\mathbf{k}} \times \boldsymbol{\epsilon}_{\gamma})$$

$$+ F_{3}(E_{\pi}, x) i\boldsymbol{\sigma} \cdot \widehat{\mathbf{k}} \, \widehat{\mathbf{q}} \cdot \boldsymbol{\epsilon}_{\gamma} + F_{4}(E_{\pi}, x) i\boldsymbol{\sigma} \cdot \widehat{\mathbf{q}} \, \widehat{\mathbf{q}} \cdot \boldsymbol{\epsilon}_{\gamma}$$

Isospin

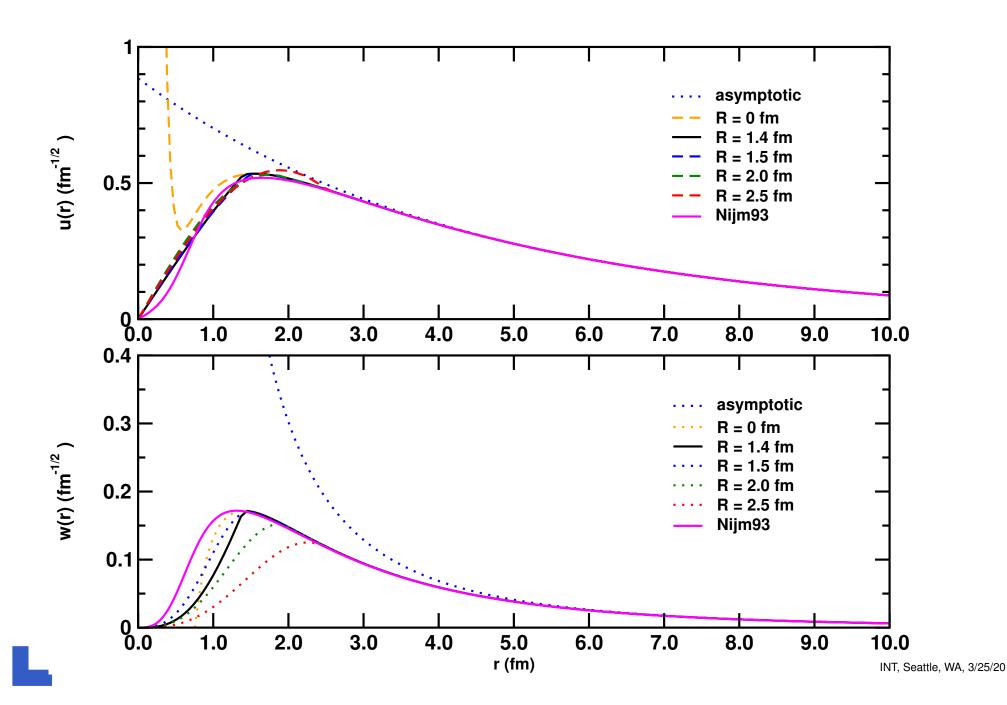
$$F_i^a(E_{\pi}, x) = F_i^{(-)}(E_{\pi}, x)i\epsilon^{a3b}\tau^b + F_i^{(0)}(E_{\pi}, x)\tau^a + F_i^{(+)}(E_{\pi}, x)\delta^{a3}$$

and for $\gamma n \to \pi^- p$

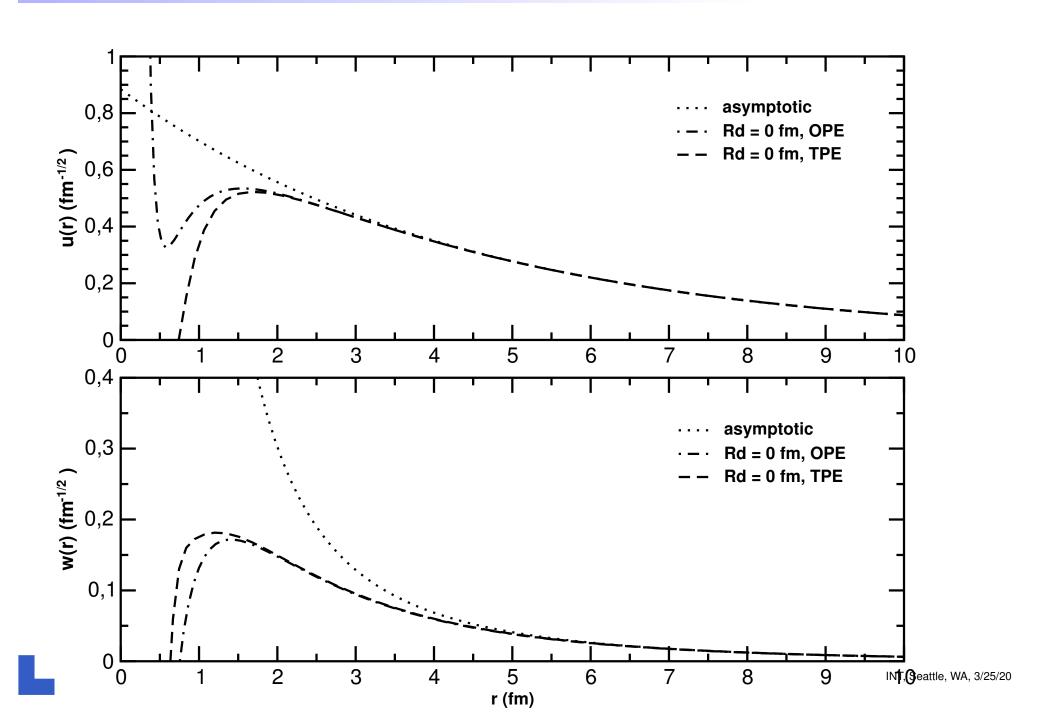
$$F_i(\gamma n \to \pi^- p) = \sqrt{2} [F_i^{(0)} - F_i^{(-)}]$$

 $q=0 \Rightarrow$ only F_1 , dominated by KR for charged pions

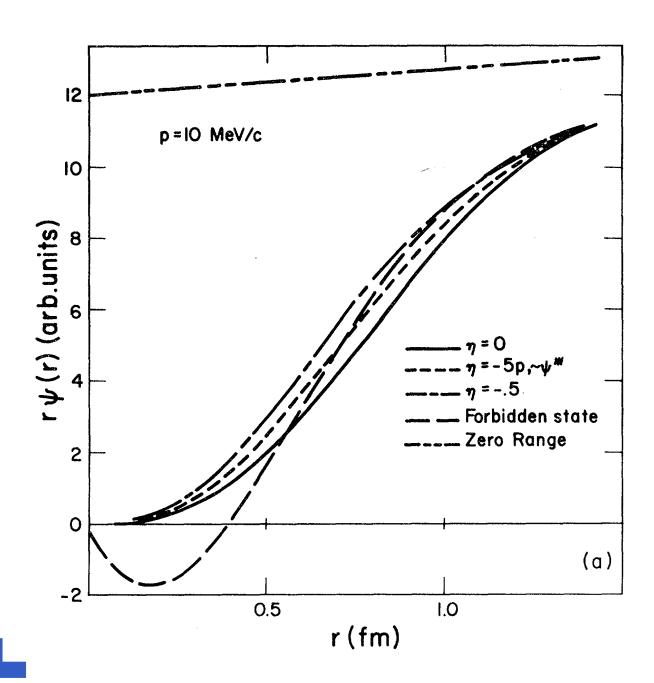
Deuteron wave functions (OPE).



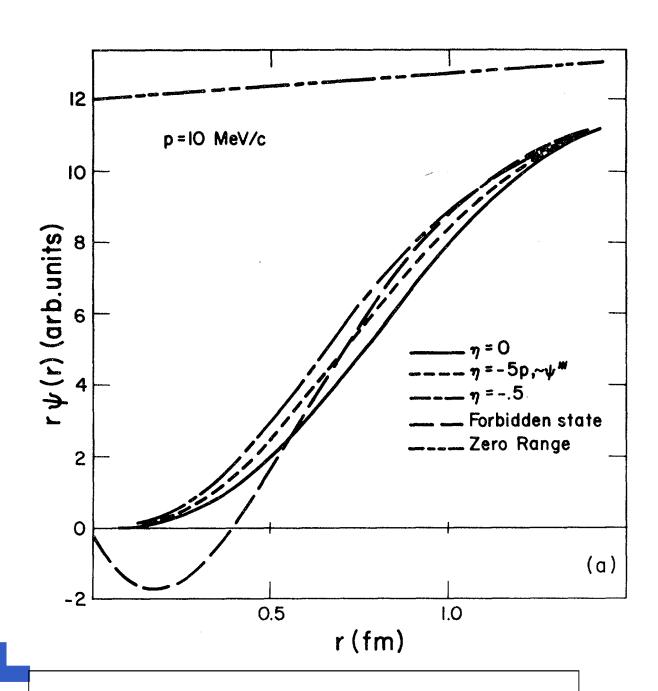
Deuteron wave functions (TPE).



nn scattering wfs, GGS



nn scattering wfs, GGS vs GP

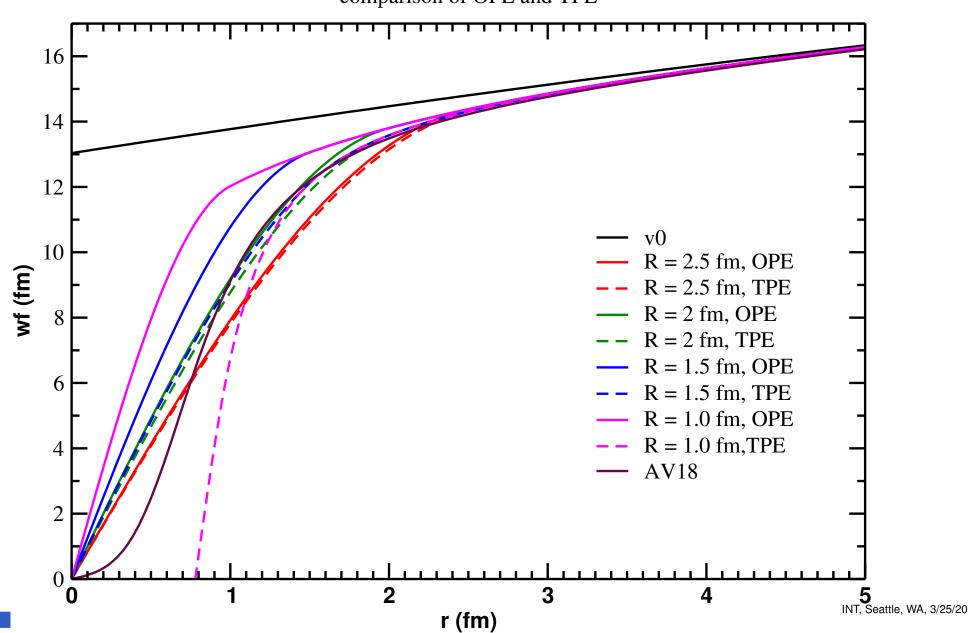


nn scattering wfs, GGS

nn scattering wfs, GGS vs GP

p = 10 MeV/c

comparison of OPE and TPE



Feynman rule for $\gamma\pi\pi NN$

d can only be established if new FR derived:

$$\left(c_4 + \frac{1}{4M} \right) \frac{2ie}{f_{\pi}^2} \left[\left(\delta^{ab} \tau^3 - \delta^{a3} \tau^b \right) \left[S \cdot q_1, S \cdot \epsilon_{\gamma} \right] \right]$$

$$- \left(\delta^{ab} \tau^3 - \delta^{b3} \tau^a \right) \left[S \cdot q_2, S \cdot \epsilon_{\gamma} \right]$$

Not published before (not in [Bernard, Kaiser, Meißner, IJMPE 4, 193 (1995)])

[AG, PRC 74, 017001 (2006)]

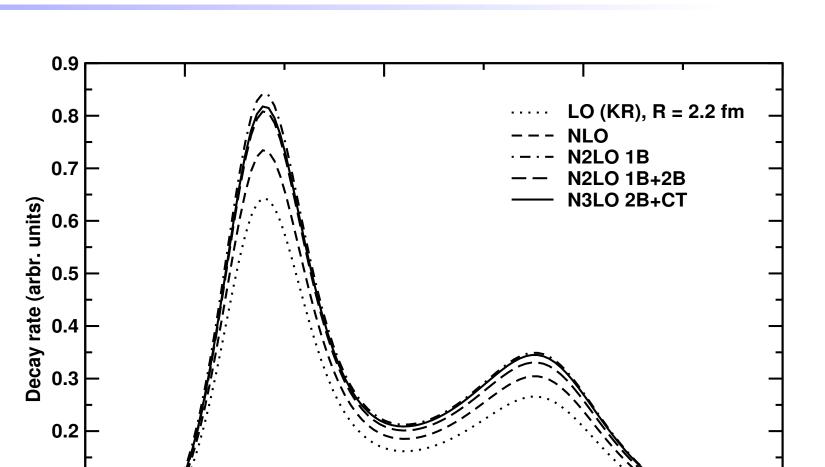
0.1

0

Convergence

QF

200



400

TOF (channels)

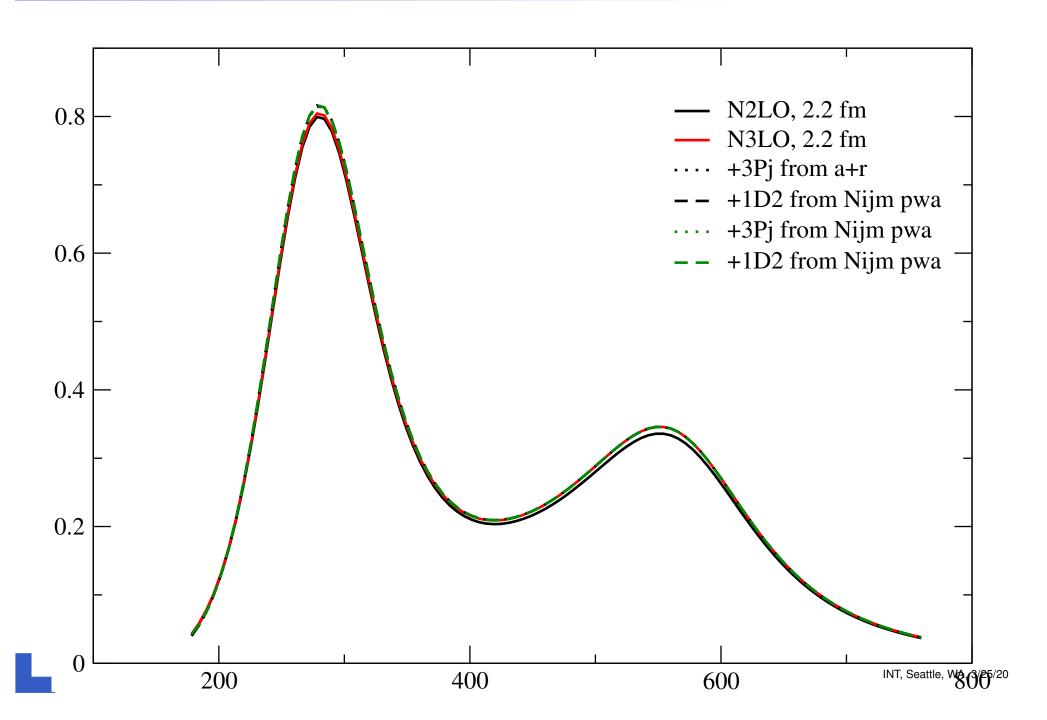
$$\frac{\Gamma_{\text{QF}}}{\Gamma_{\text{FSI}}} = 2.422(1 - 0.0035 + 0.0003 + 0.013 - 0.035)$$

FSI

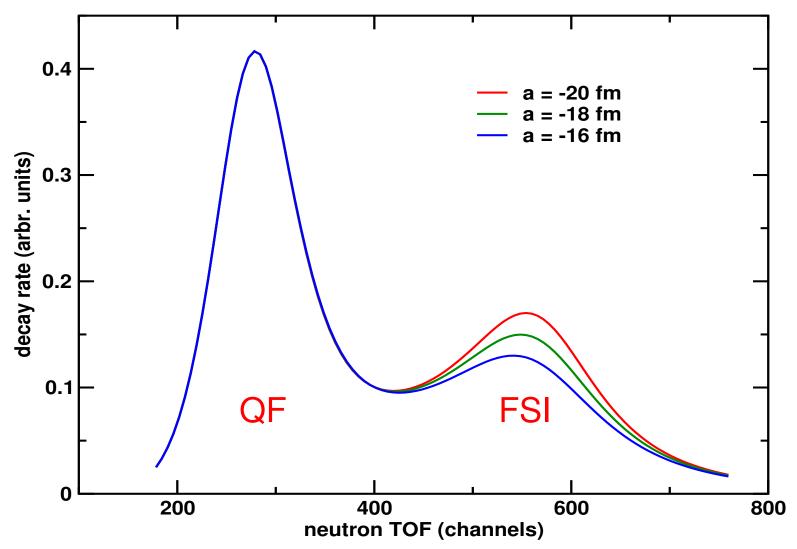
600

800

Role of higher partial waves



Sensitivity to a_{nn}



Neutron TOF spectrum at $\theta_3 = 0.075 \text{ rad} \Rightarrow \frac{\Delta a_{nn}}{a_{nn}} = 0.83 \frac{\Delta \Gamma}{\Gamma}$

Boost corrections

Corrections to CGLN

$$\Delta F_1^{(0)}(E_{\pi}) = \frac{eg_A}{2f_{\pi}} \frac{-(E_{\pi}\mathbf{p}_n \cdot \hat{\mathbf{k}} + E_{\pi}^2)}{2M^2} (\mu_p + \mu_n)$$

$$\Delta F_1^{(-)}(E_{\pi}) = \frac{eg_A}{2f_{\pi}} \frac{E_{\pi}\mathbf{p}_n \cdot \hat{\mathbf{k}} + E_{\pi}^2}{M^2}$$

New spin-momentum structures

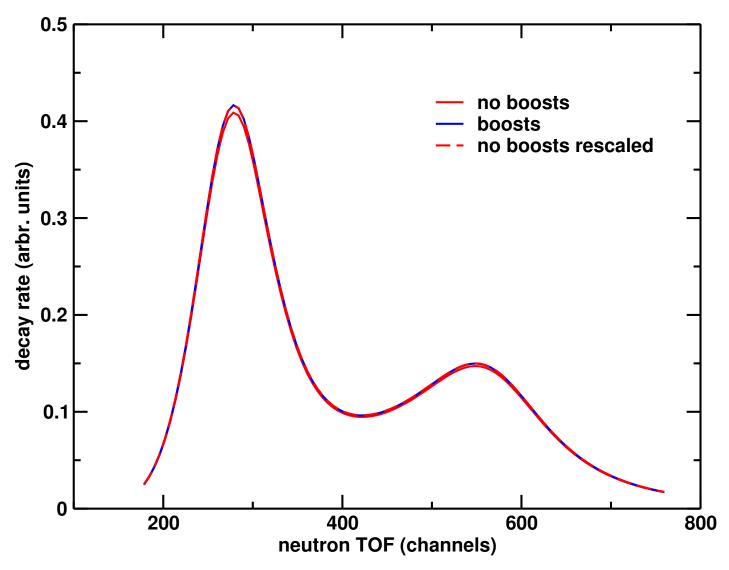
$$G^{(0)}(E_{\pi}) = \frac{eg_{A}}{2f_{\pi}} \frac{iE_{\pi}\mathbf{p}_{n} \cdot \boldsymbol{\epsilon}_{\gamma}\boldsymbol{\sigma} \cdot \hat{\mathbf{k}}}{2M^{2}} (\mu_{p} + \mu_{n} - 1)$$

$$G^{(-)}(E_{\pi}) = \frac{eg_{A}}{2f_{\pi}} \left(\frac{E_{\pi}\mathbf{p}_{n} \cdot (\hat{\mathbf{k}} \times \boldsymbol{\epsilon}_{\gamma})}{2M^{2}} (\mu_{p} - \mu_{n} + \frac{1}{2}) - \frac{i\mathbf{p}_{n} \cdot \boldsymbol{\epsilon}_{\gamma}\boldsymbol{\sigma} \cdot (2\mathbf{p}_{n} + E_{\pi}\hat{\mathbf{k}})}{M^{2}} \right)$$

 $\mu_p - \mu_n + \frac{1}{2} = 5.2$, but $\mathbf{p}_n \cdot (\widehat{\mathbf{k}} \times \boldsymbol{\epsilon}_{\gamma}) \approx E_{\pi}^2 \sin \theta_3$ with $\theta_3 = 0.075$ rad similarly $\mathbf{p}_n \cdot \boldsymbol{\epsilon}_{\gamma} \approx E_{\pi} \sin \theta_3$

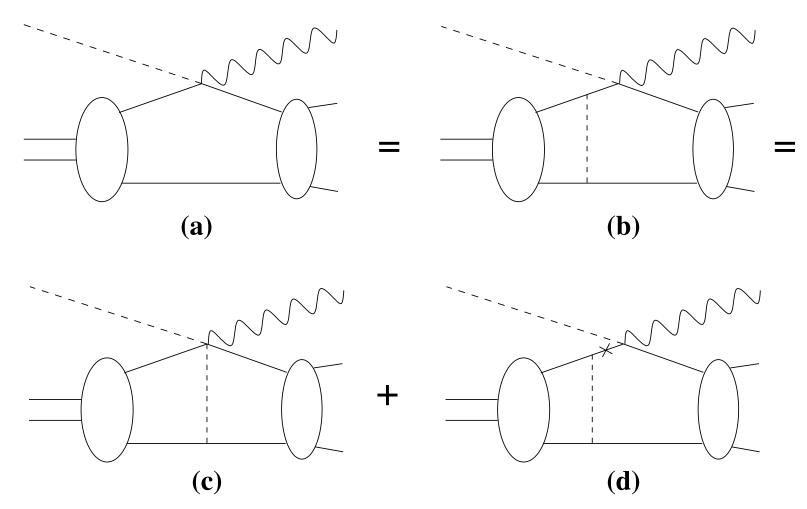
Thus only CGLN corr's important, $O(\mu^2/2M^2) \sim 1\%$

To boost or not to boost?



Both peaks scale the same way $\Rightarrow 0.10\%$ for a_{nn}

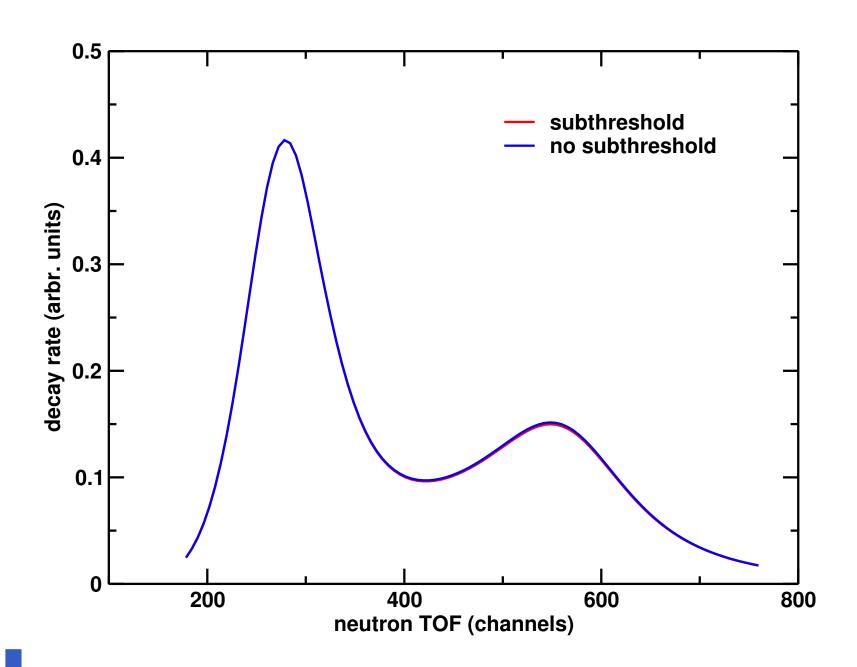
**Off-shellness*



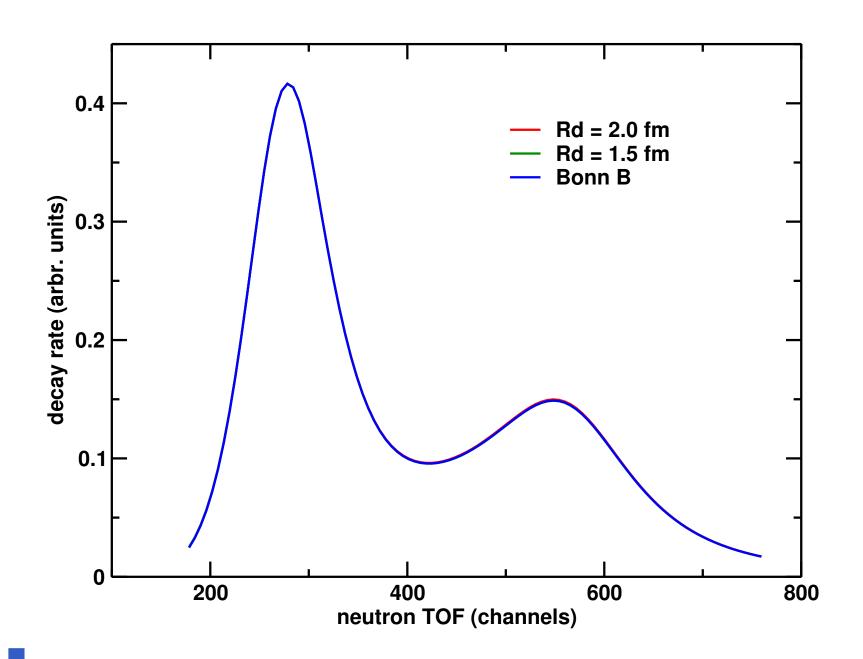
Off-shell nucleon transformed into 2B and on-shell 1B New 2B $O(Q^5) \Leftrightarrow p^2/M^2 \sim \mu^2/M^2 \sim 2\%$ of $O(Q^3)$ 2B

$$\Rightarrow \Delta a_{nn} = 0.02 \text{ fm}$$

Subthreshold extrapolation



Error from d wfs



Error from nn wfs

