From few to many neutrons using Quantum Monte Carlo techniques

Stefano Gandolfi

Los Alamos National Laboratory (LANL)

Simulations and Symmetries: Cold Atoms, QCD and Few-Hadron systems,

INT, University of Washington, Seattle,

March 15 - May 21, 2010

Work done with

- J. Carlson (LANL)
- S. Pieper (ANL)
- K. E. Schmidt (ASU)
- S. Fantoni (SISSA, Italy)
- F. Pederiva, A. Yu Illarionov (Trento, Italy)

メタト メミト メミト

 Ω

- **A** Motivations
- The model and the method
- Equation of state of zero temperature nuclear and neutron matter

K 御 > K 君 > K 君 > 〈君〉 ◆ Q Q ⊙

4 D F

- **•** Neutron drops
- **•** Conclusions and perspectives

Why study nuclear matter? Why zero temperature?

 2990

 \Rightarrow Ε

∍

Large density: nuclei \rightarrow nuclear matter. Neutron matter: simpler system to model a neutron star. Why study neutron drops?

Are not they nothing more than a pure simple toy model?

NP self-bound

 $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$

 Ω

N confined

Neutron drops are interesting because:

- Provide a strong benchmark for microscopic calculations
- **Model neutron-rich nuclei**
- Calibrate Skyrme models for neutron-rich systems (useful to check $\nabla \rho$ terms in different geometries)

Motivations

- Quantum Monte Carlo methods (GFMC and AFDMC) provide very accurate results for nuclear systems.
- NN scattering data and few-body theory \rightarrow nuclear Hamiltonians. Few-body \rightarrow many-body \Rightarrow experiments/observations?
- EOS of nuclear and neutron matter relevant for nuclear astrophysics (neutron stars and supernovae).
- Neutron drops can be useful to calibrate mean-field theories, and produce new predictions of neutron-rich nuclei (FRIB).

←何 ▶ → ヨ ▶ → ヨ ▶

 209

HAMILTONIAN AND METHOD

 2990

G.

何) (ヨ) (ヨ)

Hamiltonian

Model: non-relativistic nucleons interacting with an effective nucleon-nucleon force (NN) and three-nucleon interaction (TNI).

$$
H=-\frac{\hbar^2}{2m}\sum_{i=1}^A \nabla_i^2 + \sum_{i
$$

NN and TNI are usually written as sums of operators:

$$
\mathsf{v}_{ij}=\sum_{p=1}^M \mathsf{v}_p(r_{ij})O^{(p)}(i,j)
$$

 $O^{(p)}$ operators including spin, isospin, tensor and others. Main contribution given by one-pion exchange (OPE) and spin-orbit:

$$
O_{ij}^{p=1,8}=\left(1,\vec{\sigma}_i\cdot\vec{\sigma}_j,S_{ij},\vec{L}_{ij}\cdot\vec{S}_{ij}\right)\times\left(1,\vec{\tau}_i\cdot\vec{\tau}_j\right).
$$

 $\langle \overline{m} \rangle$ \rightarrow \pm \rightarrow \pm \pm \rightarrow

 Ω

 V_{ii} fitted on scattering data.

TNI interaction

Urbana Three-Nucleon-Interaction model:

For example the Fujita-Miyazawa diagram gives:

$$
O_{ijk}^{2\pi, PW} = \sum_{cyc} \left[\{X_{ij}, X_{jk}\} \{ \tau_i \cdot \tau_j, \tau_j \cdot \tau_k \} + \frac{1}{4} \left[X_{ij}, X_{jk} \right] \left[\tau_i \cdot \tau_j, \tau_j \cdot \tau_k \right] \right],
$$

where the X operators have the same structure of OPE terms of NN.

Parameters of various TNI forces fitted on light nuclei¹.

¹Pieper et al., Phys. Rev. C 64, 014001 (2001) K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @ Stefano Gandolfi Los Alamos National Laboratory (LANL) [From few to many neutrons](#page-0-0)

Different approach to include TNI (Friedman-Lagaris-Pandharipande): modify the NN interaction by adding density-dependent terms to NN: ²

$$
v_{DD6'}^{\rho} = v_{OPE}^{\rho} + v_{I}^{\rho} e^{-\gamma_1 \rho} + v_{S}^{\rho} + \text{TNA}(\rho),
$$

\n
$$
\text{TNA}(\rho) = 3\gamma_2 \rho^2 e^{-\gamma_3 \rho} \left[1 - \frac{2}{3} \left(\frac{\rho_n - \rho_p}{\rho_n + \rho_p} \right)^2 \right]
$$

The modified NN takes into account the contribution of TNI in the $l = 0$ channel. TNA is a phenomenological attractive part (includes missing binding energy).

 2 Lagaris and Pandharipande, Nucl. Phys. A359, 349 [\(19](#page-7-0)8[1\)](#page-9-0)[,](#page-7-0) σ > \rightarrow \rightarrow \rightarrow \rightarrow \equiv 2990 Stefano Gandolfi Los Alamos National Laboratory (LANL) [From few to many neutrons](#page-0-0)

Evolution of Schrodinger equation in imaginary time t:

$$
\psi(R,t)=e^{-(H-E_T)t}\psi(R,0)
$$

In the limit of $t \to \infty$ it approaches to the lowest energy eigenstate (not orthogonal to $\psi(R, 0)$).

Propagation performed by

$$
\psi(R,t) = \langle R | \psi(t) \rangle = \int dR' G(R,R',t) \psi(R',0)
$$

where $G(R,R',t)$ is an approximate propagator known in the small-time limit:

$$
G(R, R', \Delta t) = \langle R|e^{-H\Delta t}|R'\rangle
$$

KED KARD KED KED E VOQO

Then we need to iterate many times the above integral equation in the small time-step limit.

GFMC and AFDMC

Because the Hamiltonian is state dependent, all spin/isospin states of nucleons must be included in the wave-function. Example of just the spin for 3 neutrons (radial parts also needed in real

life):

GFMC wave-function:

$$
\psi = \left(\begin{array}{c} a_{\uparrow\uparrow\uparrow} \\ a_{\uparrow\uparrow\downarrow} \\ a_{\downarrow\downarrow\uparrow} \\ a_{\downarrow\uparrow\uparrow} \\ a_{\downarrow\uparrow\uparrow} \\ a_{\downarrow\downarrow\uparrow} \\ a_{\downarrow\downarrow\downarrow} \end{array}\right)
$$

A propagator like

$$
e^{-v(r)\sigma_1\cdot\sigma_2\Delta t}
$$

can be used, and the variational wave function can be very good. Any operator accurately computed.

AFDMC wave-function:

$$
\psi = \mathcal{A}\left[\xi_{s_1}\left(\begin{array}{c}a_1\\b_1\end{array}\right)\xi_{s_2}\left(\begin{array}{c}a_2\\b_2\end{array}\right)\xi_{s_3}\left(\begin{array}{c}a_3\\b_3\end{array}\right)\right]
$$

We must change the propagator by using the Hubbard-Stratonovich transformation:

$$
e^{\frac{1}{2}\Delta t O^2} = \frac{1}{\sqrt{2\pi}} \int dxe^{-\frac{x^2}{2} + x\sqrt{\Delta t}O}
$$

Auxiliary fields x must also be sampled. The wave-function is pretty bad, but we can deal to large systems (up to $A \approx 100$). Operators (except the energy) are very hard to be computed.

イロト イ押 トイヨ トイヨ トー

 \equiv

 Ω

The trial wave-function used for the projection has the following general form:

$$
\psi_{\mathcal{T}}(R,S) = \Phi_{J}(R) \cdot A[\phi_i(\vec{r}_j, s_j)] \tag{1}
$$

KED KARD KED KED E VOQO

where $R = (\vec{r}_1...\vec{r}_A)$, $S = (s_1...s_A)$ and $\{\phi_i\}$ is a single-particle base.

 $\Phi_J(R)$ is a Jastrow factor. It contains spin/isospin correlations in GFMC, and it is scalar in AFDMC:

$$
GFMC: \Phi_J(R) = \prod_{i < j} (f_c(r_{ij}) + f_\sigma(r_{ij})\sigma_i \cdot \sigma_j + \dots)
$$
\n
$$
AFDMC: \Phi_J(R) = \prod_{i < j} f(r_{ij})
$$

According to the problem correct boundary conditions to the trial wave-function must be imposed.

NUCLEAR AND NEUTRON MATTER

 2990

目

AD > (E > (E >

Stefano Gandolfi Los Alamos National Laboratory (LANL) [From few to many neutrons](#page-0-0)

SYMMETRIC NUCLEAR MATTER

We re-adjusted the DDI parameters combined with the NN AV6' to reproduce following properties of SNM:

- $\rho_0 = 0.16$ fm⁻³
- $E(\rho_0) = -16$ MeV
- the compressibility $K \approx 240$ MeV

 QQQ

 \Rightarrow ₿

÷

The density-dependent Hamiltonian used to compute the EOS of neutron matter, and compared to that given by Hamiltonian AV8'+UIX.³

Green line: PNM, AV8' (two-body interaction only)

Black line: PNM, AV8'+UIX (explicit three-body force)

Red line: PNM, AV6'+DDI (density-dependent term)

Blue line: SNM, AV6'+DDI

The EOS of neutron matter is now sensibly softer than the previous one. Of course this effect is due to the different treatment of three-body force.

 3 SG et al., Mon. Not. R. Astron. Soc. 404, L35 (201[0\).](#page-13-0) つへへ Using the AV6'+DDI Hamiltonian, the resulting symmetry energy is parametrized by

$$
E_{sym}(\rho) = c \left(\rho / \rho_0 \right)^{\gamma} . \tag{2}
$$

By fitting our results we have

$$
c = 31.3 MeV
$$

$$
\gamma = 0.64
$$
 (3)

Typical values for these parameters are

$$
c \approx 31 - 33 MeV \quad \text{and} \quad \gamma \approx 0.55 - 0.69^4
$$

$$
c = 31.6 MeV \quad \text{and} \quad \gamma \approx 0.69 - 1.05^5
$$
 (4)

⁴D.V. Shetty, S.J. Yennello, and G.A. Souliotis, Phys. Rev. C 76, 024606 (2007) 5 Aaron Worley, Plamen G. Krastev, and Bao-An Li, A[pJ](#page-14-0)=[68](#page-16-0)[5,](#page-14-0) [39](#page-15-0)[0](#page-16-0) [\(2](#page-0-0)[008](#page-28-0)[\)](#page-0-0) 2990 Comparison of equation of state of neutron matter using different Hamiltonians:

Hebeler-Schwenk: EFT approach⁶

⁶K. Hebeler, A. Schwenk, arXiv:0911.0483

Stefano Gandolfi Los Alamos National Laboratory (LANL) [From few to many neutrons](#page-0-0)

 \leftarrow

 2990

Ε

舌

β –equilibrium

We can impose the β -equilibrium, so

$$
n \to p + e^- + \bar{\nu} \tag{5}
$$

and require that chemical potentials are conserved

$$
\mu_n = \mu_p + \mu_e \tag{6}
$$

The resulting proto-neutron EOS can be used as a model of neutron star

Note: by now we do not consider the effects of [hyp](#page-16-0)[er](#page-18-0)[o](#page-16-0)[ns.](#page-17-0)

Stefano Gandolfi Los Alamos National Laboratory (LANL) [From few to many neutrons](#page-0-0)

 QQ

Neutron star structure

TOV equation solved to analyze the static structure of a compact star

The EOS computed using $AV8' + UIX$ Hamiltonian or $AV6' + DDI$ give sensible different star structure. ⁷

Observations: Özel, Baym and Güver, arXiv:1002.3153 (2010).

7SG et al., Mon. Not. R. Astron. Soc. 404, L35 (2010) $\Box \rightarrow \Box \rightarrow \Box$ \mathbb{B} is: E 2990 Stefano Gandolfi Los Alamos National Laboratory (LANL) [From few to many neutrons](#page-0-0)

Neutron drops

K 御 と K 君 と K 君 と

 \leftarrow Þ 重

 299

Hamiltonian:

$$
H = -\frac{\hbar^2}{2m} \sum_{i=1}^{A} \nabla_i^2 + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \sum_i V_{ext}(r_i) \tag{7}
$$

K 御 と K 君 と K 君 と …

4 D F

 $E = \Omega Q$

 V_{ext} confines neutrons.

We used Wood-Saxon or Harmonic well.

Comparison of GFMC and AFDMC energies. Hamiltonian: $AV8' + UIX + Wood-Saxon well$, $VO = -35.5 MeV$, $R = 3$ MeV, $a=1.1$

Agreement generally better than 1%.

Neutron drops: Wood-Saxon well

Comparison of ab-initio and Skyrme models.

 QQ

Wood-Saxon external well

Skyrmes systematically overbind neutron drops.

Comparison of GFMC and AFDMC energies. Hamiltonian: $AV8' + UIX + Harmonic oscillator$ well

- \bullet $\hbar\omega = 5$ MeV, differences probably due to pairing effects
- $\hbar\omega = 10$ MeV, agreement better than 1%
- $5/2^+$ $1/2^+$ ordering well reproduced in 3 of 4 cases

Neutron drops: harmonic oscillator well

Comparison of ab-initio and Skyrme models.

35 ω = 10 MeV 30 25 **Batalog** EN [MeV] 20 SLY4 SLY5 SLY6 SLY7 $\ddot{\circ}$ SKM^{*} 10 $\omega = 5$ MeV \circ **SIII GFMC AFDMC** 5 **NCFC** θ $\overline{24}$ $\overline{52}$ $\overline{8}$ 12 20 28 32 36 40 48 16 # of neutrons

Harmonic oscillator external well

NCFC (No Core Full Configuration) provided by P. Maris and J. Vary.

 2990

₿

(母) : \rightarrow \equiv \rightarrow

Stefano Gandolfi Los Alamos National Laboratory (LANL) [From few to many neutrons](#page-0-0)

Even-odd staggering and pairing gap.

 2990

Ε

← 冊→

4 O F

 $\leftarrow \equiv$ \rightarrow

 \rightarrow \equiv \rightarrow

CONCLUSIONS AND PERSPECTIVES

 2990

G.

←何 ▶ → ヨ ▶ → ヨ ▶

 \Box

Stefano Gandolfi Los Alamos National Laboratory (LANL) [From few to many neutrons](#page-0-0)

- The study of neutron and nuclear matter using realistic Hamiltonians is now possible within QMC techniques.
- **EOS** of nuclear and neutron matter revisited.
- Properties of confined neutrons in different geometries now possible up to $N \sim 50$. Skyrme can be now adjusted to deal with large neutron-rich nuclei.

 $\langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \rangle$ and $\langle \rangle$

G.

 Ω

Computation of spin-orbit splitting and excitation energies in progress.

Thanks for your attention

メ御 メメ きょうほう

4 D F

 $E = \Omega Q$