From few to many neutrons using Quantum Monte Carlo techniques

Stefano Gandolfi Los Alamos National Laboratory (LANL)

Simulations and Symmetries: Cold Atoms, QCD and Few-Hadron systems, INT, University of Washington, Seattle,

March 15 - May 21, 2010

Work done with

- J. Carlson (LANL)
- S. Pieper (ANL)
- K. E. Schmidt (ASU)
- S. Fantoni (SISSA, Italy)
- F. Pederiva, A. Yu Illarionov (Trento, Italy)

- Motivations
- The model and the method
- Equation of state of zero temperature nuclear and neutron matter

= na0

- Neutron drops
- Conclusions and perspectives

Why study nuclear matter? Why zero temperature?

Large density: nuclei \rightarrow nuclear matter. Neutron matter: simpler system to model a neutron star. Why study neutron drops?

Are not they nothing more than a pure simple toy model?

NP self-bound

< 回 > < 三 > < 三 >

Neutron drops are interesting because:

- Provide a strong benchmark for microscopic calculations
- Model neutron-rich nuclei
- Calibrate Skyrme models for neutron-rich systems (useful to check $\nabla \rho$ terms in different geometries)

Motivations

- Quantum Monte Carlo methods (GFMC and AFDMC) provide very accurate results for nuclear systems.
- NN scattering data and few-body theory \rightarrow nuclear Hamiltonians. Few-body \rightarrow many-body \Rightarrow experiments/observations?
- EOS of nuclear and neutron matter relevant for nuclear astrophysics (neutron stars and supernovae).
- Neutron drops can be useful to calibrate mean-field theories, and produce new predictions of neutron-rich nuclei (FRIB).

通 と く ヨ と く ヨ と

HAMILTONIAN AND METHOD

伺 ト イヨト イヨト

Hamiltonian

Model: non-relativistic nucleons interacting with an effective nucleon-nucleon force (NN) and three-nucleon interaction (TNI).

$$\mathcal{H}=-rac{\hbar^2}{2m}\sum_{i=1}^A
abla_i^2+\sum_{i< j}m{v}_{ij}+\sum_{i< j< k}m{V}_{ijk}$$

NN and TNI are usually written as sums of operators:

$$v_{ij} = \sum_{p=1}^{M} v_p(r_{ij}) O^{(p)}(i,j)$$

 $O^{(p)}$ operators including spin, isospin, tensor and others. Main contribution given by one-pion exchange (OPE) and spin-orbit:

$$O_{ij}^{p=1,8} = \left(1, ec{\sigma}_i \cdot ec{\sigma}_j, S_{ij}, ec{L}_{ij} \cdot ec{S}_{ij}
ight) imes \left(1, ec{ au}_i \cdot ec{ au}_j
ight).$$

A (1) × (2) × (3) ×

 V_{ij} fitted on scattering data.

TNI interaction

Urbana Three-Nucleon-Interaction model:

For example the Fujita-Miyazawa diagram gives:

$$O_{ijk}^{2\pi,PW} = \sum_{cyc} \left[\{X_{ij}, X_{jk}\} \{\tau_i \cdot \tau_j, \tau_j \cdot \tau_k\} + \frac{1}{4} [X_{ij}, X_{jk}] [\tau_i \cdot \tau_j, \tau_j \cdot \tau_k] \right],$$

where the X operators have the same structure of OPE terms of NN.

Parameters of various TNI forces fitted on light nuclei ¹.

¹Pieper et al., Phys. Rev. C 64, 014001 (2001) Stefano Gandolfi Los Alamos National Laboratory (LANL) From few to many neutrons

Different approach to include TNI (Friedman-Lagaris-Pandharipande): modify the NN interaction by adding density-dependent terms to NN: $^{\rm 2}$

$$\begin{aligned} v_{DD6'}^{\rho} &= v_{OPE}^{\rho} + v_{I}^{\rho} e^{-\gamma_{1}\rho} + v_{S}^{\rho} + \text{TNA}(\rho) \,, \\ \text{TNA}(\rho) &= 3\gamma_{2}\rho^{2} e^{-\gamma_{3}\rho} \left[1 - \frac{2}{3} \left(\frac{\rho_{n} - \rho_{p}}{\rho_{n} + \rho_{p}} \right)^{2} \right] \end{aligned}$$

The modified NN takes into account the contribution of TNI in the l = 0 channel. TNA is a phenomenological attractive part (includes missing binding energy).

²Lagaris and Pandharipande, Nucl. Phys. A359, 349 (1981), (→ (≥) (≥) (≥) (∞) (ANL) Stefano Gandolfi Los Alamos National Laboratory (LANL) From few to many neutrons Evolution of Schrodinger equation in imaginary time t:

$$\psi(R,t) = e^{-(H-E_T)t}\psi(R,0)$$

In the limit of $t \to \infty$ it approaches to the lowest energy eigenstate (not orthogonal to $\psi(R, 0)$).

Propagation performed by

$$\psi(R,t) = \langle R | \psi(t)
angle = \int dR' G(R,R',t) \psi(R',0)$$

where G(R, R', t) is an approximate propagator known in the small-time limit:

$$G(R, R', \Delta t) = \langle R | e^{-H\Delta t} | R' \rangle$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Then we need to iterate many times the above integral equation in the small time-step limit.

GFMC and AFDMC

Because the Hamiltonian is state dependent, all spin/isospin states of nucleons must be included in the wave-function.

Example of just the spin for 3 neutrons (radial parts also needed in real life):

GFMC wave-function:

$$\psi = \left(\begin{array}{c} \mathbf{a} \uparrow \uparrow \uparrow \\ \mathbf{a} \uparrow \uparrow \downarrow \\ \mathbf{a} \uparrow \downarrow \uparrow \\ \mathbf{a} \uparrow \downarrow \downarrow \\ \mathbf{a} \downarrow \uparrow \uparrow \\ \mathbf{a} \downarrow \uparrow \downarrow \\ \mathbf{a} \downarrow \uparrow \uparrow \\ \mathbf{a} \downarrow \downarrow \downarrow \\ \mathbf{a} \downarrow \downarrow \downarrow \end{array} \right)$$

A propagator like

$$e^{-v(r)\sigma_1\cdot\sigma_2\Delta t}$$

can be used, and the variational wave function can be very good. Any operator accurately computed.

AFDMC wave-function:

$$\psi = \mathcal{A} \begin{bmatrix} \xi_{s_1} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \xi_{s_2} \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \xi_{s_3} \begin{pmatrix} a_3 \\ b_3 \end{pmatrix} \end{bmatrix}$$

We must change the propagator by using the Hubbard-Stratonovich transformation:

$$e^{\frac{1}{2}\Delta tO^2} = \frac{1}{\sqrt{2\pi}} \int dx e^{-\frac{x^2}{2} + x\sqrt{\Delta t}O}$$

Auxiliary fields x must also be sampled. The wave-function is pretty bad, but we can deal to large systems (up to $A \approx 100$). Operators (except the energy) are very hard to be computed.

The trial wave-function used for the projection has the following general form:

$$\psi_T(R,S) = \Phi_J(R) \cdot A[\phi_i(\vec{r}_j,s_j)] \tag{1}$$

- ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ● ● ● ● ● ● ●

where $R = (\vec{r}_1 ... \vec{r}_A)$, $S = (s_1 ... s_A)$ and $\{\phi_i\}$ is a single-particle base.

 $\Phi_J(R)$ is a Jastrow factor. It contains spin/isospin correlations in GFMC, and it is scalar in AFDMC:

$$GFMC: \Phi_J(R) = \prod_{i < j} (f_c(r_{ij}) + f_\sigma(r_{ij})\sigma_i \cdot \sigma_j + \dots)$$
$$AFDMC: \Phi_J(R) = \prod_{i < j} f(r_{ij})$$

According to the problem correct boundary conditions to the trial wave-function must be imposed.

NUCLEAR AND NEUTRON MATTER

通 と く ヨ と く ヨ と

э

SYMMETRIC NUCLEAR MATTER

We re-adjusted the DDI parameters combined with the NN AV6' to reproduce following properties of SNM:

- $\rho_0 = 0.16 \ {\rm fm}^{-3}$
- *E*(*ρ*₀) = −16 MeV
- the compressibility $K \approx 240 \text{ MeV}$

The density-dependent Hamiltonian used to compute the EOS of neutron matter, and compared to that given by Hamiltonian AV8'+UIX. $^{\rm 3}$

Green line: PNM, AV8' (two-body interaction only)

Black line: PNM, AV8'+UIX (explicit three-body force)

Red line: PNM, AV6'+DDI (density-dependent term)

Blue line: SNM, AV6'+DDI

The EOS of neutron matter is now sensibly softer than the previous one. Of course this effect is due to the different treatment of three-body force.

³SG *et al.*, Mon. Not. R. Astron. Soc. 404, L35 (2010) => < ♂> < ≥> < ≥> < ≥> < ≥> <

Using the AV6'+DDI Hamiltonian, the resulting symmetry energy is parametrized by

$$\mathsf{E}_{sym}(\rho) = c \left(\rho/\rho_0\right)^{\gamma} \,. \tag{2}$$

By fitting our results we have

$$c = 31.3 MeV$$

$$\gamma = 0.64$$
(3)

Typical values for these parameters are

$$c \approx 31 - 33 MeV$$
 and $\gamma \approx 0.55 - 0.69^4$
 $c = 31.6 MeV$ and $\gamma \approx 0.69 - 1.05^5$ (4)

⁴D.V. Shetty, S.J. Yennello, and G.A. Souliotis, *Phys. Rev. C* 76, 024606 (2007) ⁵Aaron Worley, Plamen G. Krastev, and Bao-An Li, *ApJ*:685, 390 (2008) Comparison of equation of state of neutron matter using different Hamiltonians:

Hebeler-Schwenk: EFT approach⁶

⁶K. Hebeler, A. Schwenk, arXiv:0911.0483

Stefano Gandolfi Los Alamos National Laboratory (LANL) From few to many neutrons

β –equilibrium

We can impose the β -equilibrium, so

$$n \to p + e^- + \bar{\nu} \tag{5}$$

and require that chemical potentials are conserved

$$\mu_n = \mu_p + \mu_e \tag{6}$$

The resulting proto-neutron EOS can be used as a model of neutron star

Note: by now we do not consider the effects of hyperons.

Stefano Gandolfi Los Alamos National Laboratory (LANL) From few to many neutrons

Neutron star structure

TOV equation solved to analyze the static structure of a compact star

The EOS computed using AV8'+UIX Hamiltonian or AV6'+DDI give sensible different star structure. $^7\,$

Observations: Özel, Baym and Güver, arXiv:1002.3153 (2010).

Neutron drops

▲□ → ▲ 三 → ▲ 三 →

Hamiltonian:

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^{A} \nabla_i^2 + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \sum_i V_{ext}(r_i)$$
(7)

Ξ.

< 回 > < 三 > < 三 >

 V_{ext} confines neutrons.

We used Wood-Saxon or Harmonic well.

Comparison of GFMC and AFDMC energies. Hamiltonian: AV8' + UIX + Wood-Saxon well, V0=-35.5 MeV, R=3 MeV, a=1.1

Ν	J^{π}	GFMC	AFDMC	% diff.	
8	0+	-103.9(1)	-104.9(1)	.9(1)	
9	$1/2^{+}$	-107.8(1)	-108.6(1)	.8(1)	
10	0+	-113.4(1)	-113.9(1)	.4(2)	
11	$5/2^{+}$	-116.9(2)	-117.8(2)	.8(2)	
12	0+	-123.6(3)	-123.4(2)	2(3)	
13	$5/2^{+}$	-125.9(3)	-126.3(3)	.3(3)	
14	0+	-131.6(7)	-132.5(3)	.6(6)	

Agreement generally better than 1%.

Neutron drops: Wood-Saxon well

Comparison of *ab-initio* and Skyrme models.

Wood-Saxon external well

Skyrmes systematically overbind neutron drops.

Comparison of GFMC and AFDMC energies. Hamiltonian: AV8' + UIX + Harmonic oscillator well

Ν	J^{π}		$\hbar\omega=5 MeV$			$\hbar\omega=10 MeV$	
		GFMC	AFDMC	% diff.	GFMC	AFDMC	% diff.
8	0+	67.00(1)	67.0(2)	.0(3)	135.80(4)	134.8(1)	7(1)
9	$1/2^{+}$	80.90(4)	81.2(1)	.4(2)	163.7(1)	163.1(2)	4(2)
9	$5/2^{+}$	81.20(3)	81.6(2)	.5(3)	163.2(1)	162.0(2)	8(1)
10	0+	92.1(1)	94.2(2)	2.2(2)		188.1(3)	
12	0+	118.1(1)	120.3(3)	1.8(2)	242.0(6)	240.3(1)	7(2)
13	$5/2^{+}$	131.5(1)	135.4(3)	2.9(2)	267.6(6)	266.0(6)	6(3)
13	$1/2^{+}$	130.8(1)	135.9(3)	3.8(2)	268.0(5)	266.4(2)	6(2)
14	0+	142.2(2)	146.4(3)	2.9(2)	291.9(2)	291.1(2)	3(1)

- $\hbar\omega = 5$ MeV, differences probably due to pairing effects
- $\hbar\omega = 10$ MeV, agreement better than 1%
- $5/2^+$ $1/2^+$ ordering well reproduced in 3 of 4 cases

Neutron drops: harmonic oscillator well

Comparison of *ab-initio* and Skyrme models.

35 ω = 10 MeV 30 25 E/N [MeV] 15 SLY4 SLY5 SLY6 SLY7 SKM* 10 $\omega = 5 \text{ MeV}$ SIII GFMC AFDMC NCFC 0 12 20 24 28 32 52 8 16 36 48 # of neutrons

NCFC (No Core Full Configuration) provided by P. Maris and J. Vary.

- **→** → **→**

Stefano Gandolfi Los Alamos National Laboratory (LANL) From few to many neutrons

Harmonic oscillator external well

Neutron drops: harmonic oscillator well

Even-odd staggering and pairing gap.

$$\Delta(N) = E(N) - E(N-1)$$

$$\Delta(N) = E(N) - \frac{E(N-1) + E(N+1)}{2}$$

A 10

CONCLUSIONS AND PERSPECTIVES

< 回 > < 三 > < 三 >

- The study of neutron and nuclear matter using realistic Hamiltonians is now possible within QMC techniques.
- EOS of nuclear and neutron matter revisited.
- Properties of confined neutrons in different geometries now possible up to $N \sim 50$. Skyrme can be now adjusted to deal with large neutron-rich nuclei.

(四) (日) (日)

3

Computation of spin-orbit splitting and excitation energies in progress.

Thanks for your attention

▲□→ ▲ □→ ▲ □→

∃ 990