New approaches to strongly interacting Fermi gases

Joaquín E. Drut

The Ohio State University

In collaboration with **Timo A. Lähde** Aalto University, Finland

INT Program Simulations and Symmetries Seattle, March 2010

Tuesday, March 23, 2010

Overview

- Strongly interacting Fermi gases
 - The unitary Fermi gas

- New approaches
 - Determinantal MC, Hybrid MC & beyond
 - Beyond conventional hardware: GPUs
- Where do we go from here?

$$k_F = \hbar (3\pi^2 n)^{1/3}$$

$$\varepsilon_F = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$$

Qualitatively

Every dimensionful quantity should come as a power of ε_F times a **universal** constant/function.

Quantitatively ?

Tuesday, March 23, 2010

The BCS-BEC Crossover

Equation of state

A. Bulgac, J. E. Drut, and P. Magierski, Phys. Rev. Lett. **96**, 090404 (2006).

$$\xi(T/\varepsilon_F) \quad \mu(T/\varepsilon_F)$$

Auxiliary Field Determinantal Monte Carlo

Critical temperature

E. Burovski *et al.*, Phys. Rev. Lett. **96**, 160402 (2006).

$$T_c/\varepsilon_F \simeq 0.15$$

Diagrammatic Monte Carlo

Caloric curve in a trap (via Local Density Approximation)

What about away from equilibrium?

A hydrodynamic description (beyond the ideal case) requires knowledge of:

• Equation of state:
$$P(T,n) = \frac{2}{3}\epsilon(T/\epsilon_F)$$

- Transport coefficients X
 - A Bulk viscosity ζ

Shear viscosity η

```
\rightarrow
```

Momentum flow

Thermal conductivity κ

Heat flow

Does the unitary gas saturate the KSS bound?

Shear & bulk viscosities

Bulk viscosity vanishes due to conformal invariance

Son, PRL 020604 (2007)

Shear viscosity $T \gg T_F$ Rupak & Schäfer, PRA 053607 (2007) Massignan, Bruun & Smith, PRA 033607 (2005)

Thermal conductivity

Matt Braby, Jingyi Chao and Thomas Schäfer arXiv:1003.2601v1

Current challenge: Universal transport coefficients

How to proceed? We need

A code that can calculate the unitary gas at finite temperature. **Challenge**: larger system sizes required!

Ability to compute the stress-energy tensor Π_{ij}

Ability to compute correlations of \prod_{ij}

Ability to determine spectral density from discrete data.
Challenge: ill-defined inversion problem!

Our original approach: Determinantal Monte Carlo

Our original approach: Determinantal Monte Carlo

Hubbard-Stratonovich transformation

$$e^{-\tau V(\mathbf{r})} = \int d\sigma \ e^{-v([\sigma], \mathbf{r}, \tau)n_{\uparrow}(\mathbf{r})} e^{-v([\sigma], \mathbf{r}, \tau)n_{\downarrow}(\mathbf{r})}$$

For each point in space-time!

Two-body interaction

Sum over all possible configurations of the "auxiliary field" $\sigma({\bf r},\tau)$

Partition function (collecting all the factors from the previous slide)

$$\mathcal{Z} = \text{Tr } e^{-\beta(H-\mu N)} = \int \mathcal{D}\sigma \det[1 + U_{\uparrow}[\sigma]] \det[1 + U_{\downarrow}[\sigma]]$$

Fermions have been "integrated out"!

 $U_s[\sigma] = e^{-\tau/2(T_s - \mu N_s)} \times e^{-v([\sigma], \mathbf{r}, \tau)n_s(\mathbf{r})} \times e^{-\tau/2(T_s - \mu N_s)} \times \dots$

Partition function (collecting all the factors from the previous slide)

$$\mathcal{Z} = \operatorname{Tr} \, e^{-\beta(H-\mu N)} = \int \mathcal{D}\sigma \, \det[1 + U_{\uparrow}[\sigma]] \, \det[1 + U_{\downarrow}[\sigma]]$$

Fermions have been "integrated out"
$$U[\sigma] = e^{-\tau/2(T_s - \mu N_s)} \times e^{-v([\sigma], \mathbf{r}, \tau) n_s(\mathbf{r})} \times e^{-\tau/2(T_s - \mu N_s)} \times e^{-\tau/2(T_s - \mu N_s$$

Scaling of computational cost

Scaling of computational cost

It doesn't matter how big your computer is...

A more efficient way

Scaling of computational cost

A more efficient way

Scaling of computational cost

Use Hybrid Monte Carlo!

This is how state-of-the-art lattice QCD is done! (and graphene!)

Drut & Lähde, Phys. Rev. Lett. 102, 026802 (2009)

...and now you are in better shape to use big computers!

Pseudofermions

$$\mathcal{Z} = \int \mathcal{D}\sigma \, \operatorname{Det} \left[M^T M(\sigma) \right] = \int \mathcal{D}\sigma \mathcal{D}\varphi^{\dagger} \mathcal{D}\varphi \, \exp \left(-\varphi^{\dagger} \left[M^T M(\sigma) \right]^{-1} \varphi \right)$$

arphi is the **pseudofermion** field

M is sparse, of size $(VN_{ au}) imes (VN_{ au})$

$$M \equiv \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & U_{N_{\tau}} \\ -U_1 & 1 & 0 & 0 & \dots & 0 \\ 0 & -U_2 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & -U_{N_{\tau}-2} & 1 & 0 \\ 0 & 0 & \dots & 0 & -U_{N_{\tau}-1} & 1 \end{pmatrix}$$

$$\operatorname{Det}[M^T M] = \det(1+U)^2$$

Space-time formulation

Spatial formulation

Tuesday, March 23, 2010

Pseudofermions

$$\mathcal{Z} = \int \mathcal{D}\sigma \, \operatorname{Det} \left[M^T M(\sigma) \right] = \int \mathcal{D}\sigma \mathcal{D}\varphi^{\dagger} \mathcal{D}\varphi \, \exp \left(-\varphi^{\dagger} \left[M^T M(\sigma) \right]^{-1} \varphi \right)$$

arphi is the **pseudofermion** field

M is sparse, of size $(VN_{ au}) imes (VN_{ au})$

Problem: How do we change σ_i as much as possible without obtaining an extremely improbable configuration?

Determinantal MC: The determinant is a very non-local and non-linear object; we can only perform local changes, or else we obtain a very improbable configuration

Pseudofermions

$$\mathcal{Z} = \int \mathcal{D}\sigma \, \operatorname{Det} \left[M^T M(\sigma) \right] = \int \mathcal{D}\sigma \mathcal{D}\varphi^{\dagger} \mathcal{D}\varphi \, \exp \left(-\varphi^{\dagger} \left[M^T M(\sigma) \right]^{-1} \varphi \right)$$

arphi is the **pseudofermion** field

M is sparse, of size $(VN_{ au}) imes (VN_{ au})$

Pseudofermions

$$\mathcal{Z} = \int \mathcal{D}\sigma \, \operatorname{Det} \left[M^T M(\sigma) \right] = \int \mathcal{D}\sigma \mathcal{D}\varphi^{\dagger} \mathcal{D}\varphi \, \exp \left(-\varphi^{\dagger} \left[M^T M(\sigma) \right]^{-1} \varphi \right)$$

arphi is the **pseudofermion** field

M is sparse, of size $(VN_{ au}) imes (VN_{ au})$

- Enables global updates!
- But requires frequent linear solves!

 $\dot{\pi}$

$$= -\frac{\delta \mathcal{H}}{\delta \sigma} = F[\sigma, \varphi]$$

First scaling tests

Determinantal MC $\sim V^3$

Determinantal MC with "worm" updates ~ V²

 $(V = N_x^3)$

Same picture for different N_τ but different constant in front.

First correctness tests

HMC requires the inversion of an **ill-conditioned** matrix...

Preconditioning is essential!

- HMC requires the inversion of an ill-conditioned matrix...
 - Preconditioning is essential!

If you have an **approximation to the inverse**, you can help the calculation converge faster (or converge at all!) The **range of the eigenvalues** can be larger than the machine's precision

HMC requires the inversion of an ill-conditioned matrix...

Preconditioning is essential!

- Strong coupling expansion
- Chebyshev polynomials
- Domain decomposition

Spectrum of M^TM and P M^TM

HMC requires the inversion of an ill-conditioned matrix...

Preconditioning is essential!

- Strong coupling expansion
- Chebyshev polynomials
- Domain decomposition

. . .

Spectrum of M^TM

HMC requires the inversion of an **ill-conditioned** matrix...

Preconditioning is essential!

Multiscale MD integration!

- Strong coupling expansion
- Chebyshev polynomials
- Domain decomposition

Spectrum of M^TM

 $F_{\text{\tiny IR}} \times \Delta t_{MD}$

Seldom computed!

Large and cheap Often computed

A few words about big computers...

IBM Blue Gene/L

IBM Roadrunner at LANL

Cray XT5 Jaguar at ORNL

- Performance: 5 1000 TFlops
- Power consumption: ~ 10⁶ Watt
- Cost: as much as 100 M\$

Graphics Processing Units (GPUs)

GPUs are massively multithreaded many-core chips

NVidia Tesla c1060 has 240 scalar processors!

Can sustain over 12,000 threads concurrently

nVidia Tesla c1060

Over 900 GFlops (SP) of processing performance!

Cost: \$500 ! (nVidia's special offer)

CPUs vs. GPUs

CPUs vs. GPUs

CPUs vs. GPUs

enrico

2 Tesla c1060 (240 processors each)

2 Tesla c2050 (upcoming, 512 processors each) code-named "Fermi" 1040 GFlops (SP) 520 GFlops (DP)

> Supported in part (mostly) by the Waldemar von Frenckell Foundation (Finland)

Summary

- We know quite a bit about the equilibrium properties of Fermi gases at and around unitarity.
 - Conventional algorithms are **simple**, but **scale badly** with system size
 - - **GPUs** provide an **efficient** and **inexpensive** way to perform these calculations.

Our main goal: universal transport coefficients

The road is long...

We know quite a bit about the equilibrium properties of Fermi gases at and around unitarity.

Our main goal: universal transport coefficients

The formalism is much more user-friendly in the space-time formulation (used in HMC), in that it yields simpler expressions for the observables than the purely spatial formulation (used in DMC).

To be continued...

Early timing tests

Determinantal MC vs. Hybrid MC on a single processor

