Towards the shear viscosity of a cold unitary fermi gas

Jiunn-Wei Chen

National Taiwan U.

• Shear viscosity

Frictional force

$$
T_{ij} = -\eta \left(\frac{\nabla_i V_j(x) + \nabla_j V_i(x)}{2} - \frac{1}{3} \delta_{ij} \nabla \cdot V(x) \right).
$$

Shear viscosity measures how "perfect" a fluid is!

Smaller shear viscosity implies larger particle interaction!

• Kovtun, Son, and Starinets ('05) Conjecture: Shear viscosity / entropy density

$$
\frac{\eta}{s} \ge \frac{1}{4\pi}
$$

• Motivated by AdS/CFT

- "QGP" (quark gluon plasma) almost saturates the bound ω just above Tc (Teaney; Romatschke, Romatschke; Song, Heinz; Luzum…)
- LQCD, gluon pasma (Karsch, Wyld; Nakamura, Sakai; Meyer)

 \sum QGP near Tc, a perfect fluid, SQGP

η/s goes to a local minimum near a phase transition in more than 30 systems with no exception found so far.

Lacey et al., PRL 98:092301,2007; 2007 US Nuclear Science Long Range Plan

Cold Unitary Atoms Rupak & Schafer 2007

QCD Phase Diagram

Fig. 1. QCD phase diagram

$$
\mathcal{L}=\frac{1}{2}(\partial_\mu\phi)^2-\frac{1}{2}a\phi^2-\frac{1}{4}b\phi^4-\frac{1}{6}c\phi^6
$$

(JWC, M. Huang, Y.H. Li, E. Nakana, D.L. Yang)

2nd-order p.t.: $a < 0, b > 0, c = 0$ crossover: + $\delta \mathcal{L} = H \phi$ No p.t.: $a > 0$, $b > 0$, $c = 0$

1st-order phase transition $a > 0$, $b < 0$, $c > 0$

 η/s of Water

(Lacey et al.)

QCD Bulk Viscosity

Karsch, Kharzeev, Tuchin; Meyer; JWC, Wang; Fernandez-

Fraile, Gomez Nicola

Universality?

Universal η/s and ζ/s behaviors? $\left(\eta/s\right)$ reaches local minimum near p.t. ζ/s reaches local maximum near p.t.)

Cold Fermions

- •S-wave, scattering length
- Feshbach resonance

Scattering Length (S-wave)

Unitarity limit

Tunable Interactions: Feshbach Resonance

*Generated using formula published in Bartenstein, et al, *PRL* **94** 103201 (2005)

Source: J.E. Thomas

Energy E Measurement

Universal **Gas obeys the Virial Theorem** Duke, PRL (2005)

In a HO potential: $E = 2\langle U \rangle$

Energy per particle

$$
E=3m\omega_z^2\langle z^2\rangle
$$

For a *universal* quantum gas, the energy E is determined by the *cloud size*

Source: J.E. Thomas

Entropy S Measurement **Duke Physics** by *Adiabatic* Sweep of Magnetic Field **BREE** COOIIng and Trapping

Source: J.E. Thomas

Weakly interacting: Entropy at 1200 G known from cloud size — Ideal Fermi gas

Energy Measurement:

$$
E_S = 3m\omega_z^2 \langle z^2\rangle_{840G}
$$

Adiabatic:

$$
S_{\rm S} = S_{\rm W}
$$

Source: J.E. Thomas

Energy versus Entropy

Viscous Hydrodynamics

Energy dissipation (η, ζ, κ) : shear, bulk viscosity, heat conductivity)

$$
\dot{E} = -\frac{1}{2} \int d^3x \,\eta(x) \left(\partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial_k v_k \right)^2 \n- \int d^3x \,\zeta(x) \left(\partial_i v_i \right)^2 - \frac{1}{T} \int d^3x \,\kappa(x) \left(\partial_i T \right)^2
$$

N dependence not seen! Source: T. Schafer

Expansion of a rotating gas

Source: J.E. Thomas

Measuring the *angle* of the cloud

Measure the *angle* **of the** *long* **axis of the rotating cloud with respect to the laboratory axis**

Source: J.E. Thomas

Measuring the *Angular Velocity*

Superfluid, $\Omega_0 = 178$ rad/s • Normal Fluid, $\Omega_0 = 178$ rad/s

How low is the viscosity η ?

Source: J.E. Thomas

 $\Omega_0 = 178$ rad/s; Superfluid \bullet $\Omega_0 = 178$ rad/s; Normal Fluid \bullet

D) Viscosity/entropy density (units of \hbar / k_{B} $\sum_{\text{Atom} \text{ cooling and Trapping}}^{\text{bulk}}$

 $1.2 -$ Source: J.E. Thomas $1.0 0.8 -$ He near λ -point $0.6 \mathbf{S}/\mathbf{L}$ 0.4 QGP simulations 0.2 **String theory limit** $0.0\,$ $-0.2 1.5$ 0.5 1.0 2.0 2.5 3.0 E/E_F

Schafer & Chafin, 0912.4236; Normal fluid

Fig. 5 Time evolution of the angle of the major axis of a rotating expanding cloud after release from the trapping potential. The data are taken from [14]. The two data sets were obtained with initial energies $E/E_F = 0.56$ and 2.1. The solid line shows the prediction of ideal fluid dynamics, and the dashed lines shows the solution of the Navier-Stokes equation for $\beta = 0.077$. Using an entropy per particle $S/N \simeq 4.8$ this value of β implies a shear viscosity to entropy density ratio $(\alpha_e) = 0.76$

Outlook

• Is the two fluid model a good starting point?