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What’s the point of an effective (field) theory?

e no model assumptions — just low-energy degrees of freedom and
symmetries
e csiimates of errors and theory will tell you if it breaks down
(no convergence)
e consistency of effective operators and interactions
e effective coupling constants are “universal”
— links between different low-energy phenomena
(ci’s: mN scattering < two-pion exchange forces)
— bridges between low-energy observables and underlying theory
(scattering lengths: scattering processes <« lattice QCD)
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How does it work?

e systematic expansion in powers of ratios of low-energy scales Q
(momenta, my, ... ~ 200 MeV)
to scales of underlying physics Ag
(mp, My, 4TtFy, ... 2 700 MeV?)
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How does it work?

e systematic expansion in powers of ratios of low-energy scales Q
(momenta, my, ... ~ 200 MeV)
to scales of underlying physics Ag
(my, My, 4TtFy, ... 2 700 MeV?)
e interactions with ranges ~ 1//Aq not resolved at scales Q
— replaced by contact interactions
e iterations (loop diagrams) usually infinite
— need to renormalise
e works provided we have a consistent expansion
(otherwise trying to renormalise an infinite number of constants,
simultaneously)
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Where does it work?

Works well for purely pionic and TN systems

e pions ~ Goldstone bosons of hidden chiral symmetry
e strong interactions weak at low energies
— chiral perturbation theory
e terms organised by naive dimensional analysis
aka “Weinberg power counting”
(simply counts powers of low-energy scales — momenta and my)
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What’s the problem with building an EFT for nuclear forces?

Chiral perturbation theory

e simply counting powers of low-energy scales: perturbative
e works for weakly interacting systems
(eg pions, photons and < 1 nucleon)
e but nucleons interact strongly at low-energies
e bound states exist (nuclei!)
— need to treat some interactions nonperturbatively
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Basic nonrelativistic loop diagram

M &g  Mp .
(@) / Poiie —i I + analytic
e of order Q [Weinberg (1991)]

e but potential starts at order Q°

(OPE and simplest contact interaction)

each iteration suppressed by power of Q/Ag
perturbative provided Q < Ag

integral linearly divergent

cut off (or subtract) at g = A

contributions multiplied by powers of A/Ag
again perturbative provided A < A

L ol ol o
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Workaround: “Weinberg prescription”

e expand potential to some order in Q

e then iterate to all orders in favourite dynamical equation
(Schrédinger, Lippmann-Schwinger, .. .)

e widely applied and even more widely invoked
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Workaround: “Weinberg prescription”

e expand potential to some order in Q

e then iterate to all orders in favourite dynamical equation
(Schrédinger, Lippmann-Schwinger, .. .)

e widely applied and even more widely invoked

e but no clear power counting for observables

e resums subset of terms to all orders in Q
(and some of these depend on regulator)

e not necessarily a problem if these terms are small

e but what if we rely on them to generate bound states?
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Has led to vigorous debate over the last 12+ years

EFT community has polarised around two philosophies:
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Has led to vigorous debate over the last 12+ years

EFT community has polarised around two philosophies:

e Orthodox
“The Prophet of EFT gave us the Power Counting in the holy
texts, Phys Lett B251 and Nucl Phys B363.”

e Liberal
“Let the renormalisation group decide!”

and the orthodox party seems to be winning the election, so far...



How can we iterate interactions consistently?

Identify new low-energy scales

e promote leading-order terms to order @ '
(cancels Q from loop — iterations not suppressed)
e can, and must, then be iterated to all orders
(all other terms: perturbations)
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How can we iterate interactions consistently?

Identify new low-energy scales

e promote leading-order terms to order @ '
(cancels Q from loop — iterations not suppressed)
e can, and must, then be iterated to all orders
(all other terms: perturbations)

Examples of new scales
e S-wave scattering lengths 1/a < 40 MeV
[van Kolck; Kaplan, Savage and Wise (1998)]
— for p << my: “pionless EFT” = effective-range expansion
[Schwinger (1947); Bethe (1949)]
e also atomic systems with Feshbach resonance close to threshold
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One-pion exchange

[ ]
—
[ ]
[ ]

important for nuclear physics at energies ~ 100 MeV

order Q° in chiral counting

treat as a perturbation [Kaplan, Savage and Wise (1998)]

S waves: series coverges slowly, if at all

OPE “unnaturally” strong

(cf success of older phenomenology and Weinberg prescription)
strength of OPE set by scale

16TF7

2
9y My

}\‘NN - ~ 290 MeV

built out of high-energy scales (4ntF;, M) but ~ 2my
another low-energy scale?
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How do we analyse scale-dependence of
strongly-interacting systems?

General tool for this: the renormalisation group

e scattering by contact interactions is ill-defined in QM
e couple to virtual states with arbitrarily high momenta
e example: basic loop diagram for S waves behaves as

M d3q
dg forl
(2m)3 / P2—qg?tie  on? / q loriargeq

(linear divergence)
— need to renormalise
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Procedure
e identify all relevant low-energy scales Q
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Procedure
e identify all relevant low-energy scales Q

e cut off at arbitary scale A between Q
and Ag (assumes good separation of
scales)

e ‘“integrate out” physics by lowering A

A (don’t even think about taking A to

¢ infinity!)
Q e demand that physics be independent

- of A (eg T matrix)

e rescale: express all dimensioned quantities in units of A
(potential and all low-energy scales)
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Follow flow of effective potential as A — 0

— look for fixed points
e rescaled theories independent of A
e correspond to scale-free systems
e endpoints of RG flow

e stable fixed point e unstable fixed point
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Expand around fixed point using perturbations that scale like AY

e v < 0 relevant or superrenormalisable
(unstable; eg masses in QFTs)
e v > 0 irrelevant or nonrenormalisable
(stable; eg mesonic ChPT)
e v =0 marginal or renormalisable
(— In/\ scale dependence; eg couplings in QED, QCD)
— EFT with power counting: QY where d =v — 1
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Expand around fixed point using perturbations that scale like AY

e v < 0 relevant or superrenormalisable
(unstable; eg masses in QFTs)
e v > 0 irrelevant or nonrenormalisable
(stable; eg mesonic ChPT)
e v =0 marginal or renormalisable
(— In/\ scale dependence; eg couplings in QED, QCD)
— EFT with power counting: QY where d =v — 1

N is highest acceptable low-energy scale

e order Q
e rescaling — power of A counts low-energy scales
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What does the RG tell us about short-range potentials?
RG equation for V(k', k,p;\) (rescaled)
ov. oV ., oV

LN LA TR
ah ~Pop T ok T ok P

1
VA, kb A
- (1,k,p; \)

p, k, k': on- and off-shell momenta (low-energy scales Q)
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What does the RG tell us about short-range potentials?
RG equation for V(k', k,p;\) (rescaled)

WV v v
on P T ok T ok

p, k, k': on- and off-shell momenta (low-energy scales Q)

Two fixed points

e irivial Vo = 0 — free particles
e nontrivial [Birse, McGovern, Richardson (1998)]

— “unitary limit” (bound state at threshold, a — o)
e both scale-free systems
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Trivial fixed point

Expansion around V, = 0 in powers of momenta
V(p) = Co+02p2—|-04,04+"'

e p°" are RG eigenfunctions
e orders given by naive (Weinberg) counting: Q°, Q?, @%, ...
e coefficients Cyp, related to expansion of on-shell K matrix
(like T matrix but standing-wave bc’s)
e perturbative
e appropriate EFT for thermal np scattering
and other systems without low-energy bound/virtual states
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Nontrivial fixed point

on? A -
[ P n LZ] (sharp cutoff)

e order Q' (so must be iterated)
e exactly cancels basic loop integral in LS equation

4
— T(p) :iM—T; (unitary limit)
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Nontrivial fixed point

on? A -
[ P n T] (sharp cutoff)

e order Q' (so must be iterated)
e exactly cancels basic loop integral in LS equation

4
— T(p) :iM—j; (unitary limit)

Expanding around this point

M 1 1
V(p,A) = Vo(p,\) + Vo(p,N)? i (— 3 + Erepz—i— . >

e factor vg o \~2 promotes terms by two orders compared to naive
expectation: Q72, Q°, ...

e coefficients of perturbations directly related to observables:
effective-range expansion

17/25



Enhancement follows from form of wave functionsas r — 0

Two particles in unitary limit

e irregular solutions: y(r) o< r~! (S wave)
e cutoff smears contact interaction over range R ~ A~
— need extra factor A=2 to cancel cutoff dependence from
[W(R)[2 o< A% in matrix elements of potential
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Enhancement follows from form of wave functionsas r — 0

Two particles in unitary limit

e irregular solutions: y(r) o< r~! (S wave)
e cutoff smears contact interaction over range R ~ A~
— need extra factor A=2 to cancel cutoff dependence from
|W(R)|? =< A2 in matrix elements of potential

Other partial waves

e wave functions y(r) o< r* for small r
(assuming no low-energy bound state — regular solution)
e extra factor A%l needed in potential
— leading term in L-th partial wave of order Q2
(Weinberg counting: powers of Q from derivatives of 8-function)
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Three-body systems

Attractive: 3 bosons or 3 distinct fermions in unitary limit (triton)

e naive dimensional analysis — leading contact term of order Q°
e as hyperradius R — 0 wave functions behave like

Y(R) o< R725% 55~ 1,006 [Efimov (1971)]

— leading three-body force promoted to order Q'
e marginal perturbation associated with limit cycle of RG
[Bedaque, Hammer and van Kolck (1999)]
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Three-body systems

Attractive: 3 bosons or 3 distinct fermions in unitary limit (triton)
e naive dimensional analysis — leading contact term of order Q°
e as hyperradius R — 0 wave functions behave like

Y(R) o< R725% 55~ 1,006 [Efimov (1971)]

— leading three-body force promoted to order Q'
e marginal perturbation associated with limit cycle of RG
[Bedaque, Hammer and van Kolck (1999)]

Repulsive: 1 distinct and 2 identical fermions in unitary limit
(alkali atoms or neutrons)

e hyperradial wave functions y(R) o< R—2+2.1662
— leading three-body force of noninteger order Q33324
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How do pion-exchange forces affect the power counting?
Treat Ay as low-energy scale — iterate OPE

Central OPE (spin-singlet waves)
e 1/r singularity — not enough to alter power-law forms of wave
functions at small r, even if iterated
e [ > 1 waves: weak scattering — Weinberg power counting
e 'Sy: similar to expansion around unitary fixed point
— KSW-like power counting
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Tensor OPE (spin-triplet waves)
o 1/r3 singularity
e but higher partial waves protected by centrifugal barrier
e above critical momentum waves resolve singularity
— OPE not perturbative
e L >3: p.22GeV — Weinberg counting OK
o [ <2: p. < 3my — new counting needed
[Nogga, Timmermans and van Kolck (2005)]
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Tensor OPE (spin-triplet waves)

o 1/r3 singularity

e but higher partial waves protected by centrifugal barrier

e above critical momentum waves resolve singularity
— OPE not perturbative

e L >3: p.22GeV — Weinberg counting OK

o [ <2: p. < 3my — new counting needed
[Nogga, Timmermans and van Kolck (2005)]

e wave functions y(r) o< r~'/# multiplied by either sine or
exponential function of 1/v/Ayyr

— leading contact interaction of order Q™

(very weakly irrelevant)

/2in P, D waves
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Three-body forces

Two-pion exchange

e purely long-range interactions
— not renormalised (start at order Q%)

22/25



Three-body forces

Two-pion exchange
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One-pion exchange (“cp”)
e contains two-body contact vertices like
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e promoted in same way as contact interactions
forL<2
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Three-body forces

Two-pion exchange

e purely long-range interactions
— not renormalised (start at order Q%)

One-pion exchange (“cp”)
e contains two-body contact vertices like

(N'N)(NoTN)- VR N/
e promoted in same way as contact interactions

forL<2

Contact interaction (“cg”)

e counting still not known:
need to solve 3-body problem with 1/r3 potentials [L Platter]

e expect to be promoted — order Q9, —1 < d < 3?
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So, how should we build an effective Hamiltonian?

Order NN NNN

QT 180, 381 Co’s, LO OPE

Q /2 3PJ, SD, Co's
Q° 1Sy Co

Q1/2 381 Co

Q5/4 15,-3S; Cpy OPE
Q32 3p,, 3D, Co's

Q4 3Py—"'Sy Cpo OPE
Q? 1Sy Cs, TPy Co, 3p,-3S; Cpy OPE

NLO OPE, LO TPE

Q5/2 33, C4 3p, 3D, Cpy's OPE
Q? NLO TPE LO 3N TPE
Q’ Ce

e orange terms absent from “N2LO chiral potential” (Weinberg Q%)
e red terms absent from “N3LO” (Weinberg Q%)

e order Q7 ': have to iterate; order Q~

1/2.

may be better to
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Can | iterate my full potential?

Iterating parts of potential and treating others as perturbations
— doesn’t fit well with standard few-/many-body methods
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Can | iterate my full potential?

Iterating parts of potential and treating others as perturbations
— doesn’t fit well with standard few-/many-body methods

Yes, provided you are careful . ..

e resumming subset of higher-order terms

e without the counterterms needed to renormalise them

e dangerous: can alter form of short-distance wave functions
and destroy power counting (or, at best, change it)

e but problems don't arise, provided higher-order terms are small

e general way to ensure this: keep cutoff small, A < /g
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Can | iterate my full potential?

Iterating parts of potential and treating others as perturbations
— doesn’t fit well with standard few-/many-body methods

Yes, provided you are careful . ..

e resumming subset of higher-order terms

e without the counterterms needed to renormalise them

e dangerous: can alter form of short-distance wave functions

and destroy power counting (or, at best, change it)

e but problems don't arise, provided higher-order terms are small

e general way to ensure this: keep cutoff small, A < /g

e introduces artefacts « (Q/A)" — radius of convergence A not Ag
— leaves only a narrow window: A just below Ag
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Where does all this leave us?

Renormalisation group

— clear power counting rules for most partial waves
e controlled by forms of wave functions as r — 0
e in general, not naive dimensional analysis!
e two-body couplings directly related to observables
(DWBA or DW effective-range expansion)
e enhancements of other effective operators
including 3-body forces
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Where does all this leave us?

Renormalisation group

— clear power counting rules for most partial waves
e controlled by forms of wave functions as r — 0
e in general, not naive dimensional analysis!
e two-body couplings directly related to observables
(DWBA or DW effective-range expansion)
e enhancements of other effective operators
including 3-body forces

Open questions

e counting for 3-body forces in presence of tensor OPE?
e critical momenta for tensor OPE in 3P, 3D, waves with my; # 0?
e same counting for waves where tensor OPE is repulsive?
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