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Ultra-cold atoms:  At nano-K temperatures, have a non-relativistic 
few-body system whose inter-particle interaction can be tuned.

“...to explore the connections between QCD, cold-atom     
physics, and few-hadron systems.”

It gets better....  consider atoms tightly confined in the z 
direction:

VH(z) =
1
4
mω2

0z2

Can continuously move from 3 to 2 spatial dimensions!

!0 =
√

!
mω0
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[10] M. Lüscher, Commun. Math. Phys. 105, 153 (1986).
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Controversy: ground state energy of 2-d Bose gas

claim discrepancy in sub-leading corrections and cite error in:
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My interest in many-body QM began with Lattice QCD 
calculations of multi-pion interactions
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Consider two boson scattering in QM:

Assume: finite range interaction in d dimensions

on several interesting properties. In an appendix we make use of some well-known exact
results for even-dimensional lattice sums to derive some closed-form expressions that are
useful for the case of two spatial dimensions.

II. SCATTERING IN THE CONTINUUM

A. Generalities

Here we will review some basic EFT technology which will allow us to obtain a general
expression for the isotropic scattering phase shift in any number of dimensions. If one is
interested in low-energy scattering, an arbitrary interaction potential may be replaced by
an infinite tower of contact operators, with coefficients to be determined via experiment.
At low energies only a few of the contact operators will be important. This is the essence
of effective field theory (EFT). The EFT of ψ bosons, destroyed by the field operator ψ,
interacting through contact interactions has the following Lagrangian:

L = ψ†

(

i∂t +
∇2

2M

)

ψ −
C0

4
(ψ†ψ)2 −

C2

8
∇(ψ†ψ)∇(ψ†ψ) + ... (1)

This lagrangian, constrained by Galilean invariance, parity and time-reversal invariance,
describes the low-energy interactions of bosons via an arbitrary finite-range potential. It
is valid in any number of spacetime dimensions, d. The dimensions of the boson field and
of the operator coefficients change with spacetime dimensions: i.e. [ψ] = (d − 1)/2 and
[C2n] = 2 − d − 2n. The sum of Feynman diagrams computed in this theory gives the
amplitude:

A(p) = −

∑

C2n p2n

1 − 1
2I0(p)

∑

C2n p2n
, (2)

where

I0(p) = M
(µ

2

)ε
∫

dD−1q

(2π)D−1

1

p2 − q2 + iδ
, (3)

and it is understood that the ultraviolet divergences in the EFT are regulated using di-
mensional regularization (DR). In eq. (3), µ and D are the DR scale and dimensionality,
respectively, and ε ≡ d − D. A useful integral is:

In(p) = M
(µ

2

)ε
∫

dD−1q

(2π)D−1
q2n

(

1

p2 − q2 + iδ

)

= −Mp2n(−p2 − iδ)(D−3)/2Γ

(

3 − D

2

)

(µ/2)ε

(4π)(D−1)/2
. (4)

In what follows we will define the EFT coefficients in DR with MS. This choice is by no
means generally appropriate. However it is a convenient choice if no assumption is made
about the relative size of the renormalized EFT coefficients.

Now we should relate the scattering amplitude in the EFT, A(p), whose normalization is
conventional and fixed to the Feynman diagram expansion, to the S-matrix. We will simply

4

+ + ...+

FIG. 1: Feynman diagrams that give the exact two-body scattering amplitude. The oval blob repre-

sents the all-orders interaction derived from the Lagrangian.

This Lagrangian, constrained by Galilean invariance, parity and time-reversal invariance,
describes the low-energy interactions of bosons via an arbitrary finite-range potential. In
principle, it is valid in any number of spacetime dimensions, d. The mass dimensions of the
boson field and of the operator coefficients change with spacetime dimensions: i.e. [ψ] =
(d−1)/2, [C2n] = 2−d−2n and [D0] = 3−2d. While our focus in this paper is on d = 3, in
our general discussion of two- and three-body interactions, we will keep d arbitrary as this
will allow the reader to check our results against the well-known cases with d = 2 and d = 4.
Throughout we use units with ! = 1, however we will keep the boson mass, M , explicit.

Consider 2 → 2 scattering, with incoming momenta labelled p1,p2 and outgoing momenta
labelled p′

1,p
′
2. In the center-of-mass frame, p = p1 = −p2 , and the sum of Feynman

diagrams, shown in fig. 1, computed in the EFT gives the two-body scattering amplitude [22–
24]

A2(p) = −
∑

C2n p2n

1 − I0(p)
∑

C2n p2n
, (2)

where

I0(p) =
M

2
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, (3)

and it is understood that the ultraviolet divergences in the EFT are regulated using di-
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;
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2
p2n(−p2 − iδ)(D−3)/2Γ

(

3 − D

2

)

(µ/2)ε

(4π)(D−1)/2
. (4)

In what follows we will define the EFT coefficients in DR with MS. This choice is by no
means generally appropriate [23, 24]. However it is a convenient choice if no assumption is
made about the relative size of the renormalized EFT coefficients.

Now we should relate the scattering amplitude in the EFT, A2(p), whose normalization is
conventional and fixed to the Feynman diagram expansion, to the S-matrix. We will simply
assume that the S-matrix element for isotropic (s-wave) scattering exists in an arbitrary
number of spacetime dimensions. We then have generally

e2iδ(p) = 1 + i N (p) A2(p) , (5)
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Now we should relate the scattering amplitude in the EFT, A2(p), whose normalization is
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assume that the S-matrix element for isotropic (s-wave) scattering exists in an arbitrary
number of spacetime dimensions. We then have generally

e2iδ(p) = 1 + i N (p) A2(p) , (5)

5

where N (p) is a normalization factor that depends on d and is fixed by unitarity. Indeed
combining eq. (2) and eq. (5) gives N (p) = −2Im(I0(p)) and one can parametrize the
scattering amplitude by

A2(p) =
−1

Im(I0(p))
[

cot δ(p) − i
] , (6)

with

cot δ(p) =
1

Im(I0(p))

[

1
∑

C2n p2n
− Re(I0(p))

]

. (7)

Bound states are present if there are poles on the positive imaginary momentum axis. That
is if cot δ(iγ) = i with binding momentum γ > 0. These expressions are valid for any d.
In order to evaluate I0(p) it is convenient to consider even and odd spacetime dimensions
separately. For d even the Gamma function has no poles and one finds

I0(p) = − M

2(4π)(d−1)/2

πi pd−3

Γ
(

d−1
2

) . (8)

As there is no divergence, the MS EFT coefficients do not run with µ in even spacetime
dimensions. Hence the bare parameters are the renormalized parameters. For d odd, one
finds

I0(p) =
M

2(4π)(d−1)/2

pd−3

Γ
(

d−1
2

)

[

log

(

−p2

µ2

)

− ψ0

(

d − 1

2

)

− log π − 2

ε

]

, (9)

where ψ0(n) is the digamma function. Here there is a single logarithmic divergence, hidden
in the 1/ε pole. Hence in our scheme, at least one EFT coefficient runs with the scale µ.
With these results in hand it is now straightforward to give the general expression for the
isotropic phase shift in d spacetime dimensions:

pd−3 cot δ(p) = −(4π)(d−1)/2

πM
Γ

(

d − 1

2

)

2
∑

C2n p2n
+ (1 − (−1)d)

pd−3

2π
log

(

p2

µ2

)

, (10)

where µ is defined by equating the logarithm in eq. (10) with the content of the square
brackets in eq. (9). Note that this is an unrenormalized equation; the C2n coefficients are
bare parameters and there is a logarithmic divergence for odd spacetime dimensions. One
must expand the right hand side of this equation for small momenta in order to renormalize 2.
It is noteworthy that the effective field theory seems not to exist for d > 3 and odd as the
divergence is generated at leading order and yet requires a nominally suppressed operator
for renormalization.

The leading three-body diagram in the momentum expansion is shown in fig. 2. One find
the three-body scattering amplitude

A3 = − D0 . (12)

2 In the case of three spatial dimensions eq. (10) yields the familiar effective range expansion,

p cot δ(p) = − 1

a3

+
1

2
r3 p2 + O(p4) , (11)

with a3 = MC0/(8π) and r3 = 16πC2/(MC2
0 ).

6
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with scattering length and volume, respectively,

a1 =
4

MC0
; r3

1 =
4C2

MC2
0

. (12)

Here and below the subscript denotes spatial dimensionality. Neglecting the scattering
volume, for a1 < 0 there is a bound state with binding momentum κ = −1/a1.

2. d = 3 + 1

For three spatial dimensions one obtains the usual effective range expansion,

p cot δ(p) = −
1

a3
+ r3 p2 + O(p4) , (13)

with

a3 =
MC0

8π
; r3 =

16πC2

MC2
0

. (14)

Neglecting the effective range, for a3 > 0 there is a bound state with binding momentum
κ = 1/a3.

3. d = 2 + 1

From our general formula, eq. (10), we find

cot δ(p) =
1

π
log

(

p2

µ2

)

+
1

α2(µ)
+ r2

2 p2 + O(p4) (15)

with dimensionless coupling and scattering area, respectively

α2(µ) = −
MC0(µ)

8
; r2

2 =
8C2(µ)

MC2
0 (µ)

. (16)

The case of two spatial dimensions is particularly interesting. For α2(µ) of either sign, there
is a bound state with binding momentum κ = µ exp(−π/2α2(µ)). In essence, this occurs
because, regardless of the sign of the delta-function interaction, quantum effects generate
an attractive logarithmic contribution to the effective potential which dominates at long
distances. That is, the S-matrix exhibits universal behavior, as E → 0,

cot δ(E) →
1

π
log (E) + . . . . (17)

Many interesting properties in two spatial dimensions follow from the classical scale invari-
ance; keeping only the leading EFT operator, the interaction Hamiltonian may be written
as

Hint =

∫

d2x

[

1

2
∇ψ†∇ψ − 2α2(ψ

†ψ)2

]

, (18)
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No running couplings in

+ + ...+

FIG. 1: Feynman diagrams that give the exact two-body scattering amplitude. The oval blob repre-

sents the all-orders interaction derived from the Lagrangian.

This Lagrangian, constrained by Galilean invariance, parity and time-reversal invariance,
describes the low-energy interactions of bosons via an arbitrary finite-range potential. In
principle, it is valid in any number of spacetime dimensions, d. The mass dimensions of the
boson field and of the operator coefficients change with spacetime dimensions: i.e. [ψ] =
(d−1)/2, [C2n] = 2−d−2n and [D0] = 3−2d. While our focus in this paper is on d = 3, in
our general discussion of two- and three-body interactions, we will keep d arbitrary as this
will allow the reader to check our results against the well-known cases with d = 2 and d = 4.
Throughout we use units with ! = 1, however we will keep the boson mass, M , explicit.

Consider 2 → 2 scattering, with incoming momenta labelled p1,p2 and outgoing momenta
labelled p′

1,p
′
2. In the center-of-mass frame, p = p1 = −p2 , and the sum of Feynman

diagrams, shown in fig. 1, computed in the EFT gives the two-body scattering amplitude [22–
24]

A2(p) = −
∑

C2n p2n

1 − I0(p)
∑

C2n p2n
, (1)

where

I0(p) =
M

2

(µ

2

)ε
∫

dD−1q

(2π)D−1

1

p2 − q2 + iδ
, (2)

and it is understood that the ultraviolet divergences in the EFT are regulated using di-
mensional regularization (DR). In eq. (2), µ and D are the DR scale and dimensionality,
respectively, and ε ≡ d − D. A useful integral is:

In(p) =
M

2

(µ

2

)ε
∫

dD−1q

(2π)D−1
q2n

(

1

p2 − q2 + iδ

)

;

= −M

2
p2n(−p2 − iδ)(D−3)/2Γ

(

3 − D

2

)

(µ/2)ε

(4π)(D−1)/2
. (3)

In what follows we will define the EFT coefficients in DR with MS. This choice is by no
means generally appropriate [23, 24]. However it is a convenient choice if no assumption is
made about the relative size of the renormalized EFT coefficients.

Now we should relate the scattering amplitude in the EFT, A2(p), whose normalization is
conventional and fixed to the Feynman diagram expansion, to the S-matrix. We will simply
assume that the S-matrix element for isotropic (s-wave) scattering exists in an arbitrary
number of spacetime dimensions. We then have generally

e2iδ(p) = 1 + i N (p) A2(p) , (4)

5

A2(p) =
8π

M

1
p cot δ(p)− ip

unitarity limita3 →∞ r3 → 0
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What about two bosons in a confined geometry?
(e.g. a lattice)

Here we have subtracted off the real part of the loop integral using different schemes on the
two sides of the equation; the integral on the left is evaluated using DR and the one on the
right with a sharp cutoff Λ. The purpose of this procedure is to leave the renormalization
of the EFT coefficients, which is of course an ultraviolet effect, unchanged while defining
the integer sums using an integer cutoff. We then have via eq. (7) our general form for the
eigenvalue equation

cot δ(p) =
1

Im(I0(p))

[

IL
0 (p) − Re(I{Λ}

0 (p))
]

. (22)

It is straightforward to find

I{Λ}
0 (p) =

M

(4π)
d−1
2 Γ

(

d−1
2

)

Λd−1

(d − 1)p2 2F1

(

1,
d − 1

2
,
d + 1

2
;
Λ2

p2

)

, (23)

where 2F1 is the hypergeometric function.
The exact eigenvalue equation in d spacetime dimensions can be written as

qd−3 cot δ(p)=Γ

(

d − 1

2

)

π− d+1
2

Λn
∑

n∈Zd−1

1

n2 − q2
+

2Λd−1
n

π(d − 1)q2
Re

[

2F1

(

1,
d − 1

2
,
d + 1

2
;
Λ2

n

q2

)

]

(24)

where it is understood that Λn → ∞ on the right hand side. This equation gives the
location of all of the energy-eigenstates on the (d − 1)-dimensional torus, including the
bound states (with p2 < 0). The binding momentum in the confined geometry reduces to
γ as L → ∞. While the derivation given above is valid within the radius of convergence of
the non-relativistic EFT, this eigenvalue equation is expected to be valid for an arbitrary
quantum field theory in d dimensions up to corrections that are exponentially suppressed in
the boundary size, L. One readily checks that eq. 24 gives the familiar eigenvalue equations
for d = 2 [28] and d = 4 [10–12] and is in agreement with Ref. [17] for d = 3.

B. Two spatial dimensions

In a finite area, the energy levels for the two-particle system follow from the eigenvalue
equation, eq. (24),

cot δ(p) =
1

π2

[

S2

(

pL

2π

)

+ 2π log

(

pL

2π

)

]

, (25)

where

S2 (η) ≡
Λn
∑

n

1

n2 − η2
− 2π log Λn . (26)

Using the results derived in Appendix II, this integer sum can be expressed as

S2 (η) = − 1

η2
+ P2 − πγ − 4

∞
∑

!=0

(−1)!

(2% + 1)
ψ0

(

1 − η2

(2% + 1)

)

, (27)

9

gives energy levels:

It is clear from eq. (17) that the attractive case, α2(µ) = −|α2(µ)|, corresponds to an
asymptotically free coupling, while the repulsive case, α2(µ) = +|α2(µ)|, has a Landau pole
and the coupling grows weaker in the infrared. We will focus largely on the latter case in
what follows 3. Note that the position of the “bound state” in the repulsive case coincides
with the position of the Landau pole, which sets the cutoff scale of the EFT. This state is
therefore unphysical.

Below we will also make use of a more conventional4 parametrization of the phase shift:

cot δ(p) =
1

π
log

(

p2a2
2

)

+ σ2 p2 + O(p4) . (18)

Here a2 is the scattering length in two spatial dimensions. By matching with eq. 13, one
finds a−1

2 = µ exp(π/2α2(µ)), which in the repulsive case is the position of the Landau pole.
Hence, in the repulsive case, a−1

2 is the momentum cutoff scale. Therefore, from the point
of view of the EFT, a2 is a most unsuitable parameter for describing low-energy physics. Of
course, while the parameter a2 is expected to be very small as compared to physical scales,
its effect is enhanced as it appears in the argument of the logarithm.

III. SCATTERING IN A CONFINED GEOMETRY

A. Eigenvalue equation

With the scattering theory that we have developed we may now find the eigenvalue equation
in a confined geometry with periodic boundary conditions. Specifically, we will consider
scattering on what is topologically the (d− 1)-dimensional torus, T d−1 = S1

(1) × S1
(2) × · · ·×

S1
(d−1). In the confined geometry, all bound and scattering states appear as poles of the S-

matrix, or scattering amplitude, A2(p). Hence, from eq. (2) we have the eigenvalue equation
A2(p)−1 = 0, or

1
∑

C2n p2n
= IL

0 (p) , IL
0 (p) =

M

2

1

Ld−1

Λ
∑

k

1

p2 − k2
, (19)

where we have chosen to define the sum with a sharp cutoff (d = 2 is ultraviolet finite). The
sum is over k = 2πn/L where n ∈ Zd−1 = (n1, n2, . . . , nd−1) takes all integer values. It is
therefore convenient to write

IL
0 (p) =

M

8π2
L3−d

Λn
∑

n∈Zd−1

1

q2 − n2
, (20)

where q ≡ pL/2π and therefore Λ = 2πΛn/L. As the EFT coefficients are defined in DR,
we can write the eigenvalue equation as

1
∑

C2n p2n
− Re(I{DR}

0 (p)) = IL
0 (p) − Re(I{Λ}

0 (p)) . (21)

3 For a recent discussion of the implications of scale invariance for many-boson systems in the case of an

attractive coupling, see Ref. [27].
4 With a2 = aeγ/2 and σ2 = a2/2π, this parametrization coincides with a hard-disk potential of radius

a [18]. As we will discuss below, there appears to be some confusion in the literature as regards the

distinction between a2 and a.

8

It is clear from eq. (17) that the attractive case, α2(µ) = −|α2(µ)|, corresponds to an
asymptotically free coupling, while the repulsive case, α2(µ) = +|α2(µ)|, has a Landau pole
and the coupling grows weaker in the infrared. We will focus largely on the latter case in
what follows 3. Note that the position of the “bound state” in the repulsive case coincides
with the position of the Landau pole, which sets the cutoff scale of the EFT. This state is
therefore unphysical.

Below we will also make use of a more conventional4 parametrization of the phase shift:

cot δ(p) =
1

π
log

(

p2a2
2

)

+ σ2 p2 + O(p4) . (18)

Here a2 is the scattering length in two spatial dimensions. By matching with eq. 13, one
finds a−1

2 = µ exp(π/2α2(µ)), which in the repulsive case is the position of the Landau pole.
Hence, in the repulsive case, a−1

2 is the momentum cutoff scale. Therefore, from the point
of view of the EFT, a2 is a most unsuitable parameter for describing low-energy physics. Of
course, while the parameter a2 is expected to be very small as compared to physical scales,
its effect is enhanced as it appears in the argument of the logarithm.

III. SCATTERING IN A CONFINED GEOMETRY

A. Eigenvalue equation

With the scattering theory that we have developed we may now find the eigenvalue equation
in a confined geometry with periodic boundary conditions. Specifically, we will consider
scattering on what is topologically the (d− 1)-dimensional torus, T d−1 = S1

(1) × S1
(2) × · · ·×

S1
(d−1). In the confined geometry, all bound and scattering states appear as poles of the S-

matrix, or scattering amplitude, A2(p). Hence, from eq. (2) we have the eigenvalue equation
A2(p)−1 = 0, or

1
∑

C2n p2n
= IL

0 (p) , IL
0 (p) =

M

2

1

Ld−1

Λ
∑

k

1

p2 − k2
, (19)

where we have chosen to define the sum with a sharp cutoff (d = 2 is ultraviolet finite). The
sum is over k = 2πn/L where n ∈ Zd−1 = (n1, n2, . . . , nd−1) takes all integer values. It is
therefore convenient to write

IL
0 (p) =

M

8π2
L3−d

Λn
∑

n∈Zd−1

1

q2 − n2
, (20)

where q ≡ pL/2π and therefore Λ = 2πΛn/L. As the EFT coefficients are defined in DR,
we can write the eigenvalue equation as

1
∑

C2n p2n
− Re(I{DR}

0 (p)) = IL
0 (p) − Re(I{Λ}

0 (p)) . (21)

3 For a recent discussion of the implications of scale invariance for many-boson systems in the case of an

attractive coupling, see Ref. [27].
4 With a2 = aeγ/2 and σ2 = a2/2π, this parametrization coincides with a hard-disk potential of radius

a [18]. As we will discuss below, there appears to be some confusion in the literature as regards the

distinction between a2 and a.

8

Wednesday, May 12, 2010



B. Special cases

1. d = 1 + 1

In one spatial dimension the sum over integers converges linearly and admits a closed form
solution. It follows directly from eq. (30) that

p−1 cot δ(p) =
L

2π2
S1

(

pL

2π

)

, (31)

with

S1 ( η ) ≡
∞

∑

n

1

n2 − η2
= −

π

η
cot (ηπ) . (32)

Hence we have

cot δ(p) = − cot

(

pL

2

)

(33)

which gives

exp (2iδ(p)) = exp (−ipL) , (34)

or

2δ(p) + pL = 2πm , m = 0, 1, 2, . . . . (35)

in agreement with Lüscher. Notice that as the interaction is turned off, the quantization
condition for the free particle momenta is recovered. It is clear from the exact form of the
eigenvalue equation that there is no perturbative expansion available in this case.

2. d = 3 + 1

This case is the best known. For completeness we give result.

p cot δ(p) =
1

πL
S3

(

pL

2π

)

, (36)

with

S3 ( η ) ≡
Λn
∑

n

1

n2 − η2
− 4πΛn . (37)

There are no closed form results for three-dimensional lattice sums to further reduce this
sum.
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Weak coupling expansion:

E0(2, L) =
4π a3

M L3

{
1−

( a3

π L

)
Q2 +

( a3

π L

)2 [
Q2

2 −Q4

]
+

( a3

π L

)3 [
−Q3

2 + 3Q2Q4 −Q6

]}

+
8π2a3

3

M L6
r3 +O

(
L−7

)

Q2 = lim
Λn→∞

|n|≤Λn∑

n $=0

1
n2
− 4πΛn = −8.91363291781 Q4 =

∑

n !=0

1
n4

= 16.532315959

Q6 =
∑

n !=0

1
n6

= 8.401923974433

Finite Volume

Wednesday, May 12, 2010



What about N bosons in a confined geometry?

I. INTRODUCTION

I show how to recover the non-relativistic version (same as the relativistic version) of the
energy-shift of two particles in finite volume for a2 ! L, where a2 is the two-body scattering
length. I extend this to include the effective range also. I then compute the shift in the
energy of the ground state of the three-body system.

II. SCHRODINGER PERTURBATION THEORY

Lets remind ourselves what we do in grad school! The full Hamiltonian is written as
Ĥ = Ĥ0 + λV̂ , the state is written as |n〉 = |n(0)〉 + λ|n(1)〉 + λ2|n(2)〉 + λ3|n(3)〉 + ...
where |n(0) is an eigenstate of Ĥ0 with energy eigenvalue E(0)

n . The energy of the state is
En = E(0)

n + λE(1)
n + λ2E(2)

n + .... I find that, when 〈n(j)|n(0)〉 = 0 for j $= 0, and using states
that are not correctly normed (simply for simplicity)

E(j)
n = 〈n(0)|V̂ |n(j−1)〉 . (1)

I find that

E(1)
n = 〈n(0)|V̂ |n(0)〉 = Vnn

E(2)
n =

∑

k "=n

|〈n(0)|V̂ |k(0)〉|2

E(0)
n − E(0)

k

=
∑

k "=n

|Vnk|2

E(0)
n − E(0)

k

E(3)
n =

∑

k "=n

∑

p "=n

VnpVpkVkn

(E(0)
n − E(0)

k )(E(0)
n − E(0)

p )
− Vnn

∑

k "=n

|Vnk|2

(E(0)
n − E(0)

k )2

E(4)
n =

∑

k "=n

∑

p "=n

∑

s "=n

VnpVpsVskVkn

(E(0)
n − E(0)

k )(E(0)
n − E(0)

p )(E(0)
n − E(0)

s )

− Vnn

∑

k "=n
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VnpVpkVkn

(E(0)
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p )

− E(1)
n
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VnpVpkVkn

(E(0)
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k )(E(0)
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− Vnn
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n − E(0)

k )3





− E(2)
n

∑

k "=n

|Vnk|2

(E(0)
n − E(0)

k )2
, (2)

where n denotes the n-th level, k denotes the k-th level etc.

III. ENERGY OF TWO PARTICLES IN A FINITE VOLUME

Lets start by defining the (pseudo-) potential between two particles to be of the form

V̂ (r̂1, r̂2) = η δ3(r̂1 − r̂2) , η =
4πa

M
. (3)

The single particle eigenstates in the finite volume are

〈r|k〉 =
1

L3/2
eik·r , (4)
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∑

k "=n

∑

p "=n

VnpVpkVkn

(E(0)
n − E(0)

k )(E(0)
n − E(0)

p )
− Vnn

∑

k "=n

|Vnk|2

(E(0)
n − E(0)

k )2

E(4)
n =

∑

k "=n

∑

p "=n

∑

s "=n

VnpVpsVskVkn

(E(0)
n − E(0)

k )(E(0)
n − E(0)

p )(E(0)
n − E(0)

s )

− Vnn

∑

k "=n

∑

p "=n

VnpVpkVkn

(E(0)
n − E(0)

k )2(E(0)
n − E(0)

p )

− E(1)
n





∑

k "=n

∑

p "=n

VnpVpkVkn

(E(0)
n − E(0)

k )(E(0)
n − E(0)

p )2
− Vnn

∑

k "=n

|Vnk|2

(E(0)
n − E(0)

k )3





− E(2)
n

∑

k "=n

|Vnk|2

(E(0)
n − E(0)

k )2
, (2)

where n denotes the n-th level, k denotes the k-th level etc.

III. ENERGY OF TWO PARTICLES IN A FINITE VOLUME

Lets start by defining the (pseudo-) potential between two particles to be of the form

V̂ (r̂1, r̂2) = η δ3(r̂1 − r̂2) , η =
4πa

M
. (3)

The single particle eigenstates in the finite volume are

〈r|k〉 =
1

L3/2
eik·r , (4)

2
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N bosons in a finite volume

2

II. THE GROUND STATE ENERGY OF n BOSONS

Motivated by interest in performing lattice QCD calculations, we calculate the ground-state energy of n bosons
of mass M confined to a finite volume of size L3 with periodic boundary conditions 2 in non-relativistic quantum
mechanics. In their classic 1957 paper, Huang and Yang [14] (see also Ref. [15, 16]) considered this problem formulated
for hard spheres using the technique of pseudo-potentials. They calculated the dependence of the n-boson ground
state on the volume up to L−5:

E0(n, L) =
4π a

M L3

{(
n
2

)
−

( a

π L

) (
n
2

)
I +

( a

π L

)2
{(

n
2

)
I2 −

[(
n
2

)2

− 12
(

n
3

)
− 6

(
n
4

)]
J

} }
+O

(
L−6

)
, (1)

where the integer sums I and J are

I = lim
Λj→∞

|i|≤Λj∑

i %=0

1
|i|2 − 4πΛj = −8.91363291781 , J =

∑

i %=0

1
|i|4 = 16.532315959 , (2)

where the sums extend over all three-vectors of integers, and
(

n
k

)
=n!/(n − k)!/k!. In eq. (1), the notation has been

modified, and numerical values of I and J have been corrected, compared to the expressions presented in Refs. [14, 16].
The leading term in eq. (1) was derived by Bogoliubov [17]. In the special case of two particles, Lüscher [9, 10] has
shown that the energy shift determined in non-relativistic quantum mechanics, given by eq. (1) with n = 2, can also
be derived from quantum field theory, and thus is a general result 3.

At O
(
L−5

)
, the ground-state energy in eq. (1) is not sensitive to three-body interactions. On dimensional grounds,

three-body contributions should first enter at O
(
L−6

)
and in this work we extend the result given above to that

order. This will allow for the extraction of three-body interactions from lattice QCD calculations. The ground-state
energy of the n-boson system is calculated with an interaction of the form

V (r1, . . . , rn) = η
n∑

i<j

δ(3)(ri − rj) + η3

n∑

i<j<k

δ(3)(ri − rk)δ(3)(rj − rk) + . . . , (3)

where the ellipsis denote higher-body interactions that do not contribute at the order to which we work (in general,
m-body interactions will enter at O(L3(1−m)). For an s-wave scattering phase shift, δ(p), the two-body contribution
to the pseudo-potential is given by η = − 4π

M p−1 tan δ(p) = 4π
M a+ π

M a2r(p→2 + p←2)+ . . ., keeping only the contributions
from the scattering length and effective range, a and r, respectively. At O(L−6) the coefficient of the three-body
potential, η3, is momentum independent. While up to this point the discussion has been phrased in terms of m-body
pseudo-potentials, the modern language with which to describe these interactions and calculations is that of the
pionless EFT, EFT(π/) [22–24]. In EFT(π/) the divergences that occur in loop diagrams can be renormalized order-
by-order in the expansion, preserving the power counting. This is somewhat less obvious when using the language of
pseudo-potentials.

At O
(
L−6

)
(order V 4, corresponding to four insertions of the two-body potential given in eq. (3)) the energy-

shift has contributions with interactions amongst up to six particles. Using standard techniques of non-degenerate
perturbation theory (or the perturbative expansion of EFT(π/)), the ground-state energy of n bosons with repulsive
two-body interactions is

E0(N, L) =
4π a3

M L3

{(
N
2

)
−

( a3

π L

) (
N
2

)
Q2 +

( a3

π L

)2
{(

N
2

)
Q2

2 −
[(

N
2

)2

− 12
(
N
3

)
− 6

(
N
4

)]
Q4

}

+
( a3

π L

)3
[
−

(
N
2

)
Q3

2 + 3
(
N
2

)2

Q2Q4 −
(
N
2

)3

Q6 − 24
(
N
3

) (
Q2Q4 + 2Q+R−Q6

(
N
2

))

−6
(
N
4

) (
3Q2Q4 + 51Q6 − 2

(
N
2

)
Q6

)
− 300

(
N
5

)
Q6 − 90

(
N
6

)
Q6

]}

+
(
N
3

)
64πa4

3

M L6
(3
√

3− 4π) log(µ L) +
(
N
2

)
8π2a3

3

M L6
r3 +

(
N
3

)
η(µ)
L6

+O
(
L−7

)

2 The effects of the finite time extent of lattice calculations are exponentially small in the temporal length and are ignored herein.
3 The two-body result has been extended to the situation where the center-of-mass is moving relative to the volume [18–20], and also to

the case in which there are coupled channels [21].

L! Na3

N
1
3 a3 ! L! Na3

Two low-density regimes:

BEC: thermodynamic limit

E0

N
=

2πρa3

M

(
1 +

128
15
√

π
(ρa3

3)
1/2 +

8
3
(4π − 3

√
3)ρa3

3 ln(ρa3
3) + ρa3

3η
′ + . . .

)
+ . . .

Detmold et al, (2007) Tan, (2007)
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How does one calculate in BEC regime?

L = ψ†
(

i∂t +
∇2

2M
+ µ

)
ψ − C0

4
(ψ†ψ)2 − C2

8
∇(ψ†ψ)∇(ψ†ψ)− D0

36
(ψ†ψ)3 + . . .

ρ(µ) =< ψ†ψ >µ

E. Braaten and A. Nieto: Quantum corrections to the energy density of a homogeneous Bose gas 145

We have set ! = 1 in the action. Dimensional analysis
can be used to reinsert the factors of ! at the end of the
calculation. The . . . ’s in (10) represents all possible terms
with higher powers of ψ or more factors of ∇. They also
include counterterms that are needed to cancel ultraviolet
divergences associated with the parameters µ, g, and g3.
The free energy density F(µ) is related to the partition
function by

Z = exp {−iV TF(µ)} , (11)

where V T is the spacetime volume. The ground state ex-
pectation value of an operator 〈O〉 can be expressed as a
functional integral:

〈O〉µ =
1
Z

∫
Dψ†DψO exp{iS[ψ]}. (12)

By differentiating the logarithm of both (9, 11) with re-
spect to µ and using (12), we obtain the relation

ρ(µ) = −dF
dµ

(µ). (13)

Differentiating (8) with respect to ρ and using (13), we
obtain

dE
dρ

(ρ) = µ(ρ). (14)

The simplest way to calculate the energy density is to first
calculate F(µ), use (13) to get ρ(µ), invert to get µ(ρ), and
then integrate (14) to get E(ρ).

It is convenient to parameterize the quantum field
ψ(r, t) in terms of two real-valued quantum fields ξ and
η that describe quantum fluctuations around an arbitrary
constant background v:

ψ(r, t) = v +
ξ(r, t) + iη(r, t)√

2
· (15)

After inserting the field parameterization (15) into the
action (10), it can be expanded in powers of the quantum
fields ξ and η. By separating the action into a free part and
an interaction part, we can express the thermodynamic
functions as diagrammatic expansions. The free energy
density F is the sum of all connected vacuum diagrams,
which are Feynman diagrams with no external legs. This
sum is independent of the arbitrary background v. It is
convenient to define the thermodynamic potential Ω(µ, v),
which is the sum of all one-particle-irreducible vacuum
diagrams. The thermodynamic potential, which depends
on v, contains the information required to determine all of
the thermodynamic functions. The free energy F(µ) can
be obtained by evaluating Ω(µ, v) at a particular value of
v given by the tadpole condition

v(µ) = 〈ψ〉µ. (16)

For this value of v, those diagrams that can be discon-
nected by cutting a single line vanish. Thus the sum of

connected vacuum diagram reduces to the sum of one-
particle-irreducible vacuum diagrams and we have

F(µ) = Ω(µ, v(µ)). (17)

Using (15), the tadpole condition (16) reduces to 〈ξ〉µ =
〈η〉µ = 0. The phase of the field ψ can be chosen so that
〈η〉µ is automatically 0. The condition 〈ξ〉µ = 0 can be
conveniently expressed in terms of the thermodynamic po-
tential itself:

∂Ω

∂v
(µ, v(µ)) = 0. (18)

Differentiating both sides of (17) with respect to µ and
using (18), we obtain

dF
dµ

(µ) =
∂Ω

∂µ
(µ, v(µ)). (19)

Comparing with (13), we find that the number density can
be expressed as

ρ(µ) = −∂Ω

∂µ
(µ, v(µ)). (20)

3 Ground state energy density

In this section, we calculate the ground state energy for
a homogeneous Bose gas to second order in the quan-
tum corrections. We first set up a perturbative framework
for carrying out calculations in the presence of a nonzero
chemical potential. We use the framework to calculate the
energy density to second order in the quantum correc-
tions. We then carry out the renormalizations of µ and g
that are necessary to remove power ultraviolet divergences
from the energy density.

3.1 Perturbative framework

We can describe a Bose gas with nonzero density ρ by
the action (10) with an appropriately chosen value of the
chemical potential. For simplicity, we set g3 = 0 and omit
all terms in (10) that are higher order in ψ or ∇. We
ignore for the moment the counterterms associated with
renormalization, so the parameters µ and g should be re-
garded as bare parameters. Inserting the field parameter-
ization (15) into the action and expanding in powers of ξ
and η, the action becomes

S[ψ] =
∫

dt

∫
d3x

{
µv2 − 1

4
gv4 +

vX√
2m

ξ

+
1
2

(
ηξ̇ − ξη̇

)
+

1
4m

ξ
(
∇2 − 2mgv2 + X

)
ξ

+
1

4m
η

(
∇2 + X

)
η

− gv√
8
ξ
(
ξ2 + η2

)
− g

16
(
ξ2 + η2

)2

}
, (21)

quantum fluctuations around a mean field

ρ0 = v2mean field theory:

Braaten and Nieto, (1999)
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Example:  multi-pion interactions from Lattice QCD:
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Can one take the thermodynamic limit directly?

corrections look mysterious...

Seems to require understanding of:

Q2s ≡
∞∑

n∈Z3 #=0

1
(n2)s

N→∞ V →∞ ρ ≡ N
V

fixed

leading order is trivial

(How does the Bose gas lose knowledge of its container?)
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Relations among elliptic integrals gives:

∞∑

n∈Z2 #=0

1
(n2)s

= 4ζ(s)β(s)

∞∑

n∈Z4 #=0

1
(n2)s

= 8
(
1− 22−2s

)
ζ(s)ζ(s− 1)

ζ(s) ≡
∞∑

m=0

1
(m + 1)s

β(s) ≡
∞∑

m=0

(−1)m

(2m + 1)s

Riemann zeta function Dirichlet beta function
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As usual, three spatial dimensions is a pain in the..
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Let’s consider flatland
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d=3  Effective range theory:

FIG. 2: Feynman diagram that gives the leading contribution to the three-body scattering amplitude.

B. Two spatial dimensions

In this section we consider the case d = 3 in some detail. This case is particularly interesting
because of its analogy with renormalizable quantum field theories, and QCD in particular [25,
26]. From our general formula, eq. (10), we find

cot δ(p) =
1

π
log

(

p2

µ2

)

− 1

α2(µ)
+ σ2 p2 + O(p4) (13)

where

α2(µ) =
MC0(µ)

8
; σ2 =

8C2(µ)

MC2
0 (µ)

. (14)

Note that α2 is a dimensionless coupling, and
√

|σ2| is the effective range. Neglecting
range corrections, for α2(µ) of either sign, there is a bound state with binding momentum
γ = µ exp(π/2α2(µ)). In essence, this occurs because, regardless of the sign of the delta-
function interaction, quantum effects generate an attractive logarithmic contribution to the
effective potential which dominates at long distances. However, as we will see below, in the
repulsive case, this pole is not physical.

Many interesting properties in two spatial dimensions may be traced to scale invariance.
Keeping only the leading EFT operator, the Hamiltonian may be written as

H =

∫

d2x

[

1
2∇ψ†∇ψ + 2α2(ψ

†ψ)2

]

, (15)

where the field and spatial coordinates have been rescaled by ψ → M1/2ψ; 'x → M−1/2'x. It
is clear that classically there is no dimensionful parameter and indeed this Hamiltonian has
a non-relativistic conformal invariance (Schrödinger invariance) [26]. This conformal invari-
ance is broken logarithmically by quantum effects. Perhaps the most dramatic signature of
this breaking of scale invariance is the vanishing of the scattering amplitude at zero energy,
which follows from eqs. 6 and 13.

The leading beta function in the EFT is

µ
d

dµ
C0(µ) =

M

4π
C2

0 (µ) , (16)

which may be integrated to give the familiar renormalization group evolution equation

α2(µ) =
α2(ν)

1 − 2
πα2(ν) log

(

µ
ν

) . (17)

7
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Asymptotically free for attractive case!
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Landau pole for repulsive case

+ + ...+

FIG. 1: Feynman diagrams that give the exact two-body scattering amplitude. The oval blob repre-

sents the all-orders interaction derived from the Lagrangian.

This Lagrangian, constrained by Galilean invariance, parity and time-reversal invariance,
describes the low-energy interactions of bosons via an arbitrary finite-range potential. In
principle, it is valid in any number of spacetime dimensions, d. The mass dimensions of the
boson field and of the operator coefficients change with spacetime dimensions: i.e. [ψ] =
(d−1)/2, [C2n] = 2−d−2n and [D0] = 3−2d. While our focus in this paper is on d = 3, in
our general discussion of two- and three-body interactions, we will keep d arbitrary as this
will allow the reader to check our results against the well-known cases with d = 2 and d = 4.
Throughout we use units with ! = 1, however we will keep the boson mass, M , explicit.

Consider 2 → 2 scattering, with incoming momenta labelled p1,p2 and outgoing momenta
labelled p′

1,p
′
2. In the center-of-mass frame, p = p1 = −p2 , and the sum of Feynman

diagrams, shown in fig. 1, computed in the EFT gives the two-body scattering amplitude [22–
24]

A2(p) = −
∑

C2n p2n

1 − I0(p)
∑

C2n p2n
, (1)

where

I0(p) =
M

2

(µ

2

)ε
∫

dD−1q

(2π)D−1

1

p2 − q2 + iδ
, (2)

and it is understood that the ultraviolet divergences in the EFT are regulated using di-
mensional regularization (DR). In eq. (2), µ and D are the DR scale and dimensionality,
respectively, and ε ≡ d − D. A useful integral is:

In(p) =
M

2

(µ

2

)ε
∫

dD−1q

(2π)D−1
q2n

(

1

p2 − q2 + iδ

)

;

= −M

2
p2n(−p2 − iδ)(D−3)/2Γ

(

3 − D

2

)

(µ/2)ε

(4π)(D−1)/2
. (3)

In what follows we will define the EFT coefficients in DR with MS. This choice is by no
means generally appropriate [23, 24]. However it is a convenient choice if no assumption is
made about the relative size of the renormalized EFT coefficients.

Now we should relate the scattering amplitude in the EFT, A2(p), whose normalization is
conventional and fixed to the Feynman diagram expansion, to the S-matrix. We will simply
assume that the S-matrix element for isotropic (s-wave) scattering exists in an arbitrary
number of spacetime dimensions. We then have generally

e2iδ(p) = 1 + i N (p) A2(p) , (4)

5
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Weirdness of two spatial dimensions:

FIG. 2: Feynman diagram that gives the leading contribution to the three-body scattering amplitude.

B. Two spatial dimensions

In this section we consider the case d = 3 in some detail. This case is particularly interesting
because of its analogy with renormalizable quantum field theories, and QCD in particular [25,
26]. From our general formula, eq. (9), we find

cot δ(p) =
1

π
log

(

p2

µ2

)

− 1

α2(µ)
+ σ2 p2 + O(p4) (12)

where

α2(µ) =
MC0(µ)

8
; σ2 =

8C2(µ)

MC2
0 (µ)

. (13)

Note that α2 is a dimensionless coupling, and
√

|σ2| is the effective range. Neglecting
range corrections, for α2(µ) of either sign, there is a bound state with binding momentum
γ = µ exp(π/2α2(µ)). In essence, this occurs because, regardless of the sign of the delta-
function interaction, quantum effects generate an attractive logarithmic contribution to the
effective potential which dominates at long distances. However, as we will see below, in the
repulsive case, this pole is not physical.

Many interesting properties in two spatial dimensions may be traced to scale invariance.
Keeping only the leading EFT operator, the Hamiltonian may be written as

H =

∫

d2x

[

1
2∇ψ†∇ψ + 2α2(ψ

†ψ)2

]

, (14)

where the field and spatial coordinates have been rescaled by ψ → M1/2ψ; 'x → M−1/2'x. It
is clear that classically there is no dimensionful parameter and indeed this Hamiltonian has
a non-relativistic conformal invariance (Schrödinger invariance) [26]. This conformal invari-
ance is broken logarithmically by quantum effects. Perhaps the most dramatic signature of
this breaking of scale invariance is the vanishing of the scattering amplitude at zero energy,
which follows from eqs. 5 and 12.

The leading beta function in the EFT is

µ
d

dµ
C0(µ) =

M

4π
C2

0 (µ) , (15)

which may be integrated to give the familiar renormalization group evolution equation

α2(µ) =
α2(ν)

1 − 2
πα2(ν) log

(

µ
ν

) . (16)

7

Bound state for attractive and repulsive coupling:

In repulsive case corresponds to Landau pole!

cutoff of EFT
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Here will focus on repulsive case

Hammer and Son, (2004)

Many-boson state with attraction
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FIG. 1: Numerical solution of Eq. (17) for the boundary con-
dition f ′(0) = f(∞) = 0 obtained using the shooting method.

we can already see that the size of the droplet decreases
exponentially as a function of the number of particles.

From Eq. (14) we see that the kinetic and potential
energies cancel each other to leading order in 1/N . For
this reason, we can only estimate the energy to be

BN =
CE

R2
N

=
CE

C2
R

B2 exp

(

2B

AC
N

)

(16)

(barring the possibility that there is a cancellation in the
next-to-leading order in 1/N), but cannot compute the
overall constant CE .

The shape of the droplet.—We now minimize the en-
ergy with respect to the shape of the wave function
f(r/R). Due to the exponential behavior of the energy
as a function of N , the optimal shape is the one which
maximizes the ratio B/(AC), where A, B, and C are de-
fined in Eqs. (10, 12). This ratio is truly characteristic
of the shape of the wave function—it is unchanged un-
der the rescaling f(ρ) → λ1f(λ2ρ). The optimal shape
of the wave function is therefore ambiguous up to this
trivial rescaling.

Taking the variation of B/(AC) over the f(ρ), we find
that f(ρ) satisfies the equation

f ′′(ρ) +
f ′(ρ)

ρ
− f(ρ) + f3(ρ) = 0 , (17)

where we have performed the rescaling

f(ρ) →
√

B

2C
f

(

√

A

C
ρ

)

. (18)

The boundary condition on f(ρ) is f ′(0) = f(∞) = 0.
The solution can be found numerically by using, e.g.,
the shooting method. The solution, shown in Fig. 1,
has a characteristic bell shape with f(0) ≈ 2.206. For
the shape given by the function f(ρ) solving Eq. (17),
A = 1

2B = C ≈ 1.862, therefore B/(AC) ≈ 1.074. Equa-
tion (16) now can be written as

BN = c1B2c
N−2 , (19)

FIG. 2: The integral equation for the three-body amplitude.
The single (double) line indicates the boson (full dimeron)
propagators, respectively.

where c ≈ 8.567, but c1 is still unknown. Equations (1)
and (2) are also recovered.

Equation (17) resembles the Hartree equation for the
single-particle wave function. The above results can also
be obtained in the Hartree approach, provided the run-
ning coupling is used instead of the bare one.

Three-body bound state.—We next describe our compu-
tation of the binding energies of the three-body system,
which can be calculated exactly. For this purpose, we
use an effective field theory and work in the Lagrangian
formalism. It is convenient to introduce an auxiliary field
d ≡ ψ2 with the quantum numbers of two bosons (some-
times called the “dimeron”) [10, 11]. In terms of d and
ψ, the Lagrangian density corresponding to Eq. (4) reads

L = ψ†

(

i∂t +
∇2

2

)

ψ−
g

2
d†d+

g

2

(

d†ψ2 + ψ†2d
)

. (20)

The boson propagator takes the usual nonrelativistic
form i/(p0 − p

2/2 + iε). It is not renormalized by inter-
actions since all tadpole diagrams vanish in this theory.
The bare dimeron propagator is simply a constant −2i/g.
In the presence of interactions, it gets dressed by boson
bubbles to all orders, leading to the full propagator:

i∆(p0,p) = −i
8π

g2
ln

[

p
2/4 − p0 − iε

B2

]−1

, (21)

where the bare coupling constant g will drop out of all
observables in the end. The Feynman rule for the dψψ
vertex coupling the dimeron to two bosons is ig.

The three-body binding energies are determined by the
homogeneous integral equation for the three-body bound
state amplitude depicted in Fig. 2. The single (double)
line indicates the boson (full dimeron) propagators, re-
spectively, while the blob is the bound state amplitude.
It depends on the total energy E and the relative momen-
tum of the boson and the dimeron. The three-body bind-
ing energies are given by those (negative) values of the to-
tal energy E = −B3, for which the homogeneous integral
equation shown in Fig. 2 has a nontrivial solution. The
derivation of the integral equation using the Feynman
rules given above proceeds as in the three-dimensional
case [11]. There are only bound states if the dimeron
and the third boson are in a relative S-wave. The for-
mation of bound states in the higher partial waves is
prevented by the angular momentum barrier. Projecting
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observables in the end. The Feynman rule for the dψψ
vertex coupling the dimeron to two bosons is ig.

The three-body binding energies are determined by the
homogeneous integral equation for the three-body bound
state amplitude depicted in Fig. 2. The single (double)
line indicates the boson (full dimeron) propagators, re-
spectively, while the blob is the bound state amplitude.
It depends on the total energy E and the relative momen-
tum of the boson and the dimeron. The three-body bind-
ing energies are given by those (negative) values of the to-
tal energy E = −B3, for which the homogeneous integral
equation shown in Fig. 2 has a nontrivial solution. The
derivation of the integral equation using the Feynman
rules given above proceeds as in the three-dimensional
case [11]. There are only bound states if the dimeron
and the third boson are in a relative S-wave. The for-
mation of bound states in the higher partial waves is
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Universal Properties of Two-Dimensional Boson Droplets

H.-W. Hammer and D. T. Son
Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550

(Dated: October 2004)

We consider a system of N nonrelativistic bosons in two dimensions, interacting weakly via a
short-range attractive potential. We show that for N large, but below some critical value, the
properties of the N-boson bound state are universal. In particular, the ratio of the binding energies
of (N +1)- and N-boson systems, BN+1/BN , approaches a finite limit, approximately 8.567, at large
N . We also confirm previous results that the three-body system has exactly two bound states. We
find for the ground state B(0)

3 = 16.522688(1)B2 and for the excited state B(1)
3 = 1.2704091(1)B2 .

PACS numbers: 03.75.Nt, 05.10.Cc, 36.40.-c, 12.38.Aw

The recent experimental progress with ultracold
atomic gases has revived the interest in weakly coupled
quantum liquids. The ability to control the parameters of
the systems make trapped atomic gases ideal laboratories
where theoretical ideas can be checked versus experiment.
One of the fundamental parameters that can be varied in
experiments is the dimensionality of space. Both one-
and two-dimensional Bose-Einstein condensates (BEC’s)
of sodium atoms have been studied in atom traps [1]. A
one-dimensional condensate of 7Li atoms immersed in a
Fermi sea of 6Li atoms was observed in [2]. In Ref. [3],
a two-dimensional BEC of cesium atoms was realized in
a gravito-optical surface trap. A two-dimensional boson
system has also been realized in hydrogen adsorbed on a
helium surface [4].

In this paper, we revisit the problem of weakly inter-
acting bosons in two spatial dimensions (2D). While most
previous theoretical studies were concerned with a Bose
gas with repulsive interactions [5, 6], we focus on at-
tractive interactions. In particular, we consider a self-
bound droplet of N(! 1) bosons interacting weakly via
an attractive, short-ranged pair potential. Our goal is
to exhibit universal properties pertaining to large finite
systems, which are not in the thermodynamic limit.

We shall show that the system possesses surprising uni-
versal properties. Namely, if one denotes the size of the
N -body droplet as RN , then at large N and in the limit
of zero range of the interaction potential:

RN+1/RN ≈ 0.3417, N ! 1 . (1)

The size of the bound state decreases exponentially with
N : adding a boson into an existing N -boson droplet re-
duces the size of the droplet by almost a factor of three.
Correspondingly, the binding energy of N bosons BN in-
creases exponentially with N :

BN+1/BN ≈ 8.567, N ! 1 . (2)

This implies that the energy required to remove one par-
ticle from a N -body bound state (the analog of the nu-
cleon separation energy for nuclei) is about 88% of the to-
tal binding energy. This is in contrast to most other phys-
ical systems, where separating one particle costs much

less energy than the total binding energy, provided the
number of particles in the bound state is large.

To derive results independent of the details of the
short-distance dynamics such as the ones quoted above,
the N -body bound states need to be sufficiently shallow
and hence have a size RN large compared to all other
length scales in the problem. A similar reasoning has
been used in 3D with much success [7]. The breakdown
of universality is determined by the next largest length
scale in the problem, the natural low-energy length scale
!. Depending on the physical system, ! can be the van
der Waals length lvdW , the range of the potential r0 or
some other scale. For realistic systems, Eqs. (1, 2) are
valid for large N , but below a critical value,

1 # N # Ncrit ≈ 0.931 ln(R2/!) + O(1) . (3)

At N = Ncrit the size of the droplet is comparable to
! and universality is lost. If there is a large separation
between R2 and !, then Ncrit is much larger than one and
the condition (3) can be satisfied.

Asymptotic freedom.—Our analysis relies strongly on
the property of asymptotic freedom of 2D bosons with
attractive interaction, so we will briefly review this prop-
erty here. The system under consideration is described
by the nonrelativistic Hamiltonian

H =

∫

d2
x

(

h̄2

2m
|∇ψ|2 −

g

2
(ψ†ψ)2

)

. (4)

The bosons interact via an attractive, short-ranged pair
potential −gδ2(x), with g > 0. This choice can be made
because at low energies, the true potential can not be dis-
tinguished from a δ-function potential. For convenience,
we will use the unit system h̄ = m = 1; the factors of h̄
and m can be restored from dimensional analysis. In this
unit system, g is dimensionless, and we assume g # 1.

In 2D, any attractive potential has at least one bound
state. For the potential −gδ2(x) with small g, there is ex-
actly one bound state with an exponentially small bind-
ing energy,

B2 ∼ Λ2 exp (−4π/g) , (5)
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Note: in CM literature

It is clear from eq. (17) that the attractive case, α2(µ) = −|α2(µ)|, corresponds to an
asymptotically free coupling, while the repulsive case, α2(µ) = +|α2(µ)|, has a Landau pole
and the coupling grows weaker in the infrared. We will focus largely on the latter case in
what follows 3. Note that the position of the “bound state” in the repulsive case coincides
with the position of the Landau pole, which sets the cutoff scale of the EFT. This state is
therefore unphysical.

Below we will also make use of a more conventional4 parametrization of the phase shift:

cot δ(p) =
1

π
log

(

p2a2
2

)

+ σ2 p2 + O(p4) . (18)

Here a2 is the scattering length in two spatial dimensions. By matching with eq. 13, one
finds a−1

2 = µ exp(π/2α2(µ)), which in the repulsive case is the position of the Landau pole.
Hence, in the repulsive case, a−1

2 is the momentum cutoff scale. Therefore, from the point
of view of the EFT, a2 is a most unsuitable parameter for describing low-energy physics. Of
course, while the parameter a2 is expected to be very small as compared to physical scales,
its effect is enhanced as it appears in the argument of the logarithm.

III. SCATTERING IN A CONFINED GEOMETRY

A. Eigenvalue equation

With the scattering theory that we have developed we may now find the eigenvalue equation
in a confined geometry with periodic boundary conditions. Specifically, we will consider
scattering on what is topologically the (d− 1)-dimensional torus, T d−1 = S1

(1) × S1
(2) × · · ·×

S1
(d−1). In the confined geometry, all bound and scattering states appear as poles of the S-

matrix, or scattering amplitude, A2(p). Hence, from eq. (2) we have the eigenvalue equation
A2(p)−1 = 0, or

1
∑

C2n p2n
= IL

0 (p) , IL
0 (p) =

M

2

1

Ld−1

Λ
∑

k

1

p2 − k2
, (19)

where we have chosen to define the sum with a sharp cutoff (d = 2 is ultraviolet finite). The
sum is over k = 2πn/L where n ∈ Zd−1 = (n1, n2, . . . , nd−1) takes all integer values. It is
therefore convenient to write

IL
0 (p) =

M

8π2
L3−d

Λn
∑

n∈Zd−1

1

q2 − n2
, (20)

where q ≡ pL/2π and therefore Λ = 2πΛn/L. As the EFT coefficients are defined in DR,
we can write the eigenvalue equation as

1
∑

C2n p2n
− Re(I{DR}

0 (p)) = IL
0 (p) − Re(I{Λ}

0 (p)) . (21)

3 For a recent discussion of the implications of scale invariance for many-boson systems in the case of an

attractive coupling, see Ref. [27].
4 With a2 = aeγ/2 and σ2 = a2/2π, this parametrization coincides with a hard-disk potential of radius

a [18]. As we will discuss below, there appears to be some confusion in the literature as regards the

distinction between a2 and a.
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Finite Area

Here we have subtracted off the real part of the loop integral using different schemes on the
two sides of the equation; the integral on the left is evaluated using DR and the one on the
right with a sharp cutoff Λ. The purpose of this procedure is to leave the renormalization
of the EFT coefficients, which is of course an ultraviolet effect, unchanged while defining
the integer sums using an integer cutoff. We then have via eq. (7) our general form for the
eigenvalue equation

cot δ(p) =
1

Im(I0(p))

[

IL
0 (p) − Re(I{Λ}

0 (p))
]

. (22)

It is straightforward to find

I{Λ}
0 (p) =

M

(4π)
d−1
2 Γ

(

d−1
2

)

Λd−1

(d − 1)p2 2F1

(

1,
d − 1

2
,
d + 1

2
;
Λ2

p2

)

, (23)

where 2F1 is the hypergeometric function.
The exact eigenvalue equation in d spacetime dimensions can be written as

qd−3 cot δ(p)=Γ

(

d − 1

2

)

π− d+1
2

Λn
∑

n∈Zd−1

1

n2 − q2
+

2Λd−1
n

π(d − 1)q2
Re

[

2F1

(

1,
d − 1

2
,
d + 1

2
;
Λ2

n

q2

)

]

(24)

where it is understood that Λn → ∞ on the right hand side. This equation gives the
location of all of the energy-eigenstates on the (d − 1)-dimensional torus, including the
bound states (with p2 < 0). The binding momentum in the confined geometry reduces to
γ as L → ∞. While the derivation given above is valid within the radius of convergence of
the non-relativistic EFT, this eigenvalue equation is expected to be valid for an arbitrary
quantum field theory in d dimensions up to corrections that are exponentially suppressed in
the boundary size, L. One readily checks that eq. 24 gives the familiar eigenvalue equations
for d = 2 [28] and d = 4 [10–12] and is in agreement with Ref. [17] for d = 3.

B. Two spatial dimensions

In a finite area, the energy levels for the two-particle system follow from the eigenvalue
equation, eq. (24),

cot δ(p) =
1

π2

[

S2

(

pL

2π

)

+ 2π log

(

pL

2π

)

]

, (25)

where

S2 (η) ≡
Λn
∑

n

1

n2 − η2
− 2π log Λn . (26)

Using the results derived in Appendix II, this integer sum can be expressed as

S2 (η) = − 1

η2
+ P2 − πγ − 4

∞
∑

!=0

(−1)!

(2% + 1)
ψ0

(

1 − η2

(2% + 1)

)

, (27)
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where ψ0 is the digamma function, and P2 is defined below.
We can now combine our low-energy expansion, eq. (13), with the eigenvalue equation,

eq. (25), to find

− 1

α2(µ)
− 2

π
log

(

µL

2π

)

+ σ2 p2 + O(p4) =
1

π2
S2

(

pL

2π

)

. (28)

Using the renormalization group equation, eq. 17, we then have

cot δ′(p) =
1

π2
S2

(

pL

2π

)

, (29)

where

cot δ′(p) ≡ − 1

α2
+ σ2 p2 + O(p4) . (30)

and α2 ≡ α2(2π/L). We see that in the eigenvalue equation, the logarithms of the energy
cancel, and the scale of the coupling is fixed to 2π/L, the most infrared scale in the EFT 5.
Therefore as one approaches the continuum limit, the repulsive theory is at weak coupling
and the attractive theory is at strong coupling.

C. Weak coupling expansion

When the two-body interaction is repulsive, the eigenvalue equation, eq. 30, allows a weak
coupling expansion of the energy eigenvalues in the coupling α2. For the purpose of obtaining
this expansion, it is convenient to rewrite the eigenvalue equation in terms of the scale-
invariant momentum q = pL/(2π). If one expands the energy in terms of the coupling one
can write q2 = q2

0 + εq2
1 + ε2q2

2 + . . ., and the eigenvalue equation becomes

− 1

α2
+

σ2 (2π)2

L2

(

q2
0 + εq2

1 + . . .
)

+ . . . = ε
1

π2
S2 (q) . (31)

Note that in this expression, the range corrections break the scale invariance with power
law dependence on L. Indeed, in the presence of the range corrections, one has a double
expansion in α2 and in 1/L2. It is now straightforward to compute the energy perturbatively
by expanding eq. 31 in powers of ε and matching.

With q0 = (0, 0) one finds the ground-state energy

E0 =
4α2

ML2

[

1 −
(α2

π2

)

P2 +
(α2

π2

)2
(

P2
2 − P4

)

−
(α2

π2

)3
(

P3
2 − 3P2P4 + P6

)

+ O(α4
2)

]

+
16 α3

2 σ2

ML4
(1 + O(α2)) + O(L−6) , (32)

5 The prime on the phase shift indicates that the part of the scattering amplitude that is logarithmic in

energy is removed. This is a consequence of the confined geometry.
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5 The prime on the phase shift indicates that the part of the scattering amplitude that is logarithmic in
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zero mode removed!

repulsive coupling is weak in the infrared!
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N bosons in a finite area

where the dots denote higher-body operators. We have

η3 = − 1

3!
A3 =

1

6
D0 , (43)

where we have used eq. 12. It is straightforward but unpleasant to find the ground-state
energy of the N boson system in perturbation theory with this potential. In the case of three
spatial dimensions, this has been worked out up to order 1/L7 [13–15]. The calculation in
two spatial dimensions is essentially identical, as the combinatoric factors for the ground-
state level are independent of spatial dimension, and therefore the dependence on spatial
dimensionality resides entirely in the coupling constant and the geometric constants.

C. The ground-state energy

In the case of two spatial dimensions one finds the ground-state energy

E0 =
4 α2

ML2

[

(

N
2

)

−
(α2

π2

)

(

N
2

)

P2 +
(α2

π2

)2
(

(

N
2

)

P2
2 −

[(

N
2

)2

− 12

(

N
3

)

− 6

(

N
4

)]

P4

)

+
(α2

π2

)3
(

−
(

N
2

)

P3
2 + 3

(

N
2

)2

P2P4 −
(

N
2

)3

P6 − 24

(

N
3

) (

P2P4 + 2Q0 + R0 − P6

(

N
2

))

−6

(

N
4

) (

3P2P4 + 51P6 − 2

(

N
2

)

P6

)

− 300

(

N
5

)

P6 − 90

(

N
6

)

P6

)

+ O(α4
2)

]

+
16 α3

2 σ2

ML4

(

N

2

)

where
(

n
k

)

=n!/(n − k)!/k!, the P2s are available in eq. 33, and

Q0 =
∑

n!=0

∑

m !=0

1

n2 m2 (n2 + m2 + (n + m)2)
= 16.3059 ; (44)

R0 =
∑

m !=0

Λn
∑

n

1

m4(n2 + m2 + (n + m)2)
− πP4 log Λn = −1.8414 . (45)

These double lattice sums have been evaluated numerically. This expression for the ground-
state energy is complete to O(α4

2), and includes the leading non-universal effects due to
range corrections and three-body forces. Expanding out the binomial coefficients gives, for
the universal piece,

E0 =
4 α2

ML2

(

N

2

)

[

1 −
(α2

π2

)

P2 +
(α2

π2

)2 (

P2
2 + (2N− 5)P4

)

−
(α2

π2

)3 (

P3
2 + (2N− 7)P2P4 + (5N2 − 41N + 63)P6 + 8(N− 2)(2Q0 + R0)

)

+
(α2

π2

)4 (

P4
2 − 6P2

2P4 + (4 + N − N2)P2
4 + 4(27 − 15N + N2)P2P6

+ (14N3 − 227N2 + 919N− 1043)P8 + . . .
)

+ O(α5
2)

]

. (46)

13

|α2|N! 1

|α2| ln |α2|! 1 BEC: thermodynamic limit

CM I and CM II

Schick, (1971)

E0

N
=

2α′
2ρ

M

[
1 + O(α′

2 lnα′
2) ??

]
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Can one take the thermodynamic limit directly?

where ψ0 is the digamma function, and P2 is defined below.
We can now combine our low-energy expansion, eq. (13), with the eigenvalue equation,

eq. (25), to find

− 1

α2(µ)
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π
log

(

µL

2π

)

+ σ2 p2 + O(p4) =
1

π2
S2

(

pL

2π

)

. (28)

Using the renormalization group equation, eq. 17, we then have

cot δ′(p) =
1

π2
S2

(

pL

2π

)

, (29)

where

cot δ′(p) ≡ − 1

α2
+ σ2 p2 + O(p4) . (30)

and α2 ≡ α2(2π/L). We see that in the eigenvalue equation, the logarithms of the energy
cancel, and the scale of the coupling is fixed to 2π/L, the most infrared scale in the EFT 5.
Therefore as one approaches the continuum limit, the repulsive theory is at weak coupling
and the attractive theory is at strong coupling.

C. Weak coupling expansion

When the two-body interaction is repulsive, the eigenvalue equation, eq. 30, allows a weak
coupling expansion of the energy eigenvalues in the coupling α2. For the purpose of obtaining
this expansion, it is convenient to rewrite the eigenvalue equation in terms of the scale-
invariant momentum q = pL/(2π). If one expands the energy in terms of the coupling one
can write q2 = q2

0 + εq2
1 + ε2q2

2 + . . ., and the eigenvalue equation becomes

− 1

α2
+

σ2 (2π)2

L2

(

q2
0 + εq2

1 + . . .
)

+ . . . = ε
1

π2
S2 (q) . (31)

Note that in this expression, the range corrections break the scale invariance with power
law dependence on L. Indeed, in the presence of the range corrections, one has a double
expansion in α2 and in 1/L2. It is now straightforward to compute the energy perturbatively
by expanding eq. 31 in powers of ε and matching.

With q0 = (0, 0) one finds the ground-state energy

E0 =
4α2

ML2

[

1 −
(α2

π2

)

P2 +
(α2

π2

)2
(

P2
2 − P4

)

−
(α2

π2

)3
(

P3
2 − 3P2P4 + P6

)

+ O(α4
2)

]

+
16 α3

2 σ2

ML4
(1 + O(α2)) + O(L−6) , (32)

5 The prime on the phase shift indicates that the part of the scattering amplitude that is logarithmic in

energy is removed. This is a consequence of the confined geometry.
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ill defined in thermo limit

So what? Choose new scale using RG evolution

ν = 2π
√

ρλ λ is scale ambiguity!

B. Universality and broken scale invariance

As the coupling α2 in eq. 47 is evaluated at the far infrared scale 2π/L, a change of scale
is required before performing the thermodynamic limit. Consider a change of scale to ν =
2π

√
λρ, where λ is a number which represents the inherent ambiguity in the choice of scale.

With this choice, α2 is finite in the thermodynamic limit, and constitutes a small parameter
in the low-density limit (assuming that λ is a number of order unity.) Using eq. 17, we can
then reexpress the energy as

E0 =
4α′

2

ML2

(

N

2

)

[

1 −
(

α′
2

π2

)

(

P2 + π log (Nλ)
)

+

(

α′
2

π2

)2
(

P2
2 + (2N− 5)P4 + π log (Nλ)

(

2P2 + π log (Nλ)
))

−
(

α′
2

π2

)3
(

P3
2 + (2N− 7)P2P4 + (5N2 − 41N + 63)P6 + 8(N − 2)(2Q0 + R0)

+ π log (Nλ)
(

3
(

P2
2 + (2N− 5)P4

)

+ π log (Nλ)
(

3P2 + π log (Nλ)
)))

+

(

α′
2

π2

)4
(

P4
2 − 6P2

2P4 + (4 + N − N2)P2
4 + 4(27 − 15N + N2)P2P6

+ (14N3 − 227N2 + 919N− 1043)P8 + . . .
)

+ O(α′
2
5)

]

, (49)

where now α′
2 ≡ α2(ν). This expression is independent of λ up to O(α′

2
5) corrections. The

strategy is to rearrange the expansion according to the maximum powers of N that appear
at each order in α′

2. We can then re-write eq. 49 as the energy-per-particle:

E0

N
=

2α′
2

M

(

ρ +
1

L2

)

[

1 +
1

N
G +

1

N2

(

π log (Nλ)H + I
)

−
(

α′
2

π2

)

(

P2 + π log (Nλ)
)

+

(

α′
2

π2

)2
(

P2
2 − 5P4 + π log (Nλ)

(

2P2 + π log (Nλ)
))

+ O(α′
2
3)

]

(50)

where

G (z) = 2 z2 P4 − 5 z3 P6 + 14 z4 P8 + O(z5) (51)

H (z) = −6 z3 P4 + 20 z4 P6 − 70 z5 P8 + O(z6) (52)

I (z) = −z3
(

2P2P4 − 41P6 + 8(2Q0 + R0)
)

(53)

+ z4
(

4P4P6 − P2
4 + 227P8 + . . .

)

+ O(z5) , (54)

with z ≡ Nα′
2/π

2. The mathematically-inclined reader will immediately notice that the
coefficients of the first two sums are related to the Catalan numbers. We will postpone till
later discussion of the evaluation of these sums, in order to focus on obtaining the form of

15
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Rewrite finite-area energy:
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+ π log (Nλ)
(

3
(

P2
2 + (2N− 5)P4

)

+ π log (Nλ)
(

3P2 + π log (Nλ)
)))

+

(

α′
2

π2

)4
(

P4
2 − 6P2

2P4 + (4 + N − N2)P2
4 + 4(27 − 15N + N2)P2P6

+ (14N3 − 227N2 + 919N− 1043)P8 + . . .
)

+ O(α′
2
5)

]

, (49)

where now α′
2 ≡ α2(ν). This expression is independent of λ up to O(α′

2
5) corrections. The

strategy is to rearrange the expansion according to the maximum powers of N that appear
at each order in α′

2. We can then re-write eq. 49 as the energy-per-particle:

E0

N
=

2α′
2

M

(

ρ +
1

L2

)

[

1 +
1

N
G +

1

N2

(

π log (Nλ)H + I
)

−
(

α′
2

π2

)

(

P2 + π log (Nλ)
)

+

(

α′
2

π2

)2
(

P2
2 − 5P4 + π log (Nλ)

(

2P2 + π log (Nλ)
))

+ O(α′
2
3)

]

(50)

where

G (z) = 2 z2 P4 − 5 z3 P6 + 14 z4 P8 + O(z5) (51)

H (z) = −6 z3 P4 + 20 z4 P6 − 70 z5 P8 + O(z6) (52)

I (z) = −z3
(

2P2P4 − 41P6 + 8(2Q0 + R0)
)

(53)

+ z4
(

4P4P6 − P2
4 + 227P8 + . . .

)

+ O(z5) , (54)

with z ≡ Nα′
2/π

2. The mathematically-inclined reader will immediately notice that the
coefficients of the first two sums are related to the Catalan numbers. We will postpone till
later discussion of the evaluation of these sums, in order to focus on obtaining the form of
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B. Universality and broken scale invariance

As the coupling α2 in eq. 47 is evaluated at the far infrared scale 2π/L, a change of scale
is required before performing the thermodynamic limit. Consider a change of scale to ν =
2π

√
λρ, where λ is a number which represents the inherent ambiguity in the choice of scale.

With this choice, α2 is finite in the thermodynamic limit, and constitutes a small parameter
in the low-density limit (assuming that λ is a number of order unity.) Using eq. 17, we can
then reexpress the energy as

E0 =
4α′
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N

2
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π2
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P2 + π log (Nλ)
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2 + (2N− 5)P4 + π log (Nλ)
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2P2 + π log (Nλ)
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α′
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π2
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P3
2 + (2N− 7)P2P4 + (5N2 − 41N + 63)P6 + 8(N − 2)(2Q0 + R0)

+ π log (Nλ)
(

3
(

P2
2 + (2N− 5)P4
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+ π log (Nλ)
(

3P2 + π log (Nλ)
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α′
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P4
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Scale invariance constrains the thermo limit..

the low-density expansion which is based purely on general considerations. It is clear from
eq. 50 that in order to have a finite thermodynamic limit, G(z) must scale as z and H(z)
and I(z) must scale as z2 for large z. Hence we may define

lim
z→∞

1

z
G(z) ≡ g(z) ; lim

z→∞

1

z2
H(z) ≡ h(z) ; lim

z→∞

1

z2
I(z) ≡ i(z) , (55)

where g(z), h(z) and i(z) have, at most, logarithmic dependence on z. In the limit that N
and L are large but finite we then have:

E0

N
=

2α′
2ρ

M

[

1 +

(

α′
2

π2

)

(

g − P2 − π log (Nλ)
)

+

(

α′
2

π2

)2
(

i + P2
2 − 5P4 + π log (Nλ)

(

h + 2P2 + π log (Nλ)
))

+ O(α′
2
3)

]

.(56)

This form makes clear that the logarithmic dependence on N must be canceled by g(z), h(z)
and i(z) in order to be left with an energy-per-particle that is finite in the thermodynamic
limit. That is, we have the differential equations,

d

dN

(

g − P2 − π log (Nλ)
)

= 0 ;

d

dN

(

i + P2
2 − 5P4 + π log (Nλ)

(

h + 2P2 + π log (Nλ)
))

= 0 , (57)

which are readily integrated to give:

g(z) = π log z + ḡ ; (58)

h(z) = −2π log z + h̄ ; (59)

i(z) = π2 log2 z − π
(

h̄ + 2P2

)

log z + ī , (60)

where ḡ, h̄ and ī are integration constants. Plugging these functions into eq. 56 we may take
the thermodynamic limit and we find to O(α′

2
3):

E0

N
=

2α′
2ρ

M

[

1 +

(

α′
2

π

)

(

logα′
2 − log λπ2 − 1

π (P2 − ḡ)
)

+

(

α′
2

π

)2
(

log2 α′
2 −

(

2 log λπ2 + 1
π

(

2P2 + h̄
))

logα′
2

+ log λπ2 1
π

(

2P2 + h̄
)

+ log2 λπ2 + 1
π2 (P2

2 − 5P4 + ī)
)

+ O
(

α′
2
3
)

]

. (61)

There is one further constraint: here we expect that the energy-per-particle should be inde-
pendent of λ up to O(α′

2
4) corrections. Using eq. 17, one finds

λ
d

dλ

(

E0

N

)

=
2α′

2
3ρ

Mπ3

(

2ḡ + h̄ + π
)

+ O(α′
2
4) , (62)
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E0

N
=

2α′
2ρ

M

[
1 +

(
α′

2

π

) (
log α′

2 − log λπ2 − 1
π (P2 − ḡ)

)

+
(

α′
2

π

)2 (
log2 α′

2 −
(
2 log λπ2 + 1

π

(
2P2 + h̄

))
log α′

2

+ log λπ2 1
π

(
2P2 + h̄

)
+ log2 λπ2 + 1

π2

(
P2

2 − 5P4 + ī
))

+ O
(
α′

2
3
) ]

and therefore there is a further relation between the integration constants,

2ḡ + h̄+ π = 0 . (63)

Note that in eq. 61, the energy is completely determined to O(α′
2
2 logα′

2). Indeed we see
that the coefficients of the leading logarithms of the form O(α′

2
n+1 logn α′

2) are fixed. The
change of renormalization scale to obtain a density-dependent coupling introduced terms of
the form logN, and as the form of the density expansion had to be such as to cancel these
divergent terms, it is not surprising that the leading logarithms in the expansion can be
removed by a change of scale. (We will do this explicitly below.)

In order to go further, one must evaluate the sums, eqs. 51, 52 and 53. We evaluate G
and H in Appendix II. We recover the form as expected in eq. 60 and find the integration
constants to be:

ḡ =
π

2
+ P2 ; (64)

h̄ = −2π − 2P2 , (65)

which are of course consistent with eq. 63. We have been unable to determine ī 8. The two
integration constants ḡ and h̄ then fix the energy density to O(α′

2
3 logα′

2):

E (ρ) = ρ× E0

N
=

2α′
2ρ

2

M

[

1 +

(

α′
2

π

)

(

logα′
2 − log λπ2 + 1

2

)

+

(

α′
2

π

)2
(

log2 α′
2 + 2(1− log λπ2) logα′

2 + log λπ2
(

log λπ2 − 2
)

+ 1
π2

(

P2
2 − 5P4 + ī

)

)

+ O
(

α′
2
3
)

]

. (66)

It is straightforward to check that this result is in agreement with Refs. [20] and [21] to
O(α′

2
3 logα′

2). As the energy density in the thermodynamic limit cannot depend on the
geometric constants P2 and P4, we define

C ≡ −1

2

(

1 +
1

π2

(

P2
2 − 5P4 + ī

)

)

. (67)

While we have been unable to calculate this constant, Ref. [21] finds

CA = 2.78× 10−3 . (68)

In the calculation of Ref. [21], which is based on a systematic EFT computation of quantum
fluctuations around a mean field [31], C arises as a two-loop effect. This is consistent with
our expectations for the integration constant ī, as the leading term in the sum depends on
the double lattice sums Q0 and R0 which are clearly related to two-loop vacuum integrals
in the continuum limit.

8 By inspection of eq. 52, it would appear that performing the sum to obtain H would involve solving

the two-dimensional double lattice sums Q0 and R0 in the sense of expressing them as products of one-

dimensional sums.
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G (z) =
∞∑

n=2

(−1)nC(n)znP2n

where ψ0 is the digamma function. Finally, one can write

S2 (η) = − 1

η2
+ P2 − πγ − 4

∞
∑

!=0

(−1)!

(2% + 1)
ψ0

(

1 − η2

(2% + 1)

)

. (A-7)

APPENDIX II: Catalan sums

In this appendix we evaluate the sums which diverge with powers of N in the thermodynamic
limit. The first sum we wish to evaluate, eq. 51, may be expressed as

G (z) =
∞

∑

n=2

(−1)nC(n)znP2n , (A-8)

where the C(n) are the Catalan numbers11, which have the integral representation [42]

C(n) =
4

π

∫ ∞

0

ω2

(1 + ω2)2

(

4

(1 + ω2)

)n

dω . (A-9)

Using eq. A-1 we can write

G (z) =
16

π

∫ ∞

0

dω ω2

(1 + ω2)2

∞
∑

n=2

z̄nξ(n)β(n) , (A-10)

where z̄ ≡ −4z/(1 + ω2). By expanding eq. A-6 and comparing with eq. A-1, it is straight-
forward to find

∞
∑

n=2

z̄nξ(n)β(n) = z̄

(

−πγ

4
−

∞
∑

!=0

(−1)!

(2% + 1)
ψ0

(

1 − z̄

(2% + 1)

)

)

. (A-11)

Using the asymptotic form of the digamma function for large argument as well as the Dirich-
let sums [41]

β(0) =
1

2
; β ′(1) = −

∞
∑

!=0

(−1)!

(2% + 1)
log (2% + 1) = −1

4
(πγ − P2) , (A-12)

one finds

G (z) = πz

(

log z +
1

2
+

P2

π

)

+ 1 + O(z−1) . (A-13)

And finally, matching to eq. 69,

g(z) = π log z +
π

2
+ P2 ; g0 = 1 . (A-14)

11 C(n − 2) is the number of ways in which a regular n-gon be divided into n − 2 triangles if different

orientations are counted separately [41] (Euler’s polygon division problem). They are related to the

central binomial coefficients via C(n) =
(

2n

n

)

/(n + 1).
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C. Finite-size corrections

As we are able to evaluate the sums G and H explicitly, we are able to give the leading and
next-to-leading finite-size corrections to the thermodynamic limit. Relaxing the thermody-
namic limit in eq. 53 gives:

1

z
G(z) ≡ g(z) +

g0

z
+ O(z−2) ;

1

z2
H(z) ≡ h(z) +

h0

z
+ O(z−2) . (67)

In Appendix II we find g0 = 1 = −h0. Using eq. 48 we see that there are leading and
subleading 1/N corrections that arise from g0, h0 #= 0, and in addition there is a correction
that arises from the binomial coefficient prefactor, as shown explicitly in eq. 48. Taking into
account both of these conributions gives

δEFS =
4α′

2ρ
2

MN

[

1 +

(

α′
2

2π

)

(

log α′
2 − log Nλ2π2 + 1

2

)

]

. (68)

One easily checks that this expression is independent of λ up to O(α′
2
3) corrections. It

follows that

δEFS

E =
2

N
+ O(α′

2) , (69)

which constitutes a ten-percent effect in a system with N = 20 bosons.

D. Non-universal corrections

It is straightforward to include the leading non-universal corrections in the energy density.
By inspection of eq. 45, it is clear that the leading effective range corrections to the ground-
state energy of N bosons in a finite area vanishes in the thermodynamic limit. Hence, the
leading non-universal contribution to the energy density is from the three-body force,

δENU = ρ3 D0

36
, (70)

as one expects on the basis of simple mean field theory considerations. An estimate of the
leading range corrections has been made in Ref. [32].

E. Summary and discussion

Our final form for the energy density in the thermodynamic limit may be written as

E0

N
=

2α′
2ρ

M

[

1 +

(

α′
2

π

)

(

log α′
2 − log λπ2 + 1

2

)

+

(

α′
2

π

)2
(

log2 α′
2 + 2(1 − log λπ2) log α′

2 + log λπ2
(

log λπ2 − 2
)

− 1 − 2C
)

+ O
(

α′
2
3
)

]

18

Energy density has scale ambiguity

and therefore there is a further relation between the integration constants,

2ḡ + h̄+ π = 0 . (63)

Note that in eq. 61, the energy is completely determined to O(α′
2
2 logα′

2). Indeed we see
that the coefficients of the leading logarithms of the form O(α′

2
n+1 logn α′

2) are fixed. The
change of renormalization scale to obtain a density-dependent coupling introduced terms of
the form logN, and as the form of the density expansion had to be such as to cancel these
divergent terms, it is not surprising that the leading logarithms in the expansion can be
removed by a change of scale. (We will do this explicitly below.)

In order to go further, one must evaluate the sums, eqs. 51, 52 and 53. We evaluate G
and H in Appendix II. We recover the form as expected in eq. 60 and find the integration
constants to be:

ḡ =
π

2
+ P2 ; (64)

h̄ = −2π − 2P2 , (65)

which are of course consistent with eq. 63. We have been unable to determine ī 8. The two
integration constants ḡ and h̄ then fix the energy density to O(α′

2
3 logα′

2):

E (ρ) = ρ× E0

N
=

2α′
2ρ

2

M

[

1 +

(

α′
2

π

)

(

logα′
2 − log λπ2 + 1

2

)

+

(

α′
2

π

)2
(
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(

log λπ2 − 2
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P2
2 − 5P4 + ī
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+ O
(

α′
2
3
)
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. (66)

It is straightforward to check that this result is in agreement with Refs. [20] and [21] to
O(α′

2
3 logα′

2). As the energy density in the thermodynamic limit cannot depend on the
geometric constants P2 and P4, we define

C ≡ −1

2

(

1 +
1

π2

(

P2
2 − 5P4 + ī

)

)

. (67)

While we have been unable to calculate this constant, Ref. [21] finds

CA = 2.78× 10−3 . (68)

In the calculation of Ref. [21], which is based on a systematic EFT computation of quantum
fluctuations around a mean field [31], C arises as a two-loop effect. This is consistent with
our expectations for the integration constant ī, as the leading term in the sum depends on
the double lattice sums Q0 and R0 which are clearly related to two-loop vacuum integrals
in the continuum limit.

8 By inspection of eq. 52, it would appear that performing the sum to obtain H would involve solving

the two-dimensional double lattice sums Q0 and R0 in the sense of expressing them as products of one-

dimensional sums.
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I. INTRODUCTION

One of the most serious difficulties preventing precise tests of QCD is the scale ambiguity

of its perturbative predictions. Consider a measurable quantity such as ρ = Re+e−(s)−3Σe2
q .

The PQCD prediction is of the form

ρ = r0αs(µ)

[

1 + r1(µ)
αs(µ)

π
+ r2(µ)

α2
s(µ)

π2
+ · · ·

]

. (1.1)

Here αs(µ) = g2
s/4π is the renormalized coupling defined in a specific renormalization scheme

such as MS, and µ is a particular choice of renormalization scale. Since ρ is a physical quan-

tity, its value must be independent of the choice of µ as well as the choice of renormalization

scheme. Nevertheless, since we only have truncated PQCD predictions to a given order αN
s ,

the predictions do depend on µ. In the specific case of Re+e−, where we have predictions

[1,2] through order α3
s , the sensitivity to µ has been shown to be less than 10% over a

large range of $n µ [2]. However, in the case of the hadronic beauty production cross sec-

tion (dσ/dp2
T )(p̄p → B + X), which has been computed to next-to-leading order in αs, the

prediction [3] for the normalization of the heavy quark pT distribution at hadron colliders

ranges over a factor of 4 if one chooses one “physical value” such as µ = 1
4

√
m2

B + p2
T rather

than an equally well motivated choice µ =
√

m2
B + p2

T .

There is, in fact, no consensus on how to estimate the theoretical error due to the scale

ambiguity, what constitutes a reasonable range of physical values, or indeed how to identify

what the central value should be. Even worse, if we consider the renormalization scale µ

as totally arbitrary, the next-to-leading coefficient r1(µ) in the perturbative expansion can

take on the value zero or any other value. Thus it is difficult to assess the convergence of the

truncated series, and finite-order analyses cannot be meaningfully compared to experiment.

The µ dependence of the truncated prediction ρN is often used as a guide to assess the

accuracy of the perturbative prediction, since this dependence reflects the presence of the

uncalculated terms. However, the scale dependence of ρN only reflects one aspect of the total

series. This point has also been recently emphasized by Maxwell et al. [4]. For example,
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C. Finite-size corrections

As we are able to evaluate the sums G and H explicitly, we are able to give the leading and
next-to-leading finite-size corrections to the thermodynamic limit. Relaxing the thermody-
namic limit in eq. 53 gives:

1

z
G(z) ≡ g(z) +

g0

z
+ O(z−2) ;

1

z2
H(z) ≡ h(z) +

h0

z
+ O(z−2) . (67)

In Appendix II we find g0 = 1 = −h0. Using eq. 48 we see that there are leading and
subleading 1/N corrections that arise from g0, h0 #= 0, and in addition there is a correction
that arises from the binomial coefficient prefactor, as shown explicitly in eq. 48. Taking into
account both of these conributions gives

δEFS =
4α′

2ρ
2

MN

[

1 +

(

α′
2

2π

)

(

log α′
2 − log Nλ2π2 + 1

2

)

]

. (68)

One easily checks that this expression is independent of λ up to O(α′
2
3) corrections. It

follows that

δEFS

E =
2

N
+ O(α′

2) , (69)

which constitutes a ten-percent effect in a system with N = 20 bosons.

D. Non-universal corrections

It is straightforward to include the leading non-universal corrections in the energy density.
By inspection of eq. 45, it is clear that the leading effective range corrections to the ground-
state energy of N bosons in a finite area vanishes in the thermodynamic limit. Hence, the
leading non-universal contribution to the energy density is from the three-body force,

δENU = ρ3 D0

36
, (70)

as one expects on the basis of simple mean field theory considerations. An estimate of the
leading range corrections has been made in Ref. [32].
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It is straightforward to check that this result is in agreement with Refs. [20] and [21] to
O(α′

2
3 logα′

2). As the energy density in the thermodynamic limit cannot depend on the
geometric constants P2 and P4, we define
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While we have been unable to calculate this constant, Ref. [21] finds

CA = 2.78× 10−3 . (68)

In the calculation of Ref. [21], which is based on a systematic EFT computation of quantum
fluctuations around a mean field [31], C arises as a two-loop effect. This is consistent with
our expectations for the integration constant ī, as the leading term in the sum depends on
the double lattice sums Q0 and R0 which are clearly related to two-loop vacuum integrals
in the continuum limit.

8 By inspection of eq. 52, it would appear that performing the sum to obtain H would involve solving

the two-dimensional double lattice sums Q0 and R0 in the sense of expressing them as products of one-

dimensional sums.
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which is complete to O(α′
2
3) if one uses eq. 68 for the constant C from Ref. [21], and is valid

for α′
2 log α′

2 ! 1. We stress that this result is model independent; the critical assumption
that we have made is that the potentials via which the bosons interact are of finite range.
The chemical potential and pressure are readily available from the energy density via

µ =
dE
dρ

; P = −E + ρµ . (74)

The results found in this paper (and also in Ref. [21]) demonstrate that there is a scale
ambiguity in the equation-of-state of the Bose gas in two spatial dimensions. While the en-
ergy density is independent of λ and of the renormalization scheme that is used to define the
coupling constants, in the perturbative expansion this holds only up to O(α′

2
4) corrections;

that is, the inevitable truncation of the perturbative expansion implies that predictions do
depend on λ. In principle, an ideal choice for λ will optimize perturbation theory for the
particular system in question 9. For instance, if one chooses λ = α′

2/π
2, then all logarithms

of the coupling are absorbed into the coupling itself and one is left with a simple perturbative
expansion in α′

2,

E =
2α′

2ρ
2

M

[

1 +

(

α′
2

π

)

(1

2

)

−
(

α′
2

π

)2
(

1 + 2C
)

+ O
(

α′
2
3
)

]

, (75)

where the coupling α′
2 is determined self-consistently from eq. 17.

The most natural way of expressing interactions in the EFT is in terms of the Lagrangian
coefficients, which run with the renormalization group in two spatial dimensions. By con-
trast, the two-dimensional scattering length is not a natural quantity in the EFT; indeed it
is the most unnatural quantity that it is possible to form, as it corresponds to the distance
scale set by the Landau pole. Nevertheless, the energy density can be expressed in terms of
the two-dimensional scattering length via the formula

α′
2 = − π

log (ρλ(2π)2a2
2)

, (76)

which is obtained by comparing eq. 13 and eq. 18. This is the traditional way of expressing
the two-body coupling constant [18]. We see that the argument of the logarithm depends
on λ, and is therefore not a physical quantity; any attempt to assign definite meaning to it
is futile.

Finally, for facility in comparison, we will express the universal part of the energy density
in terms of the scattering length. As pointed out in section II, there are various conventions
used in the literature for the scattering length; one convention, a2, is as given in eq. 18 and
another identifies the scattering length with the radius of a hard disc, a 10. In the first

9 Similar scale ambiguities arise in perturbative QCD. For a relevant discussion, see Refs. [33] and [34].
10 Evidently Refs. [32, 35, 36] claim that Refs. [20] and [21] are discrepant, and, moreover, that Ref. [21] is

incorrect. As pointed out above, we find no discrepancy between these two calculations. We believe that

confusion may have arisen due to the choice of convention for the two-dimensional scattering length.
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convention, we have, with λ = 1/(2π)2,

E =
2πρ2

M | log ρa2
2|

[

1 − 1

| log ρa2
2|

(

log | log ρa2
2| − log 4π − 1

2

)

+
1

| log ρa2
2|2

(

log2 | log ρa2
2| − 2(1 + log 4π) log | log ρa2

2|

+ log2 4 + log 16(1 + log π) + log π(2 + log π) − 1 − 2C
)

]

. (77)

One readily finds the energy density in the second convention by choosing a2 = aeγ/2 and
λ = e−2γ/π2 in eq. 76.

VI. CONCLUSION

In this paper we have computed the ground-state energy of N identical bosons which interact
via the most general finite-range potential in a finite area. This energy is expressed as a
double perturbative expansion in the two-body interaction strength, which is logarithmically
dependent on the system size L, as well as in inverse powers of L by way of operators that
break scale invariance at the classical level. Effective range corrections and the leading effect
of three-body forces enter at O(L−4). The structure of the expansion is largely dictated
by scale invariance and its logarithmic breaking. Indeed, the EFT with the leading two-
body interaction acts very much like a renormalizable field theory with a coupling constant
that runs logarithmically. All other interactions beyond the leading two-body interaction
generate power-law breaking of scale invariance. Using the finite area ground-state energy
as a starting point, we have also explicitly evaluated the sums that diverge with powers of
N and recovered the well-known low density expansion of the ground-state energy density
in the thermodynamic limit.

We have seen in this paper that the many-body boson system in two spatial dimensions
is significantly simpler from a mathematical standpoint than its counterpart in three spatial
dimensions. The tractability of the two-dimensional system is due both to the logarithmically
broken scale invariance of the system at leading order in the momentum expansion in the two-
body sector, as well as due to the expression of two-dimensional lattice sums as products of
familiar one-dimensional sums. These two features allow one to move smoothly between two
weakly-coupled quantum regimes that are related by infinite resummations. In particular,
this tractability allows one to calculate the leading and sub-leading finite-size corrections to
the thermodynamic limit equation-of-state. In principle, this will enable the quantification of
finite-size effects in experimental results involving ultra-cold atoms interacting in two spatial
dimensions. With the results found in this paper, it would be interesting to investigate the
transition between the confined and thermodynamic-limit regimes using quantum Monte-
Carlo methods.

It should be clear that the method presented here for computing the equation-of-state
and low-density properties of the Bose gas in the thermodynamic limit is not particularly
efficient. Indeed, the technology developed in Ref. [31] and carried out in the two-dimensional
case in Ref. [21] provides the most efficient and sensible method for treating the low-density
limit in a model-independent way. Nevertheless, it is interesting to see that the results of
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is significantly simpler from a mathematical standpoint than its counterpart in three spatial
dimensions. The tractability of the two-dimensional system is due both to the logarithmically
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the thermodynamic limit equation-of-state. In principle, this will enable the quantification of
finite-size effects in experimental results involving ultra-cold atoms interacting in two spatial
dimensions. With the results found in this paper, it would be interesting to investigate the
transition between the confined and thermodynamic-limit regimes using quantum Monte-
Carlo methods.

It should be clear that the method presented here for computing the equation-of-state
and low-density properties of the Bose gas in the thermodynamic limit is not particularly
efficient. Indeed, the technology developed in Ref. [31] and carried out in the two-dimensional
case in Ref. [21] provides the most efficient and sensible method for treating the low-density
limit in a model-independent way. Nevertheless, it is interesting to see that the results of
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recovers CM II

There is no discrepancy! two scattering length conventions!
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Controversy: ground state energy of 2-d Bose gas

claim discrepancy in sub-leading corrections and cite error in:

RECALL:

Andersen vindicated!

Wednesday, May 12, 2010



Conclusion

• Experiments with ultra-cold atoms provide playground for those interested in 
non-relativistic quantum mechanics of few-body systems in various 
dimensions.

• In two spatial dimensions, starting from N weakly interacting particles in a 
finite area, one can explicitly take the thermodynamic limit and obtain the 
low-density BEC energy.

• The BEC energy has a scale ambiguity reminiscent of perturbative QCD.

• Finite-size corrections are calculable and can be checked against quantum 
Monte-Carlo simulations.
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