

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

7 fm

Halo Nuclei from Low-momentum Interactions

in collaboration with: Nir Barnea, Gaute Hagen, Thomas Papenbrock and Achim Schwenk

Sonia Bacca | Theory Group | TRIUMF

Nuclear Halo

Moon Halo

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Outline

- Why are halo nuclei interesting?
- Brief summary on experimental advances
- Overview of different theoretical approaches
- Our approach:
 - Use hyper-spherical harmonics for ⁶He
 - Use coupled cluster theory for ⁸He
- Results for binding energy and radii
- Using the EIHH to improve radii A
- Summary and Outlook

Halo Nuclei

The helium isotope chain

The helium isotope chain

Even if they are exotic short lived nuclei, they can be investigated experimentally. From a comparison of theoretical predictions with experiment we can test our knowledge on nuclear forces in the neutron rich region

Halo Nuclei - Experiment

New Era of Precision Measurements for masses and radii

April 29 2010

RIUMF

Halo Nuclei - Experiment

New Era of Precision Measurements for masses and radii

April 29 2010

RIUMF

Halo Nuclei -Theory

• They test nuclear forces at the extremes, where less is known

Why are halo nuclei a challenge to theory?

It is difficult to describe the long extended wave function

Halo Nuclei - Theory

Cluster models:

Why are halo nuclei a challenge to theory?

It is difficult to describe the long extended wave function

3-body models with phenomenological interactions ⁶He, ¹¹Li - borromean systems can do reactions, Faddeev calculations but difficult to add core polarizations

Efros, Fedorov, Garrido, Hagino, Bertulani, ...

core

n

RIUMF

Halo Nuclei -Theory

Why are halo nuclei a challenge to theory?

- It is difficult to describe the long extended wave function
- They test nuclear forces at the extremes, where less is known

Cluster models:

n

core

RIUMF

3-body models with phenomenological interactions
 ⁶He, ¹¹Li - borromean systems
 can do reactions, Faddeev calculations
 but difficult to add core polarizations
 Efg.

New: Revived by halo EFT

RIUMF

Halo Nuclei - Theory

Why are halo nuclei a challenge to theory?

- It is difficult to describe the long extended wave function
- They test nuclear forces at the extremes, where less is known

Ab-initio calculations: treat the nucleus as an A-body problem

full antisymmetrization of the w.f.

use modern Hamiltonians to predict halo properties

 $H = T + V_{NN} + V_{3N} + \dots$

Methods: GFMC, NCSM, CC, HH

Nota Bene

S.C. Pieper, arXiv:0711.1500, proceedings of Enrico Fermi School

Ab-initio Calculations

NCSM Diagonalization Method using Harmonic Oscillator Basis $\psi_{nl}(r) \sim e^{-\nu r^2} L_n^{l+1/2}(2\nu r^2)$ $\nu = m\omega/2\hbar$ Can use non-local two- and three-nucleon-forces

Helium Isotopes

so far not for halo nuclei in large spaces Navratil and Ormand, PRC 68, 034305 (2003), $^6{\rm He}$ AV8'+TM $~6\hbar\omega$

Caurier and Navratil, PRC 73, 021302(R) (2006)

CD-Bonn	meson exchange theory			
$E_{\rm B}$ [MeV]	Expt.	CD-Bonn 2000		
⁴ He	28.296	26.16 (6)		
⁶ He	29.269	26.9 (3)		
⁸ He	31.408 (7)	26.0 (4)		

NN only with effective interaction (Lee-Suzuki) Slow convergence and HO parameter dependence in radius

What we aim at

An ab-initio calculation of helium halo nuclei from chiral effective field theory potentials

Ideally we want:

- To use methods that enable to incorporate the correct asymptotic of the w.f. for loosely bound systems
- To obtain convergent calculations, with no dependence on the model space parameters
- To systematically study the cutoff (in)dependence of predicted observables

Ideally we want:

- To use methods that enable to incorporate the correct asymptotic of the w.f. for loosely bound systems
- To obtain convergent calculations, with no dependence on the model space parameters
 - To systematically study the cutoff (in)dependence of predicted observables

To facilitate convergence we use low-momentum interactions

Low momentum interactions

Effective field theory potentials and low-momentum evolution $V_{\text{low k}}$

evolve to lower resolution (cutoffs) by integrating out high-momenta Bogner, Kuo, Schwenk (2003) smooth cutoff Bogner, Furnstahl, Ramanan, Schwenk (2007)

 $H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

Low momentum interactions

Effective field theory potentials and low-momentum evolution $V_{\text{low k}}$

evolve to lower resolution (cutoffs) by integrating out high-momenta Bogner, Kuo, Schwenk (2003) smooth cutoff Bogner, Furnstahl, Ramanan, Schwenk (2007)

 $H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

Low momentum interactions

Effective field theory potentials and low-momentum evolution $V_{\text{low k}}$

evolve to lower resolution (cutoffs) by integrating out high-momenta Bogner, Kuo, Schwenk (2003) smooth cutoff Bogner, Furnstahl, Ramanan, Schwenk (2007)

$$H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$$

 \mathbf{b}

Variation of the cutoff provides a tool to estimate the effect of short range 3N forces

Our Approach

• Hyper-spherical Harmonics Expansion for ⁶He

• Cluster Cluster Theory for ⁸He

Hyper-spherical Harmonics

• Few-body method - uses relative coordinates

Recursive definition of hyper-spherical coordinates

$$ho, \Omega \qquad
ho^2 = \sum_{i=1}^{A} r_i^2 = \sum_{i=1}^{A-1} \eta_i^2$$

RIUMF

Hyper-spherical Harmonics

• Few-body method - uses relative coordinates

 $\vec{\eta_0} = \sqrt{A}\vec{R}_{CM} \quad \vec{\eta_1}, ..., \vec{\eta_{A-1}}$

 $|\psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_A)\rangle = |\varphi(\vec{R}_{CM})\Psi(\vec{\eta}_1, \vec{\eta}_2, \dots, \vec{\eta}_{A-1})\rangle$

Recursive definition of hyper-spherical coordinates

$$\rho, \Omega \qquad \rho^2 = \sum_{i=1}^A r_i^2 = \sum_{i=1}^{A-1} \eta_i^2$$

A=3
$$\begin{cases} \vec{\eta}_1 = \{\eta_1, \theta_1, \phi_1\} \\ \vec{\eta}_2 = \{\eta_2, \theta_2, \phi_2\} \end{cases} \begin{cases} \rho = \sqrt{\eta_1^2 + \eta_2^2} \\ \sin \alpha_2 = \frac{\eta_2}{\rho} \end{cases}$$

RIUMF

Hyper-spherical Harmonics

Hyper-spherical Harmonics

Model space truncation $K \leq K_{max}$, Matrix Diagonalization $\langle \psi | H_{(2)} | \psi \rangle = \frac{A(A-1)}{2} \langle \psi | H_{(A,A-1)} | \psi \rangle$ Can use non-local interactions

Most applications in few-body; challenge in A>4 Barnea and Novoselsky, Ann. Phys. 256 (1997) 192

Coupled Cluster Theory

Results for binding energies

Method	$\Lambda = 2.0 \text{ fm}^{-1}$	$E_0(^4{ m He})~[{ m MeV}]$
Faddeev-Yakubovsky (FY)	-28.65(5)
CCSD level coupled-cluster theory (CC)		-28.05(2) -28.44
Lambda-CCSD(T) (CC	C with triples corrections)	-28.63
	Eext	≥=-28.296 MeV

Helium Halo Nuclei

Helium Halo Nuclei

Binding Energy ⁶He

- Extrapolation -

Binding Energy ⁸He

- CC Theory: Add Triples Correction -

```
Hilbert space: 15 major shell Values in MeV
```

Λ	E[CCSD]	E[Lambda-CCSD(T)]	Δ
$1.8 \\ 2.0 \\ 2.4$	-30.33 -28.72 -25.88	-31.21 -29.84 -27.54	$0.88 \\ 1.12 \\ 1.66$

• Triples corrections are larger for larger cutoff

• Their relative effect goes from 3 to 6%

Binding Energy Summary

Binding Energy Summary

Binding Energy Summary

- For cutoff 2.0 fm⁻¹ ⁴He and ⁶He are close to experiment, but ⁸He is under-bound
- Low momentum 3NF are overall repulsive in s-shell nuclei and nuclear matter, but two-pion exchange c_i are attractive in ⁴He and could provide further attractive spin-orbit (LS) contributions for the halo neutrons

April 29 2010

Results for radii

Radii for ⁶He - Matter radius -

$$r^{2} = \frac{1}{A^{2}} \sum_{i < j} (r_{i} - r_{j})^{2} = \frac{1}{A} \rho^{2} \longrightarrow \text{rms radius} = \sqrt{\langle r^{2} \rangle}$$

• Convergence in HH expansion is slow!

Radii for ⁶He

- Matter and proton radius -

Introducing EIHH

$$P_{a} \begin{array}{c} P_{a} \\ P_{eff} \end{array} \begin{array}{c} Q_{a} \\ 0 \end{array}$$

9.0

a < A(a = 2)

Solve an a-body problem Find $H^a_{eff} \rightarrow v^{[a]eff}_{ij}$ Use it into the A-body problem

A=3

 $V = \sum v_{ij}^{[2]eff}$

14

κ

16

18

Increase the model space in the A-body problem

 For local potentials with a hard core Barnea et al. PRC 61 (2000) 054001 8.5 0.8 [MeV] MN effective Can be extended to nonlocal forces 7.5 MN bare asymptotic value Barnea et al., in preparation 70 0 2 6 4 8 10 12

(a)

20 22

EIHH on ⁴He

EIHH on ⁶He

⁸He with HH

⁸He with HH

⁸He with HH

- Large Hilbert space ->small model space dependence
- Point-proton radius is smaller than matter radius \Rightarrow halo structure
- Operators are not translational invariant

Matter radii Summary

• Benchmark on ⁴He, CC using translational invariant operators $\Lambda = 2.0 \text{fm}^{-1}$ HH 1.434 fm $\Lambda - \text{CCSD}(T)$ 1.429 fm

Matter radii Summary

• Benchmark on ⁴He, CC using translational invariant operators

 $\Lambda = 2.0 \text{fm}^{-1}$ HH 1.434 fm $\Lambda - \text{CCSD}(T)$ 1.429 fm

Matter radii Summary

• Benchmark on ⁴He, CC using translational invariant operators

 $\Lambda = 2.0 \text{fm}^{-1}$ HH 1.434 fm $\Lambda - \text{CCSD}(T)$ 1.429 fm

Proton radii Summary

Proton radii Summary

Proton radii Summary

 The fact that for some "choice" of the NN force one gets correct radii and wrong energies (or vice-versa) shows that halo nuclei provide important tests of the different aspects of nuclear forces, which includes 3NF

- We provide improved description of helium halo nuclei from evolved EFT interactions with the correct asymptotic in the wave function
- We estimate the effect of short range three-nucleon forces on binding energies and radii by varying the cutoff of the evolved interaction
- Our matter radii agree with experiment whereas our point-proton radii under-predict experiment

Future:

- Include three-nucleon forces
- Extend coupled cluster theory calculations to heavier neutron rich nuclei, e.g. lithium
 ¹¹Li or oxygen isotope chain

April 29 2010