

Kristina D. Sviratcheva

J. P. Draayer, T. Dytrych, C. Bahri (LSU)

Thanks also to:

J. P. Vary (ISU), R. Furnstahl (OSU),

R. Roth (TU Darmstadt), S. Bogner (MSU)

Effective Field Theories and the Many-Body Problem, INT, 04/01/2009 Louisiana State University

Similarity Renormalization Group and V_{NN}

Bare interaction

$$(V_{NN}, V_{NNN}, \ldots)$$
$$H_{s=0}$$

Unitary transformations Renormalized interaction

 H_{s}

 $\lambda = \frac{1}{\sqrt{s}}$

$$H_s = e^{s\eta} H_{s=0} e^{-s\eta}$$

s ... 'flow parameter'

'flow equation' $\frac{dH_s}{ds} = [\eta, H_s] \qquad \eta = [O, H_s]$

Effective Field Theories and the Many-Body Problem, INT, 04/01/2009 Role of Symmetries in SRG II

Body Problem, INT, 04/01/2009

Role of Symmetries in SRG Transformations of NN interactions

Symplectic Sp(3, R)) Su(3) Mars' Deímos

Intrinsic nucleon dynamics reflected in shape deformation, irrelevant of the orientation in space

Effective Field Theories and the Many-Body Problem, INT, 04/01/2009 Role of Symmetries in SRG III

Choice of the SRG-generator: Is it vital?
Bare interaction

$$(V_{NN}, V_{NNN}, ...)$$

 $H_{s=0}$
 $H_s = e^{s\eta}H_{s=0}e^{-s\eta}$
 $Interaction$
 H_s
 $Interaction$
 H_s
 $Interaction$
 H_s
 $Interaction$
 H_s
 $Interaction$
 $Interaction Interaction Interactio$

Choice of the SRG-generator: Is it vital?
Bare interaction

$$(V_{NN}, V_{NNN}, ...)$$

 $H_{s=0}$
 $H_{s=0}$

J.P. Draayer and G. Rosensteel, Nucl. Phys. A 439 (1985) 61

Effective Field Theories and the Many-Body Problem, INT, 04/01/2009

Role of Symmetries in SRG III

Detecting the Many-body Forces: Integrity Basis $\begin{bmatrix} X_i, C_2^{su(3)} \end{bmatrix} = 0$ $H_D(s) = \alpha(s)C_{su(3)}^{(2)} + \beta(s)\{X\}^n$ $\{X\}^n : 1, X_i, X_i^2, \dots, X_i^n$		
$X_{i}X_{j},,X_{i}^{p}X_{j}^{n-p},,(X_{i}^{p}X_{j}^{q}X_{k}^{r})$ •Linearly dependent •Expressed in terms of a set of SU(3) preserving operators		
many-body integrid dimensitionsintegrid dimensition0112345162	ty basis ion (S=0) 1 1 3 5 9 13 22	 SRG-induced 2<i>N</i>+3<i>N</i>+4<i>N</i> (<i>S</i>=0): 19 SU(3) preserving operators [analytic MEs] G-induced dominating many-body forces can be tracked during the evolution

$$\frac{dH_{s}}{ds} = \left[\left[C_{2}^{su(3)}, H_{s} \right], H_{s} \right]$$

$$\frac{dH_{s}}{ds} = \left[\left[C_{2}^{su(3)}, H_{s} \right], H_{s} \right]$$

$$\frac{d}{ds} V^{\omega_{0}S_{0}T_{0}} = \left[\left[C_{2}^{(00)00}, V^{\omega_{1}S_{1}T_{1}} \right]^{\omega_{1}S_{1}T_{1}}, V^{\omega_{2}S_{2}T_{2}} \right]^{\omega_{0}S_{0}T_{0}} \quad \omega = (\lambda \mu)$$

$$\langle n_{1}n_{2}...n_{A}(\lambda \mu)ST \| V^{\omega_{0}S_{0}T_{0}} \| n_{1}'n_{2}'...n_{A}'(\lambda' \mu')S'T' \rangle$$

$$V^{\omega_{1}S_{1}T_{1}} \times V^{\omega_{2}S_{2}T_{2}}$$

Effective Field Theories and the Many-Body Problem, INT, 04/01/2009

$$\frac{dH_{s}}{ds} = \left[\left[C_{2}^{su(3)}, H_{s} \right], H_{s} \right]$$

$$\frac{dH_{s}}{ds} = \left[\left[C_{2}^{su(3)}, H_{s} \right], H_{s} \right]$$

$$\frac{d}{ds} V^{\omega_{0}S_{0}T_{0}} = \left[\left[C_{2}^{(00)00}, V^{\omega_{1}S_{1}T_{1}} \right]^{\omega_{1}S_{1}T_{1}}, V^{\omega_{2}S_{2}T_{2}} \right]^{\omega_{0}S_{0}T_{0}} \quad \omega = (\lambda \mu) \right]$$

$$\left\langle n_{1}n_{2}...n_{A}(\lambda \mu)ST \right\| V^{\omega_{0}S_{0}T_{0}} \left\| n_{1}'n_{2}'...n_{A}'(\lambda' \mu')S'T' \right\rangle$$
What are the dimensions of such matrices?
$$V^{\omega_{1}S_{1}T_{1}} \times V^{\omega_{2}S_{2}T_{2}}$$

Effective Field Theories and the Many-Body Problem, INT, 04/01/2009 Role of Symmetries in SRG Transformations of NN interactions

Body Problem, INT, 04/01/2009

Number of SU(3)XSU_S(2) 2N, 3N, 4N Tensors

Effective Field Theories and the Many-Body Problem, INT, 04/01/2009 Role of Symmetries in SRG III

Summary

> Symmetries are found essential in interactions/many-body systems

- We suggest use of SU(3) basis together with the second-order SU(3) invariant as the evolution operator for the SRG approach
- SRG in SU(3) basis appears to be a very effective scheme for renormalization of the NN interaction: C₂ is a good choice--physically relevant/ weak many-body forces expected
- SU(3)-coupled SRG: possible to be applied in 3-b and 4-b SU(3)coupled basis and track many-body forces (integrity basis)
- Particularly suitable for the Sp-NCSM