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MotivationMotivation

For The Greater Good

● connection to QCD

● all the current ab initio few- and many-body methods have limitations

● need for reliable methods to extrapolate outside the valley of stability

For the NCSM:
 different types of interaction (motivates the cluster 

approximation)
 can mitigate the long- and short-range degrees of freedom 

(better description of long-range observables)

The nuclear physics problem:
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NCSMNCSM

all particles are allowed to interact
energy truncation in a HO basis (P&Q spaces)
effective interaction constructed via a unitary transformation (energy 
independent, hermitian)
“cluster approximation”
short-range effects accounted by the effective interaction
long-range and many-body effects accounted by increasing the model space
quite successful in describing low-energy properties of light nuclei

2n+ l + 2n0 + l0 · Nmax 2n1 + l1 + 2n2 + l2 + 2n3 + l3 · Nmax



WINT, June 3, 2009 INT, June 3, 2009 

The nuclear many-body problemThe nuclear many-body problem

trapped fermions
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EFTEFT

Original motivation: to understand the gross features of nuclear 
systems from a QCD perspective.

● separation of scales: if ρ=kr
0
<<1 then expand all the observables in powers of  ρ.

● captures relevant degrees of freedom (integrates out high momenta)
●

 
long-distance physics included explicitly

● short-distance physics added as corrections in powers of relevant scales present 
in the problem (e.g., for NN interaction at low momentum, r

0
/a

0
)

● general application to other systems (nucleon-core interactions, clustering effects)

EFT approach:
 identify relevant degrees of freedom
 identify symmetries
 write the most general Lagrangian (infinite number of terms)
 organize the interaction (power counting)
 results are improvable order by order and model independent.
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Interaction renormalizationInteraction renormalization

Unitary transformation (Lee-Suzuki)
[Navratil et. al.]

Effective Field Theory in HO basis
[Stetcu et. al.]

(preserves lowest D eigenvalues of h)

● form of interaction preserved
● the coupling constants 
   adjusted in each model space 
   to reproduce some observables

preserve the form of the interaction
(power counting)

HERE WE COMBINE BOTH APPROACHES

adjust C
0
 's to reproduce as many

eigenvalues (but no unitary transformation)

truncation introduces many-body forces truncation introduces higher-order terms

from addition of the CM term
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Two-body problem in harmonic trapTwo-body problem in harmonic trap

T. Stöferle et. al., Phys. Rev. Lett. 96 (2006) 030401

T. Busch et. al., Found. Phys. 28 (1998) 549
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LO renormalization in a finite basisLO renormalization in a finite basis
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Beyond LOBeyond LO
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Running of two-body spectra: no rangeRunning of two-body spectra: no range
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Running of the two-body spectra w/ rangeRunning of the two-body spectra w/ range
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Two-body problem: other approachesTwo-body problem: other approaches

Alhassid, Bertsch, Fang, PRL 100 (2008) 230401: separable interaction 
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Three-body solution at unitarityThree-body solution at unitarity

Solve the free Schrodinger Eq. w/ boundary condition:

F. Werner and Y. Castin, Phys. Rev. Lett. 97, 150401 (2006)
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Three-body problem up to NThree-body problem up to N22LOLO

b
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LO order inversionLO order inversion

LO: wrong ordering
NLO and N2LO: restore the correct ordering
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Comparison w/ other approaches Comparison w/ other approaches 

b=a2 = 0
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Three-body results away from unitarityThree-body results away from unitarity

Untrapped particle limit:

three-particle energy:

three fermions

n o  in te ra c tio n  lim it

u n tra p p e d  lim it

E ' ¡ 1

2¹a22

b=a2 ! 1

Ste tc u  e t. a l.,  Ph ys .Re v . A 7 67 6  (2 0 0 7 )  0 6 3 6 1 3

fit to:E=! = ®b2 + ¯b+ °

(no collapse)
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Summary and outlookSummary and outlook

● Applications of EFT principles directly into a many-body method

● Renormalization of the interaction intimately related with the model space 

used to solve the many-body problem

● Only LO iterated to all orders, beyond LO treated in PT

● Future applications to more particles (M-scheme) and to the nuclear 

problem
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