

EFT for the (NC)SM practitioner

applications to trapped atoms

IONEL STETCU

Department of Physics University of Washington

UA: J. Rotureau, B.R. Barrett, U. van Kolck UM: M. Birse

Phys. Lett. **B653** (2007) 358 Phys. Rev. A **76** (2007) 063613

Effective Field Theories and the Many-Body Problem, INT-09-1 (2009)

Outline

Motivation

- **Few- and Many-Body Method: NCSM**
- **Formulation of EFT in a HO Basis:**
	- \star Renormalization of the two-body interactions up to N²LO
	- **★ Comparison with other methods**
	- \star Extension to include range
	- \star Three-body problem
- **Summary and Outlook**

Motivation

The nuclear physics problem:

- connection to QCD
- all the current ab initio few- and many-body methods have limitations
- need for reliable methods to extrapolate outside the valley of stability

For the NCSM:

different types of interaction (motivates the cluster approximation)

can mitigate the long- and short-range degrees of freedom (better description of long-range observables)

For The Greater Good

NCSM

- all particles are allowed to interact
- **E** energy truncation in a HO basis (P&Q spaces)
- **E** effective interaction constructed via a unitary transformation (energy independent, hermitian)
- *C* "cluster approximation"
- **short-range effects accounted by the effective interaction**
- **If** long-range and many-body effects accounted by increasing the model space
- *quite successful in describing low-energy properties of light nuclei*

$$
\overrightarrow{r}_{1}
$$
\n
$$
\overrightarrow{\xi}_{1}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{1}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{1}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{1}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{1}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{1}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$
\n
$$
\overrightarrow{\xi}_{1}
$$
\n
$$
\overrightarrow{\xi}_{2}
$$

The nuclear many-body problem

$$
H_{int} = \frac{1}{A} \sum_{i>j=1}^{A} \frac{(\vec{p_i} - \vec{p_j})^2}{2m} + \sum_{i>j=1}^{A} V_{ij} + \sum_{i>j>k=1}^{A} V_{ijk} + \dots
$$

$$
H = H_{int} + \frac{\vec{P}_{CM}^2}{2mA} + \frac{1}{2}mA\omega^2 \vec{R}_{CM}^2
$$
 Lipkin 1958

$$
= \sum_{i=1}^{A} \left(\frac{p_i^2}{2m} + \frac{1}{2}m\omega^2 r_i^2\right) + \sum_{i < j = 1}^{A} \left(V_{ij} - \frac{m\omega^2}{2A}(\vec{r}_i - \vec{r}_j)^2\right) + \sum_{i < j < k = 1}^{A} V_{ijk} + \dots
$$

$$
H_A = \sum_{i=1}^{A} \left(\frac{p_i^2}{2m} + \frac{1}{2}m\omega^2 r_i^2\right) + C_0 \sum_{i=1}^{A} \delta^{(3)}(\vec{r}_i - \vec{r}_j)
$$
 trapped fermions

$$
-\sum_{i=1}^{\infty} \left(\frac{1}{2m} + \frac{1}{2} m \omega_{i} \right) + C_0 \sum_{i < j=1}^{\infty} \omega_{i} (i_{i} - i_{j}) \quad \text{independent}
$$
\n
$$
a_0(^1S_0) \approx -20 \text{ fm}
$$
\n
$$
a_0(^3S_1) \approx 5 \text{ fm}
$$
\nINT, June 3, 2009

EFT

Original motivation: to understand the gross features of nuclear systems from a QCD perspective.

- separation of scales: if ρ =kr_o<<1 then expand all the observables in powers of ρ .
- captures relevant degrees of freedom (integrates out high momenta)
- long-distance physics included explicitly
- short-distance physics added as corrections in powers of relevant scales present in the problem (e.g., for NN interaction at low momentum, $\sf r_o/a_o)$
- general application to other systems (nucleon-core interactions, clustering effects)

EFT approach:

- \star identify relevant degrees of freedom
- \star identify symmetries
- \star write the most general Lagrangian (infinite number of terms)
- \star organize the interaction (power counting)
- results are *improvable* order by order and *model independent*.

Interaction renormalization

truncation introduces many-body forces truncation introduces higher-order terms

HERE WE COMBINE BOTH APPROACHES

adjust $\textsf{C}_{_{\textrm{0}}}$'s to reproduce as many eigenvalues (but *no* unitary transformation) preserve the form of the interaction (power counting)

Two-body problem in harmonic trap

In the following, our underlying theory is the pseudopotential

LO renormalization in a finite basis

$$
V_{LO}(\vec{p}, \vec{p}') = C_0
$$

\n
$$
\psi(\vec{r}) = \sum_{n=0}^{N_{max}/2} A_n \phi_n(\vec{r})
$$

\n
$$
\left(\frac{p^2}{2\mu} + \frac{1}{2}\mu\omega^2 r^2 + C_0(N_{max})\delta(\vec{r})\right) \psi(\vec{r}) = \varepsilon \omega \psi(\vec{r})
$$

\n
$$
\psi(\vec{r}) = \sum_{N_{max}}^{6.9} \phi_N(\vec{r}) \psi(\vec{r})
$$

Fix $C_{_0}$ to reproduce one observable, the others are predictions

INT, June 3, 2009
$$
\left(\frac{p^2}{2\mu} + \frac{1}{2}\mu\omega^2 r^2\right)\phi_n(\vec{r}) = (2n + 3/2)\omega\phi_n(\vec{r})
$$
 W

Beyond LO

 $+ \langle \psi_n | C_2^{(1)}$ $\varphi^{(1)}_2(p^2+p'^2)+C_0^{(2)}$ $\int_0^{(2)} \lvert \psi_n \rangle$ $+ \langle \psi_n | C_4^{(1)} \rangle$ $\psi_4^{(1)}(p^2+p^{\prime 2})^2|\psi_n\rangle$

INT, June 3, 2009 W

Running of two-body spectra: no range

Running of the two-body spectra w/ range

Two-body problem: other approaches

Alhassid, Bertsch, Fang, PRL **100** (2008) 230401: separable interaction

$$
V_{nn'}^q = -f_n^q f_{n'}^q
$$
\n
$$
\sum_{n=0}^q \frac{f_n^2}{2n + 3/2 - \varepsilon_r} = 1, \quad r = 0, ..., q
$$

M. Birse: fixed-point potential:

$$
V(\varepsilon;\vec{r})=C(\varepsilon,N_{max})\,\delta(\vec{r})
$$

$$
\frac{1}{C(\varepsilon, N_{max})} = \frac{1}{C_0(N_{max})} - \sum_{n=N_{max}/2+1}^{\infty} \left(\frac{1}{2n + 3/2 - \varepsilon_0} - \frac{1}{2n + 3/2 - \varepsilon} \right)
$$

$$
\psi(\vec{r}) = \sum_{n=0}^{N_{max}/2} A_n \phi_n(\vec{r}) \qquad H\psi(\vec{r}) = \varepsilon \psi(\vec{r})
$$

Solve the free Schrodinger Eq. w/ boundary condition:

$$
\psi(\vec{r}_1, \vec{r}_2, \vec{r}_3) = \left(\frac{1}{r_{ij}} - \frac{1}{a_2}\right) A(\vec{R}_{ij}, r_k) + \mathcal{O}(r_{ij})
$$

$$
E = E_{c.m.} + (s_{l,n} + 1 + 2q)\omega
$$

F. Werner and Y. Castin, Phys. Rev. Lett. **97**, 150401 (2006)

Three-body problem up to N²LO

 $L^{\pi}{=}1$

LO order inversion

LO: wrong ordering NLO and N²LO: restore the correct ordering

Comparison w/ other approaches

Three-body results away from unitarity

Ste tcu e t. al., $\mathscr{P}h$ ys. \mathscr{R}_{g} v. $\mathscr{H}76$ (2007) 063613

n o in te ra c tio n lim it

Summary and outlook

- Applications of EFT principles directly into a many-body method
- Renormalization of the interaction intimately related with the model space used to solve the many-body problem
- Only LO iterated to all orders, beyond LO treated in PT
- Future applications to more particles (M-scheme) and to the nuclear problem