Coupled-cluster theory for medium-mass nuclei Tentative solution of the center-of-mass problem

Thomas Papenbrock

and OAK RIDGE NATIONAL LABORATORY

- G. Hagen (ORNL)
- D. J. Dean (ORNL)
- M. Hjorth-Jensen (Oslo)
- B. Velamur Asokan (ORNL)

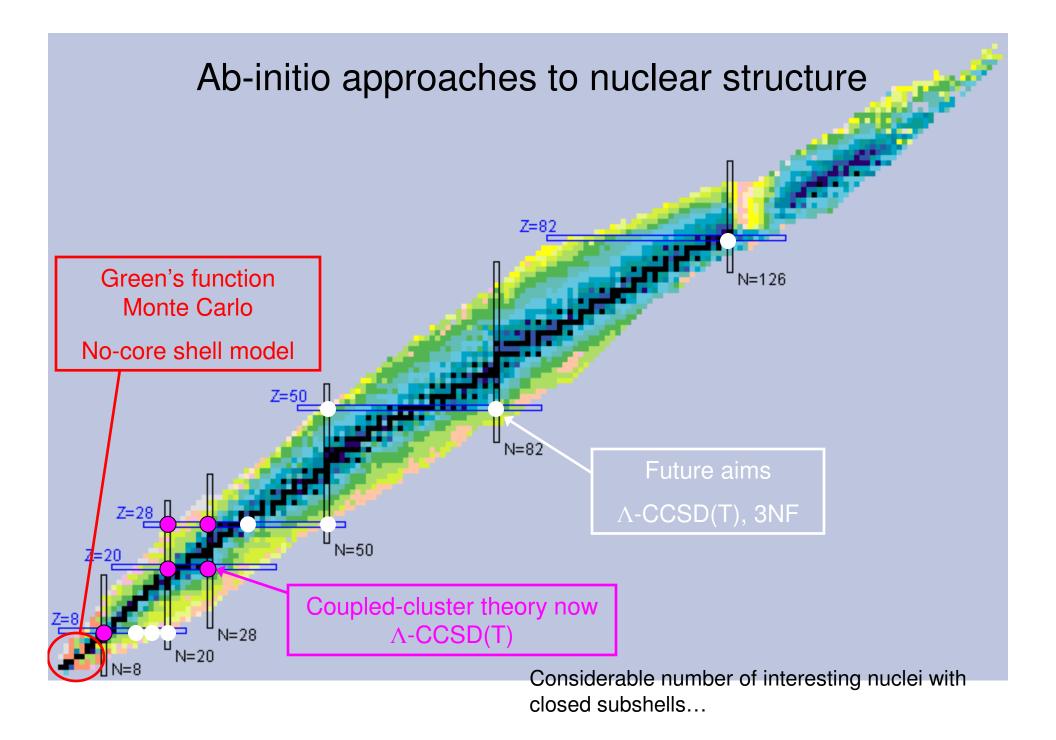
Effective field theories and the many-body problem

INT, Seattle, May 18 2009

Research partly funded by the US Department of Energy

Overview

- 1. Introduction
- 2. Solution to the center-of-mass problem
- 3. Does ²⁸O exist?



Coupled-cluster theory (CCSD)

Ansatz:

$$|\Psi\rangle = e^{T}|\Phi\rangle$$

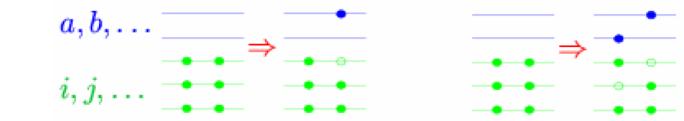
$$T = T_{1} + T_{2} + \dots$$

$$T_{1} = \sum_{ia} t_{i}^{a} a_{a}^{\dagger} a_{i}$$

$$T_{2} = \sum_{ijab} t_{ij}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i}$$

- Scales gently (polynomial) with increasing problem size o²u⁴.
- © Truncation is the only approximation.
- © Size extensive (error scales with A)

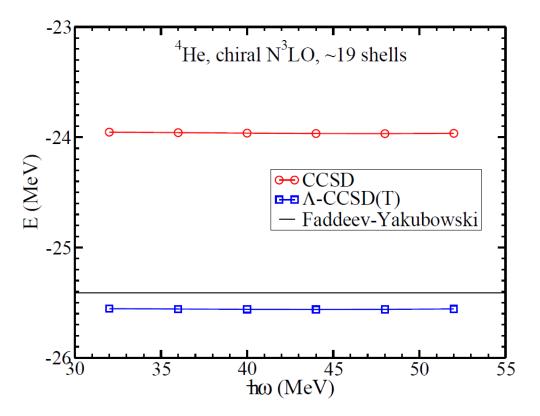
Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of np-nh excitations included!



Coupled cluster equations $E = \langle \Phi | \overline{H} | \Phi \rangle$ $0 = \langle \Phi_i^a | \overline{H} | \Phi \rangle$ $0 = \langle \Phi_{ij}^{ab} | \overline{H} | \Phi \rangle$ $\overline{H} \equiv e^{-T} H e^T = \left(H e^T \right)_c = \left(H + HT_1 + HT_2 + \frac{1}{2} HT_1^2 + ... \right)_c$

Test of accuracy: ⁴He from a chiral N³LO [Enterm & Machleidt]

Please note: The full potential is iterated within coupled-cluster



- 1. Results exhibit practically no dependence on the employed model space.
- 2. The coupled-cluster method, in its Λ -CCSD(T) approximation, overbinds by 150keV.
- 3. Independence of model space of N major oscillator shells with frequency ω :

 $N\hbar\omega > \hbar^2\lambda^2/m$ to resolve momentum cutoff λ

 $\hbar\omega < N\hbar^2/(mR^2)$ to resolve nucleus of radius R

Center-of-mass coordinate

The nuclear Hamiltonian is invariant under rotations and translations

Approach that preserves both symmetries:

☺ Jacobi coordinates

 \otimes Antisymmetrization scales as A! \rightarrow limited to A<8 or so.

Antisymmetrization best dealt within second quantization:

⊗ No single-particle basis available that consists of simultaneous eigenstates of the angular momentum operator and the momentum operator.

 \odot Within a complete Nh ω oscillator space, the wave function is guaranteed to factorize

$$\psi = \psi_{\rm cm} \psi_{\rm in}$$

Intrinsic wave function ψ_{in} invariant under translation

Center-of-mass wave function ψ_{cm} is Gaussian whose width is set by the oscillator length of the employed oscillator basis

Please note: The factorization is key. The form of ψ_{cm} is irrelevant. It only needs to be the ground state of a suitably chosen center-of-mass Hamiltonian.

Center-of-mass coordinate (cont'd)

Intrinsic nuclear Hamiltonian $H_{\text{in}} = T - T_{\text{cm}} + V$, $= \sum_{1 \le i < j \le A} \left(\frac{(\vec{p_i} - \vec{p_j})^2}{2mA} + V(\vec{r_i} - \vec{r_j}) \right)$

Obviously, H_{in} commutes with <u>any</u> center-of-mass Hamiltonian H_{cm} .

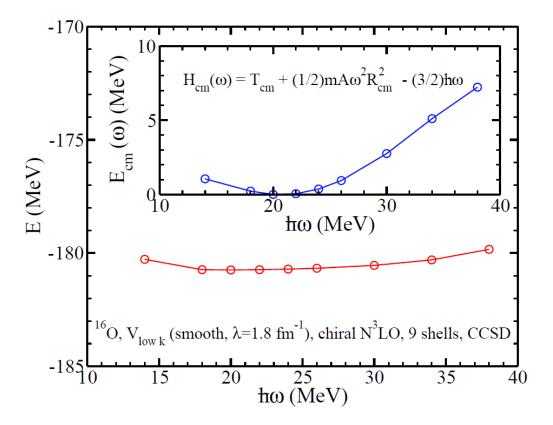
Please note:

- 1. To demonstrate the factorization, one (only) needs to find a suitable center-of-mass Hamiltonian whose ground state is ψ_{cm} .
- 2. NCSM employs harmonic oscillator Hamiltonian for H_{cm}
- 3. Of course:

Factorization can be guaranteed analytically in an Nh ω oscillator space.

Not working in such a space does not imply absence of factorization.

¹⁶O with V_{lowk} (1.8/fm, smooth) within CCSD



1. Hartree-Fock basis used. Not an $N\hbar\omega$ space

- 2. Ground-state energy varies little with frequency of oscillator basis.
- 3. Ground-state energy obviously independent of center-of-mass energy.
- 4. Center-of-mass energy generally nonzero → coupled-cluster wave function not eigenstate of H_{cm}(ω). [Beware of misconception: this does not imply that the wave function does not factorize.]

However:

- 1. Center-of-mass energy $E_{cm}(\omega) \equiv \langle H_{cm}(\omega) \rangle$ does vanish at $\hbar \omega \approx 20 \text{MeV}$
- 2. At $\hbar\omega \approx 20$ MeV, the coupled-cluster wave function factorizes
- 3. Approximate constancy of energy suggests approximate factorization for range of frequencies.
- 4. What is ψ_{cm} ?

Determination of $\psi_{\rm cm}$

Assumption: ψ_{cm} is (approximately) a Gaussian for all model-space frequencies

• Gaussian center-of-mass wave function is the zero-energy ground state of

$$H_{\rm cm}(\tilde{\omega}) = T_{\rm cm} + \frac{1}{2}mA\tilde{\omega}^2 R_{\rm cm}^2 - \frac{3}{2}\hbar\tilde{\omega}$$

• Determine unknown frequency from from taking expectation value of identity

$$H_{\rm cm}(\omega) + \frac{3}{2}\hbar\omega - T_{\rm cm} = \frac{\omega^2}{\tilde{\omega}^2} \left(H_{\rm cm}(\tilde{\omega}) + \frac{3}{2}\hbar\tilde{\omega} - T_{\rm cm} \right)$$

• Use

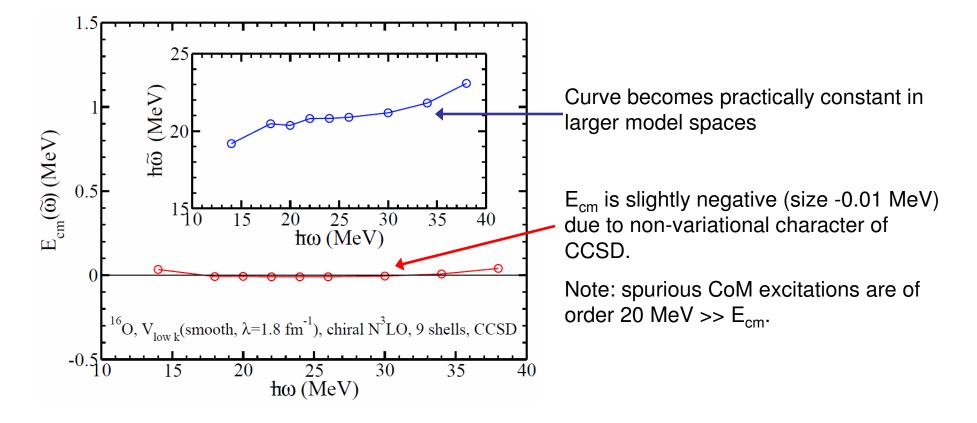
$$E_{\rm cm}(\tilde{\omega}) = 0$$

$$\langle T_{\rm cm} \rangle = \frac{3}{4}\hbar\tilde{\omega}$$

Two possible solutions

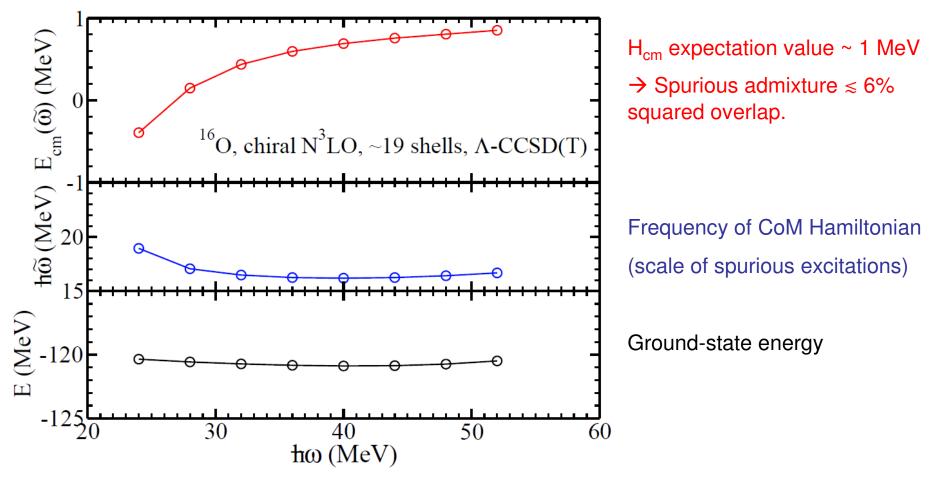
$$\hbar\tilde{\omega} = \hbar\omega + \frac{2}{3}E_{\rm cm}(\omega) \pm \sqrt{\frac{4}{9}(E_{\rm cm}(\omega))^2 + \frac{4}{3}\hbar\omega E_{\rm cm}(\omega)}$$

Coupled-cluster wave function factorizes to a very good approximation!



Coupled-cluster state is ground state of suitably chosen center-of-mass Hamiltonian. Factorization between intrinsic and center-of-mass coordinate realized within high accuracy. Note: Both graphs become flatter as the size of the model space is increased.

Factorization also for harder interactions: ¹⁶O from Entem & Machleidt's chiral N³LO



Coupled-cluster wave function factorizes approximately. Note: spurious states are separated by about 16MeV >> E_{cm} . No solid understanding of Gaussian CoM wave function (yet).

Intermission

- 1. Numerical evidence for factorization of coupled-cluster wave function as product of intrinsic and CoM wave function.
- 2. CoM wave function is approximate Gaussian whose frequency is not identical to the underlying oscillator basis
- 3. Simple procedure yields frequency of Gaussian CoM wave function
- 4. Results can be checked (and utilized?) by NCSM

Arguments you might have heard (?)	More precise (and correct) statement
Only an Nħω space can provide a separation of intrinsic and center-of-mass coordinates	In an Nħω space, the separation of intrinsic and center-of-mass coordinates is guaranteed
A nonzero expectation value of H _{cm} indicates center-of-mass problems	State in question is not an eigenstate of this particular center-of-mass Hamiltonian. Does not address question of factorization.
Method X breaks translational invariance	Everyone does (since wave function not eigenstate of total momentum). The question is whether method X can factorize into intrinsic and CoM state

Neutron drip line in oxygen isotopes

Experimental situation

- "Last" stable oxygen isotope ²⁴O
- ²⁵O unstable (Hoffman et al 2008)
- ^{26,28}O not seen in experiments
- ³¹F exists (adding on proton shifts drip line by 6 neutrons!?)

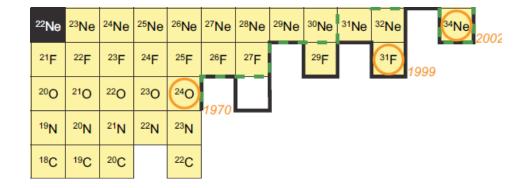
Theoretical situation

- USD interaction predicts stable ^{26,28}O
- sf-pf shell calculation can reproduce data only after adjusting TBME (Otsuka et al.)
- Shell-model w/ continuum couplings employs two different interactions for oxygen isotopes near and far away from b-stability to reproduce data (Volya & Zelevinsky)

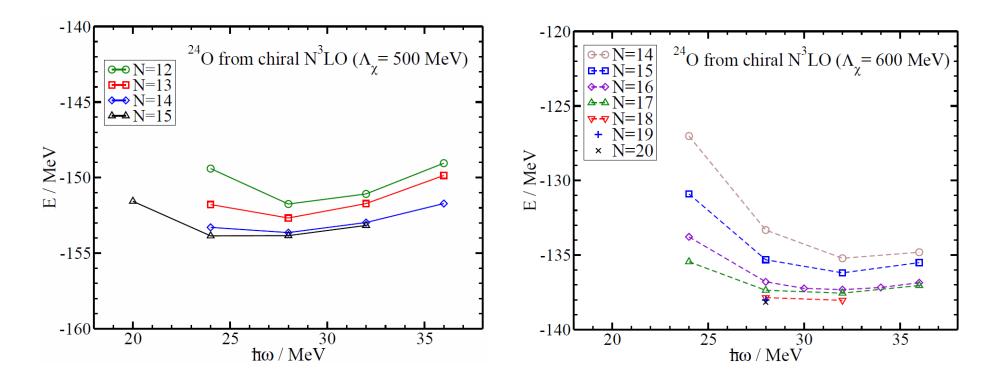
It seems that most theoretical papers rule out a stable ²⁸O

Theory has obvious difficulty due to uncertainties in the effective interaction, and the difficulty to quantify the resulting errors.

 \rightarrow ab-initio calculations: coupled-cluster can address closed sub-shell nuclei ^{22,24,28}O with chiral interactions; study cutoff dependence



Neutron-rich oxygen isotopes



 Λ =500 MeV potential converges in about 15 major oscillator shells Λ =600 MeV potential converges in about 20 shells

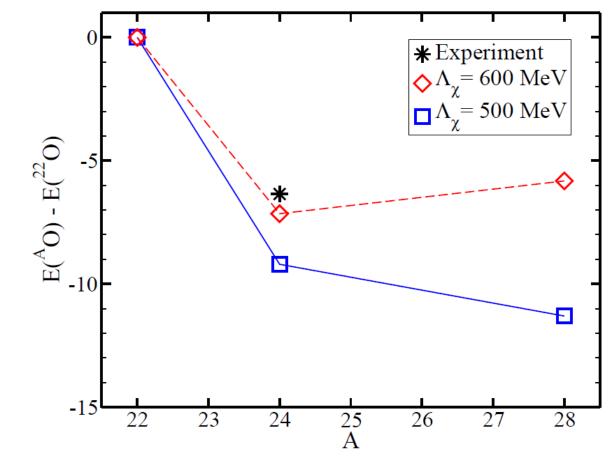
Summary of preliminary results

Energies	¹⁶ O	²² O	²⁴ O	²⁸ O	
$(\Lambda_{\chi} = 500 \text{ MeV})$					
E_0	24.11	50.37	56.19	71.58	
$\Delta E_{\rm CCSD}$	-144.77	-175.79	-190.39	-207.67	~90% of correlation energy
ΔE_3	-13.31	-19.22	-19.64	-19. 8 5	~10% of correlation energy
E	-120.66	-144.64	-153.84	-155.94	
$(\Lambda_{\chi} = 600 \text{ MeV})$					
E_0	22.08	46.33	52.94	68.57	
$\Delta E_{\rm CCSD}$	-119.04	-156.51	-168.49	-182.42	
ΔE_3	-14.95	-20.71	-22.49	-22.86	
E	-111.91	-130.89	-138.04	-136.71	
Experiment	-127.62	-162.03	-168.38		

Estimate of theoretical uncertainties:

- 1. Finite model space ≲2MeV
- 2. Truncation at triples clusters ~2MeV (educated guess)
- 3. Omission of three-nucleon forces (cutoff dependence) ~15MeV

Is ²⁸O bound relative to ²⁴O?



Too close to call. Theoretical uncertainties >> differences in binding energies.

Entem & Machleidt's chiral potentials different from G-matrix-based interactions. Ab-initio theory cannot rule out a stable ²⁸O.

Three-body forces largest potential contribution that decides this question.

Summary and outlook

Medium-mass nuclei:

 Demonstration that coupled-cluster wave function factorizes into product of intrinsic and center-of-mass state.

Neutron-rich oxygen isotopes:

- Ab-initio theory cannot rule out a stable ²⁸O
- Greatest uncertainty from omitted three-nucleon forces