Lawrence Livermore National Laboratory

From EFT interactions to a unified *ab initio* description of light nuclei

Petr Navratil (LLNL) Collaborators: Sofia Quaglioni (LLNL), Robert Roth (TU Darmstadt), V. Gueorguiev (UC Merced), J.P. Vary (ISU), W.E. Ormand (LLNL), A. Nogga (Julich), D. Gazit (INT) INT Program on Effective Field Theory and the Many-body Problem, 4/8/2009

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Outline

- Motivation
- Chiral NNN interactions and NCSM
- Determination of chiral NNN LECs c_D and c_E
 - A=3 binding energy
 - A=4 binding energy and radius
 - ¹⁰B states
 - Triton half life
- *p*-shell results with chiral NN+NNN
- Scattering and coupling to continuum: Combining NCSM and RGM
 - *n*-⁴He
 - *p*-¹²C
 - *n*-¹⁶O
- Outlook

Low-Energy nuclear physics

Overarching goal:

To arrive at a comprehensive and unified microscopic description of all nuclei and their low-energy reactions from the basic interactions between the constituent protons and neutrons

- This is an ambitious goal
 - Nuclei are self-bound, quantum many-fermion system
 - Complicated interaction with at least two- and three-nucleon components
 - Bound states, resonances, scattering states

Our goal is to arrive at an *ab initio* picture for light nuclei and their reactions

Lawrence Livermore National Laboratory

Bound-state techniques not sufficient

Where do we start?

- Quantum chromodynamics (QCD) is the underlying theory for the strong interaction
 - Lattice QCD calculations are too difficult to do complex nuclei
 - They are not yet capable of providing an accurate nucleon-nucleon or three-nucleon interaction
 - But they can verify that QCD is the correct theory for the strong interaction between hadrons
- We need a theory with point-like nucleons and an interaction based on QCD
 - Effective field theory (EFT) based on the properties of QCD provides an elegant solution with broad predictive power

- Based on the symmetries of QCD
 - Degrees of freedom: nucleons + pions
 - Describes pion-pion, pion-nucleon and inter-nucleon interactions at low energies
- Systematic low-momentum expansion to a given order

- Based on the symmetries of QCD
 - Degrees of freedom: nucleons + pions
 - Describe pion-pion, pion-nucleon and inter-nucleon interactions at low energies
- Systematic low-momentum expansion to a given order

- Based on the symmetries of QCD
 - Degrees of freedom: nucleons + pions
 - Describe pion-pion, pion-nucleon and inter-nucleon interactions at low energies
- Systematic low-momentum expansion to a given order

- Based on the symmetries of QCD
 - Degrees of freedom: nucleons + pions
 - Describe pion-pion, pion-nucleon and inter-nucleon interactions at low energies
- Systematic low-momentum expansion to a given order
- Leading order (LO)
 - One-pion exchange
- NNN interaction appears at next-to-next-to-leading order (N²LO)

- Based on the symmetries of QCD
 - Degrees of freedom: nucleons + pions
 - Describe pion-pion, pion-nucleon and inter-nucleon interactions at low energies
- Systematic low-momentum expansion to a given order
- Leading order (LO)
 - One-pion exchange
- NNN interaction appears at next-to-next-to-leading order (N²LO)
- NNNN interaction appears at N³LO order.

- Based on the symmetries of QCD
 - Degrees of freedom: nucleons + pions
 - Describe pion-pion, pion-nucleon and inter-nucleon interactions at low energies
- Systematic low-momentum expansion to a given order
- Leading order (LO)
 - One-pion exchange
- NNN interaction appears at next-to-next-to-leading order (N²LO)
- NNNN interaction appears at N³LO order
- Consistency between NN, NNN and NNNN terms
 - NN parameters enter in the NNN terms etc.

- Based on the symmetries of QCD
 - Degrees of freedom: nucleons + pions
 - Describe pion-pion, pion-nucleon and inter-nucleon interactions at low energies
- Systematic low-momentum expansion to a given order
- Leading order (LO)
 - One-pion exchange
- NNN interaction appears at next-to-next-to-leading order (N²LO)
- NNNN interaction appears at N³LO order
- Consistency between NN, NNN and NNNN terms
 - NN parameters enter in the NNN terms etc.
- Low-energy constants (LECs)
 - Low-energy theory, integrates out short-range physics
 - Only two NNN and none NNNN low-energy constants up to N³LO

The NNN interaction

The ab initio NCSM in brief

- The NCSM is a technique for the solution of the *A*-nucleon bound-state problem
- Hamiltonian (in this talk)
 - Standard high-precision nucleon-nucleon potentials:
 - Idaho chiral N³LO with 500 MeV cutoff
 - Soft low-momentum interactions
 - SRG-N³LO
 - Three-nucleon interactions:
 - Local chiral N²LO
- Finite harmonic oscillator (HO) basis
 - A-nucleon HO basis states
 - Jacobi relative coordinates
 - Cartesian single-particle coordinates
 - complete $N_{max}h\Omega$ model space
 - Translational invariance preserved even with single-particle coordinate Slater-determinant (SD) basis
- Effective interaction tailored to model-space truncation for standard potentials
 - Unitary transformation in n-body cluster approximation (n=2,3)
- Importance-truncated $N_{max} \hbar \Omega$ basis
 - Second-order many-body perturbation theory
 - Dimension reduction from billions to tens of millions
 - Access to nuclei beyond *p*-shell

³H and ⁴He with chiral interactions

• Constrain c_D , c_E to A=3 binding energy

 $c_{\rm D}$ - $c_{\rm E}$ dependence that fits A=3 binding energy

Constrain c_D , c_F to A=3 binding energy

⁴He binding energy

- Two combinations of $c_D c_E$ that fit both A=3 and ⁴He binding energies
 - ⁴He E_{qs} dependence on c_D weak
 - ⁴He and A=3 binding energies correlated

Two combinations of $c_{\rm D}$ - $c_{\rm F}$ that fit both A=3 and

- ⁴He and A=3 binding energies correlated

Constrain c_D , c_F to A=3 binding energy

 $c_{\rm D}$ - $c_{\rm F}$ dependence that fits A=3 binding energy

Lawrence Livermore National Laboratory

- Correlated with E_{as}

⁴He E_{qs} dependence on c_{D} weak

⁴He binding energy

⁴He binding energies

LLNL-PRES--412219

•

Constrain c_D , c_F to A=3 binding energy

- ⁴He binding energy
- Two combinations of $c_{\rm D}$ $c_{\rm E}$ that fit both A=3 and ⁴He binding energies
 - ⁴He E_{qs} dependence on c_{D} weak •
 - ⁴He and A=3 binding energies correlated

 $c_{\rm D}$ - $c_{\rm F}$ dependence that fits A=3 binding energy

• Constrain c_D , c_E to A=3 binding energy

Lawrence Livermore National Laboratory

LLNL-PRES--412219

 $c_{\rm D}$ - $c_{\rm E}$ dependence that fits A=3 binding energy

NNN is important for heavier *p*-shell nuclei: ¹⁰B

- ¹⁰B known to be poorly described by standard NN interaction
 - Predicted ground state 1+0 •
 - Experiment 3⁺0

NNN important for heavier *p*-shell nuclei: ¹⁰B

- ¹⁰B known to be poorly described by standard NN interaction
 - Predicted ground state 1+0
 - Experiment 3⁺ 0

NNN important for heavier *p*-shell nuclei: ¹⁰B

- ¹⁰B known to be poorly described by standard NN interaction
 - Predicted ground state 1+0
 - Experiment 3⁺0
- Chiral NNN fixes this problem

- ¹⁰B properties not correlated with A=3 binding energy
- Spectrum shows weak dependence on c_D

¹⁰B NN+NNN c_D dependence for $N_{max} = 6$, h $\Omega = 15$ MeV

- ¹⁰B properties not correlated with A=3 binding energy
- Spectrum shows weak dependence on c_D
- However: Order of 1_1^+ and 1_2^+ changes depending on c_D

Lawrence Livermore National Laboratory

- ¹⁰B properties not correlated with A=3 binding energy
- Spectrum shows weak dependence on c_D
- However: Order of 1_1^+ and 1_2^+ changes depending on c_D
 - This is seen in ratio of E2 transitions from ground state to 1⁺₁ and 1⁺₂

¹⁰B NN+NNN c_D dependence for $N_{max} = 6$, h $\Omega = 15$ MeV

- ¹⁰B properties not correlated with A=3 binding energy
- Spectrum shows weak dependence on c_D
- However: Order of 1_1^+ and 1_2^+ changes depending on c_D
 - This is seen in ratio of E2 transitions from ground state to 1⁺₁ and 1⁺₂

Lawrence Livermore National Laboratory

Determination of $c_{\rm D}$ (and $c_{\rm E}$) from the triton half life

- c_D also in the two-nucleon contact vertex with an external probe
- Calculate
 - $\langle E_1^A\rangle\!=\!|\langle^3\mathrm{He}||E_1^A||^3\mathrm{H}\rangle|$
- Leading order GT $E_1^A|_{\text{LO}} = i g_A (6\pi)^{-1/2} \sum_{i=1}^A \sigma_i \tau_i^+$
- - With the A=3 binding energy constraint a robust determination of $c_{\rm D}$ =-0.2±0.1

and <mark>c_E =-0.205±0.015</mark>

Structure of p-shell nuclei with NN+NNN interactions

- NCSM is only method capable to apply the EFT NN+NNN interactions
 - Technically challenging, large-scale computational problem
 - ~4000 processors used in ^{12,13}C calculations
- Applied to constrain the NNN interaction
 - Investigation of A=3, ⁴He and p-shell nuclei
 - Globally the best results with c_D ~ -1
- NNN interaction essential to describe structure of light nuclei

Lawrence Livermore National Laboratory

Our goal is to develop an *ab initio* theory to understand nuclear structure....

- ... and **reactions** in light nuclei
- How? Combining the *ab initio* no-core shell model (NCSM) with the resonating group method (RGM)
 - ⇒ ab initio NCSM/RGM
 - NCSM single-particle degrees of freedom
 - RGM clusters and their relative motion

- Ab initio theory of nuclear reactions for A>4 is new:
 - Lisbon: *p*+³He scattering published in 2007 (PRL 98, 162502 (2007)); *A*=4 is their limit
 - **ANL**: *n*+⁴He scattering published only recently (PRL **99**, 022502 (2007))
- Our approach: readily extendable
 - *p*-³He, *n*-⁴He & *p*-⁴He scattering already calculated
 - promising results for *p*-shell nuclei: *n*-¹⁰Be, *p*-¹²C, *n*-¹⁶O
 - Inclusion of d, ³H, ³He and α clusters under way

Preserves Pauli principle and translational invariance

Important as nucleons are fermions and nuclei self-bound

The ab initio NCSM/RGM in a snapshot

• Ansatz:
$$\Psi^{(A)} = \sum_{v} \int d\vec{r} \, \phi_{v}(\vec{r}) \hat{\mathcal{A}} \, \Phi_{v\vec{r}}^{(A-a,a)}$$
• Many-body Schrödinger equation:
• Many-body Schrödinger equation:
• $H\Psi^{(A)} = E\Psi^{(A)}$
• $T_{rel}(r) + \mathcal{V}_{rel} + \bar{V}_{Coul}(r) + H_{(A-a)} + H_{(a)}$
• $\int d\vec{r} \left[\mathcal{H}_{\mu\nu}^{(A-a,a)}(\vec{r}',\vec{r}) - E\mathcal{N}_{\mu\nu}^{(A-a,a)}(\vec{r}',\vec{r}) \right] \phi_{v}(\vec{r}) = 0$
• either bare interaction or NCSM effective interaction
• $(\Phi_{\mu\vec{r}'}^{(A-a,a)} | \hat{\mathcal{A}} H \hat{\mathcal{A}} | \Phi_{v\vec{r}}^{(A-a,a)})$
• Hamiltonian kernel

Non-local integro-differential coupled-channel equations:

$$[\hat{T}_{\rm rel}(r) + \bar{V}_{\rm C}(r) - (E - E_{\rm v})] u_{\rm v}(r) + \sum_{\rm v} \int dr' r' W_{\rm vv'}(r, r') u_{\rm v}(r') = 0$$

$$\begin{array}{c} \overset{\text{n}}{\underset{l}{120}} \\ \overset$$

Fully implemented and tested for single-nucleon projectile (nucleon-nucleus) basis

Single-nucleon projectile: the norm kernel

Single-nucleon projectile basis: the Hamiltonian kernel

$$\left\langle \begin{array}{c} (1,\ldots,A-1) \\ \bullet \\ r' \end{array} \right\rangle H \left(1 - \sum_{j=1}^{A-1} P_{jA} \right) \left| \begin{array}{c} (1,\ldots,A-1) \\ \bullet \\ r \end{array} \right\rangle$$

NCSM/RGM *ab initio* calculation of *n*-⁴He phase shifts **S**

- Similarity-renormalization-group (SRG) evolved chiral N³LO NN interaction (R. Roth)
- Low-momentum V_{lowk} NN potential
- convergence reached with bare interaction

NCSM/RGM *ab initio* calculation of *n*-³H and *p*-³He phase shifts

- NCSM/RGM calculations with $n+{}^{3}H(g.s.)$ and $p+{}^{3}He(g.s.)$, respectively.
- χEFT N³LO NN potential: convergence reached with two-body effective interaction
- Benchmark with Alt, Grassberger and Sandhas (AGS) results [PRC75, 014005(2007)]
 - What is missing? n+³H(ex), ²n+d, p-³He(ex), ²p+d configurations

The omission of three-nucleon partial waves with $1/2 < J \le 5/2$ leads to effects of comparable magnitude on the AGS results. Need to include target excited states!

n-⁴He phase shifts from SRG-evolved NN interactions

- SRG-evolved interactions (R. Roth)
 - SRG-N³LO
 - SRG-AV18
- convergence reached with bare interaction
- ⁴He states: g.s., 0⁺0
- SRG-AV18 phase shifts present unphysical oscillations

Insufficient spin-orbit strength: ${}^{2}P_{3/2}$ underestimated \rightarrow NNN needed

Lawrence Livermore National Laboratory

n+⁴He differential cross section and analyzing power

- Neutron energy of 17 MeV
 - beyond low-lying resonances
- Polarized neutron experiment at Karlsruhe
- NCSM/RGM calculations
 - *n*+⁴He(g.s,0+0)

- SRG-evolved N³LO NN potential
- Good agreement for angular distribution
- Differences for analyzing power
 - A_v puzzle for A=5?

First ever *ab initio* calculation of A_y in for a A=5 system. Strict test of inter-nucleon interactions.

p-12C scattering with SRG-N3LO NN potential

- ¹²C
 - Full NCSM up to N_{max}=8
 - IT NCSM up to N_{max}=18(!)
- ¹³N, ¹³C within the NCSM
 - 1/2⁺ state ~ 3 MeV too high
- p+¹²C
 - Experiments with a polarized proton target under way
 - NCSM/RGM up N_{max}=14 so far
 - $\ ^{12}C$ g.s. and 2+ included
 - 1/2⁻ state bound by 2.9 MeV
 - ¹³N ground state
 - Other states unbound
 - 1/2⁺ resonance at ~1.2 MeV
 - 5/2⁺ resonance
 - Good stability: Moderate changes from N_{max} =6 to N_{max} =14

-60

-90

Qualitative agreement with experiment

5/2⁻ 5/2⁺

3 E_{kin} [MeV]

2

¹⁶O ground state, ¹⁷O bound states

- ¹⁶O ground state calculated within importance-truncated NCSM
 - ≥4p-4h up to N_{max}=18 (N_{max}=22 possible!?), hΩ=24 MeV
 - SRG-N³LO with Λ =2.66 fm⁻¹
 - − Less overbinding: $E_{\infty} \approx$ -140 MeV
 - Benchmarking with full NCSM
 - ¹⁶O binding energy up to N_{max} =8
 - Perfect agreement
- ¹⁷O within *ab initio* NCSM/RGM
 - 1/2⁺ bound: *E*_b=-0.88 MeV wrt ¹⁶O
 - $5/2^+$ bound: E_b =-0.41 MeV wrt ¹⁶O
 - *N*_{max}=19, *h*Ω=24 MeV
 - Only ¹⁶O ground-state included

n-¹⁶O scattering with SRG-N³LO NN potential

- ¹⁶O ground state only
- Phase-shift convergence very good
- Essential to use large *N*_{max}
 - Target wave function
 - Expansion of shortrange parts of kernels
 - **IT NCSM** for the target makes it possible

Combining the *ab initio* NCSM/RGM with the importance-truncated NCSM highly promising. Access to medium mass nuclei.

14

1/2

 $1/2^{1}$ 3/2

3/25/2

5/21

14

16

16

n-¹⁶O scattering: Effect of ¹⁶O excited states

Lawrence Livermore National Laboratory

n-¹⁶O scattering: Open issues

- ¹⁶O excited states with the SRG-N³LO NN potential too high
 - 3⁻, 1⁻, 2⁻ calculated: ≈13.3, 15.9, 16.3 MeV
 - 3⁻, 1⁻, 2⁻ experiment: 6.13, 7.12, 8.87 MeV
 - Importance of 3-body force?
 - Density too high?
 - ¹²C+alpha not included at present

- $n+^{16}$ O with the SRG-N³LO NN potential
 - 5/2+, 1/2+ underbound
 - 1/2⁻, 5/2⁻ not bound
 - Resonances too high
 - Impact of incomplete ¹⁶O description
 - ¹³C+alpha not taken into account

The deuteron projectile: Norm kernel

Conclusions and outlook

- We are extending the *ab initio* NCSM to treat low-energy light-ion reactions
- Our recent achievements:
 - *n*-³H, *n*-⁴He, *n*-¹⁰Be and *p*-^{3,4}He scattering phase-shifts with realistic NN potentials (PRL 101, 092501 (2008))
- *n*-¹⁶O under way:
 - Breakthrough due to the importance-truncated NCSM approach
- Coming next:
 - inclusion of NNN potential terms
 - *d*, ³H and ³He, ⁴He projectiles
- Nuclei complex open many-body systems
 - Bound states, resonances, continuum
- A correct and efficient theoretical description must include all these features
 - Coupling of bound-state theory with cluster theory

Ab Initio No-Core Shell Model with Continuum

Lawrence Livermore National Laboratory

$$\begin{array}{c} (A) & \overrightarrow{r}_{A-a,a} \\ (A-a) & (A-a) \end{array} \\ \left| \Psi_{A}^{J} \right\rangle = \sum c_{\lambda} |A\lambda J\rangle + \sum \int d\vec{r} \varphi_{v}(\vec{r}) \hat{\mathcal{A}} \Phi_{v\vec{r}}^{(A-a,a)} \\ & \left(\begin{array}{c} H & h \\ h & \mathcal{H} \end{array} \right) \begin{pmatrix} c \\ \varphi \end{pmatrix} = E \begin{pmatrix} 1 & g \\ g & \mathcal{N} \end{pmatrix} \begin{pmatrix} c \\ \varphi \end{pmatrix}$$