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Outline 

  Motivation 
  Chiral NNN interactions and NCSM 
  Determination of chiral NNN LECs cD and cE  

•  A=3 binding energy 
•  A=4 binding energy and radius 
•  10B states 
•  Triton half life 

  p-shell results with chiral NN+NNN  
  Scattering and coupling to continuum: Combining NCSM and RGM 

•  n-4He 
•  p-12C 
•  n-16O 

  Outlook 
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Low-Energy nuclear physics 

  Overarching goal: 

To arrive at a comprehensive and unified microscopic 
description of all nuclei and their low-energy reactions from 
the basic interactions between the constituent protons and 
neutrons 

  This is an ambitious goal 
•  Nuclei are self-bound, quantum many-fermion 

system 
•  Complicated interaction with at least two- and 

three-nucleon components 
•  Bound states, resonances, scattering 

states 

Our goal is to arrive at an ab initio picture for light 
nuclei and their reactions 

Bound-state techniques not sufficient 
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  Quantum chromodynamics (QCD) is the underlying theory for the 
strong interaction 
•  Lattice QCD calculations are too difficult to do complex nuclei 

-  They are not yet capable of providing an accurate nucleon-nucleon or 
three-nucleon interaction  
-  But they can verify that QCD is the correct theory for the strong 

interaction between hadrons 

  We need a theory with point-like nucleons and an interaction 
based on QCD 
•  Effective field theory (EFT) based on the properties of QCD provides 

an elegant solution with broad predictive power 

Where do we start? 
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Effective Field Theory 

  Based on the symmetries of QCD 
•  Degrees of freedom: nucleons + pions 
•  Describes pion-pion, pion-nucleon and inter-nucleon 

interactions at low energies 
  Systematic low-momentum expansion to a given 

order 
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•  NN parameters enter in the NNN terms etc. 
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Effective Field Theory 

  Based on the symmetries of QCD 
•  Degrees of freedom: nucleons + pions 
•  Describe pion-pion, pion-nucleon and inter-nucleon 

interactions at low energies 
  Systematic low-momentum expansion to a given 

order 
  Leading order (LO) 

•  One-pion exchange 
  NNN interaction appears at next-to-next-to-leading 

order (N2LO) 
  NNNN interaction appears at N3LO order 
  Consistency between NN, NNN and NNNN terms 

•  NN parameters enter in the NNN terms etc. 
  Low-energy constants (LECs) 

•  Low-energy theory, integrates out short-range physics 
•  Only two NNN and none NNNN low-energy constants 

up to N3LO  
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The NNN interaction 

N2LO 

c1, c3, c4 

cE 

cD 

Two-pion exchange 
     c1,c3,c4 LECs appear in the chiral NN interaction 

•   Determined in the A=2 system 

New! 

One-pion-exchange-contact 
New cD LEC 

New! 

Contact 
     New cE LEC 

Must be determined 
in A≥3 system  

Nontrivial to include in many-body calculations 
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The ab initio NCSM in brief  

  The NCSM is a technique for the solution of the A-nucleon bound-state problem 

  Hamiltonian (in this talk) 
•  Standard high-precision nucleon-nucleon potentials: 

-  Idaho chiral N3LO with 500 MeV cutoff 
•  Soft low-momentum interactions 

-  SRG-N3LO 

•  Three-nucleon interactions:  
-  Local chiral N2LO  

  Finite harmonic oscillator (HO) basis  
•  A-nucleon HO basis states 

-  Jacobi relative coordinates 
-  Cartesian single-particle coordinates 

•  complete NmaxhΩ model space 
-  Translational invariance preserved even with single-particle coordinate Slater-determinant (SD) basis 

  Effective interaction tailored to model-space truncation for standard potentials 
•  Unitary transformation in n-body cluster approximation (n=2,3) 

  Importance-truncated NmaxhΩ basis 
•  Second-order many-body perturbation theory 
•  Dimension reduction from billions to tens of millions 
•  Access to nuclei beyond p-shell 

Convergence to exact solution with increasing Nmax for bound states. 
No coupling to continuum.  

N=0
N=1
N=2

N=4
N=3

N=5
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3H and 4He with chiral interactions 
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Determining the three-nucleon interaction: A=3 & 4He 

  Constrain cD, cE to A=3 binding energy 

Egs in A=3 
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Determining the three-nucleon interaction: A=3 & 4He 
  Constrain cD, cE to A=3 binding energy 

  Other observables are needed:  
•  N-d doublet scattering length 

-  Correlated with Egs 
  4He binding energy 
  Two combinations of cD - cE that fit both A=3 and 

4He binding energies 
•  4He Egs dependence on cD weak 

-  4He and A=3 binding energies correlated 

4He binding energy dependence on cD 

4
He Ground State Energy
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Determining the three-nucleon interaction: A=3 & 4He 
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Determining the three-nucleon interaction: A=3 & 4He 
  Constrain cD, cE to A=3 binding energy 

  Other observables are needed:  
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What about the structure of p-shell nuclei? 
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NN 

NNN is important for heavier p-shell nuclei: 10B 

  10B known to be poorly described by standard NN interaction 
•  Predicted ground state 1+ 0 

•  Experiment 3+ 0 
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NN 

NNN important for heavier p-shell nuclei: 10B 

  10B known to be poorly described by standard NN interaction 
•  Predicted ground state 1+ 0 

•  Experiment 3+ 0 

  Chiral NNN fixes this problem 

Incorrect ordering Correct ordering 
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Using the NCSM to determine cD, cE : 10B 

  10B properties not correlated with A=3 binding energy 
  Spectrum shows weak dependence on cD 
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Using the NCSM to determine cD, cE : 10B 

  10B properties not correlated with A=3 binding energy 
  Spectrum shows weak dependence on cD 

  However: Order of 1+
1 and 1+

2 changes depending on cD 
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Using the NCSM to determine cD, cE : 10B 

  10B properties not correlated with A=3 binding energy 
  Spectrum shows weak dependence on cD 

  However: Order of 1+
1 and 1+

2 changes depending on cD 
•  This is seen in ratio of E2 transitions  
      from ground state to 1+

1 and 1+
2 
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Using the NCSM to determine cD, cE : 10B 

  10B properties not correlated with A=3 binding energy 
  Spectrum shows weak dependence on cD 

  However: Order of 1+
1 and 1+

2 changes depending on cD 
•  This is seen in ratio of E2 transitions  
      from ground state to 1+

1 and 1+
2 -2 < cD < 0 

preferred 



27 LLNL-PRES--412219
Lawrence Livermore National Laboratory 

Determination of cD (and cE) from the triton half life 

  cD also in the two-nucleon 
contact vertex with an external 
probe 

  Calculate  

  Leading order GT 

  N2LO: one-pion exchange plus 
contact 

  With the A=3 binding energy 
constraint a robust 
determination of cD=-0.2±0.1 
and cE =-0.205±0.015 Not inconsistent with the A>3 

determination cD≈ -1 ± 1  
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Structure of p-shell nuclei with NN+NNN interactions 

  NCSM is only method capable to apply the EFT NN+NNN interactions  
•  Technically challenging, large-scale computational problem  

-  ~4000 processors used in 12,13C calculations 

  Applied to constrain the NNN interaction  
•  Investigation of A=3, 4He and p-shell nuclei 
•  Globally the best results with cD ~ -1 

  NNN interaction essential to describe structure of light nuclei 
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Our goal is to develop an ab initio theory to understand 
nuclear structure….  

  … and reactions in light nuclei 

  How? - Combining the ab initio no-core shell model 
(NCSM) with the resonating group method (RGM)  

        ⇒ ab initio NCSM/RGM 
•  NCSM - single-particle degrees of freedom 
•  RGM - clusters and their relative motion  

  Ab initio theory of nuclear reactions for A>4 is new:  
•  Lisbon: p+3He scattering published in 2007 
      (PRL 98, 162502 (2007)); A=4 is their limit 
•  ANL: n+4He scattering published only  recently (PRL 99, 

022502 (2007)) 

  Our approach: readily extendable 
•  p-3He, n-4He & p-4He scattering already calculated 
•  promising results for p-shell nuclei: n-10Be, p-12C, n-16O  
•  Inclusion of d, 3H, 3He and α clusters under way 

The Hoyle 

state missing


Preserves Pauli principle and translational invariance 
 

Important as nucleons are fermions and nuclei self-bound 
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The ab initio NCSM/RGM in a snapshot 

  Ansatz: 

  Non-local integro-differential coupled-channel equations: 

Hamiltonian kernel Norm kernel 

  Many-body Schrödinger equation: 

 

eigenstates of  
H(A-a) and H(a)  
in the ab initio  
NCSM basis 

either bare interaction or   
NCSM effective interaction 

Fully implemented and tested for single-nucleon projectile (nucleon-nucleus) basis  
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Single-nucleon projectile: the norm kernel 
(A-1) 

(1) 

- (A-1) × 

(A-1) (1) 

(1,…,A-1) 
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(A) 

€ 

SD
ψµ1
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Single-nucleon projectile basis: the Hamiltonian kernel 

-   (A-1) × - (A-1)(A-2) × 

“direct potential” “exchange potential” 

+ terms containing NNN potential 

(A-1) 
(1) 

(1,…,A-1) 

(A) 

(1,…,A-1) 

(A) 

€ 

SD
ψµ1

(A−1) a+aψν 1

(A−1)
SD

€ 

SD
ψµ1

(A−1) a+a+ aaψν 1

(A−1)
SD



33 LLNL-PRES-405596
Lawrence Livermore National Laboratory 

NCSM/RGM ab initio calculation of n-4He phase shifts 

Fully ab initio. No fit. No free parameters. 
Good convergence with respect to Nmax  

Is everything else under control? … need 
verification against independent ab initio 
approach!  

4He 
n 

n-4He phase shifts: SRG-N3LO, λ=2.02 fm-1 
  Similarity-renormalization-group (SRG) 

evolved chiral N3LO NN interaction (R. Roth) 
  Low-momentum Vlowk NN potential 
  convergence reached with bare interaction 

Vlowk 
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NCSM/RGM ab initio calculation of n-3H and p-3He phase shifts 

  NCSM/RGM calculations with n+3H(g.s.) and p+3He(g.s.), respectively. 

  Benchmark with Alt, Grassberger and Sandhas (AGS) results [PRC75, 014005(2007)]  
•  What is missing? - n+3H(ex), 2n+d, p-3He(ex), 2p+d configurations 

The  omission  of  three-nucleon  partial  waves  with  1/2  <  J  ≤  5/2  leads  to  effects  of 
comparable magnitude on the AGS results. Need to include target excited states! 

  χEFT N3LO NN potential: convergence reached with two-body effective interaction 

3He 

p 

3H 

n 
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n-4He phase shifts from SRG-evolved NN interactions 

  SRG-evolved 
interactions (R. Roth) 

•  SRG-N3LO 

•  SRG-AV18 

  convergence reached 
with bare interaction 

  4He states: g.s., 0+0


  SRG-AV18 phase shifts 
present  unphysical 
oscillations 

n-4He and p-4He phase shifts 

Insufficient spin-orbit strength: 2P3/2 underestimated  NNN needed  
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First ever ab initio calculation of Ay in for a A=5 
system. Strict test of inter-nucleon interactions. 

n+4He differential cross section and analyzing power 

  Neutron energy of 17 MeV 
•  beyond low-lying resonances 

  Polarized neutron experiment at Karlsruhe 

  NCSM/RGM calculations 

•  n+4He(g.s,0+0) 

•  SRG-evolved N3LO NN potential 

  Good agreement for angular distribution 

  Differences for analyzing power  

•  Ay puzzle for A=5? 

4He 

n 



40 LLNL-PRES--412219
Lawrence Livermore National Laboratory 

p-12C scattering with SRG-N3LO NN potential 

  12C  
•  Full NCSM up to Nmax=8 
•  IT NCSM up to Nmax=18(!) 

  13N, 13C within the NCSM 
•  1/2+ state ~ 3 MeV too high  

  p+12C  
•  Experiments with a polarized 

proton target under way 
•  NCSM/RGM up Nmax=14 so far 

-  12C g.s. and 2+ included 
-  1/2- state bound by 2.9 MeV 

-  13N ground state 
-  Other states unbound 
-  1/2+ resonance at ~1.2 MeV 
-  5/2+ resonance 
-  Good stability: Moderate changes 

from Nmax=6 to Nmax=14 

Qualitative agreement with experiment 
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16O ground state, 17O bound states  

  16O ground state calculated within 
importance-truncated NCSM  
•  ≥4p-4h up to Nmax=18 (Nmax=22 

possible!?), hΩ=24 MeV 
•  SRG-N3LO with Λ=2.66 fm-1 

-  Less overbinding: E∞ ≈ -140 MeV 
•  Benchmarking with full NCSM 

-  16O binding energy up to Nmax=8 
-  Perfect agreement 

  17O within ab initio NCSM/RGM 
•  1/2+ bound: Eb=-0.88 MeV wrt 16O 
•  5/2+ bound: Eb=-0.41 MeV wrt 16O 

-  Nmax=19, hΩ=24 MeV 
-  Only 16O ground-state included 

16O 
n 
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n-16O scattering with SRG-N3LO NN potential 

  16O ground state only 
  Phase-shift convergence 

very good 
  Essential to use large 

Nmax 
•  Target wave function 
•  Expansion of short-

range parts of kernels 
•  IT NCSM for the target 

makes it possible 

16O 
n 

Combining the ab initio NCSM/RGM 
with the importance-truncated NCSM 
highly promising. Access to medium 
mass nuclei. 

Nmax=18 

Done up to 
Nmax=18 

converged 

(       )  

(     ) (     ) 
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n-16O scattering: Effect of 16O excited states 

  Need to include 16O excited states  
(1p-1h…) 

  IT NCSM for both the ground state & 
excited states 

  Done up to Nmax=12/13 
•  g.s. in Nmax=12 
•  3-, 1-, 2- in Nmax=13 
•  Significant increase of binding energies 

-  1/2+ :   -0.78 → -1.03 

-  5/2+ :   -0.37 → -1.32 

•  Appearance of sharp resonances 

16O 
n 

Correct order 

Good stability 
(                   ) 

(        ) 
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n-16O scattering: Open issues  

  16O excited states with the SRG-N3LO NN 
potential too high 
•  3-, 1-, 2-  calculated: ≈13.3, 15.9, 16.3 MeV  
•  3-, 1-, 2- experiment:  6.13, 7.12, 8.87 MeV 

-  Importance of 3-body force? 
-  Density too high? 

•  12C+alpha not included at present 

  n+16O with the SRG-N3LO NN potential  
•  5/2+, 1/2+ underbound 
•  1/2-, 5/2- not bound   
•  Resonances too high 

-  Impact of incomplete 16O description 
-  13C+alpha not taken into account  
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The deuteron projectile: Norm kernel 
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Conclusions and outlook 

  Coming next: 
•  inclusion of NNN potential terms 
•  d, 3H and 3He, 4He projectiles 

  Nuclei - complex open many-body systems 
•  Bound states, resonances, continuum 

  A correct and efficient theoretical 
description must include all these features 
•  Coupling of bound-state theory with cluster 

theory  

Ab Initio No-Core Shell Model with Continuum 

  We are extending the ab initio NCSM to treat low-energy light-ion reactions 
  Our recent achievements: 

•  n-3H, n-4He, n-10Be and p-3,4He scattering phase-shifts  
      with realistic NN potentials (PRL 101, 092501 (2008)) 

  n-16O under way:  
•  Breakthrough due to the importance-truncated NCSM approach 

    

€ 

ΨA
J = cλ AλJ∑ + d

 
r ϕν∫ ( r ) ˆ A Φν

 
r 

(A−a,a )∑

  

€ 

H h
h H
 

 
 

 

 
 
c
ϕ

 

 
 
 

 
 = E

1 g
g N
 

 
 

 

 
 
c
ϕ

 

 
 
 

 
 


