INT Program Effective Field Theories and the Many-Body Problem March 23 – June 5, 2009

The missing three-nucleon forces: Where are they?

R. Machleidt University of Idaho

Outline

• Nuclear forces from Chiral Perturbation Theory (ChPT): Current status · The 3NF at N2LO **• The 3NF at N3LO: Weak expectations D** N4LO or A-isobars? **• Summary**

The ChPT approach to nuclear forces

· Clear connection to QCD: via symmetries · Degrees of freedom relevant to (lowenergy) nuclear physics: pions and nucleons **• Systematic expansion: Q/A • Controlled error, predictive power. • Explains the empirically known hierarchy** of nuclear forces

Phase shifts up to 300 MeV

Red Line: N3LO Potential by Entem & Machleidt, PRC 68, 041001 (2003). Green dashed line: NNLO Potential, and blue dotted line: NLO Potential by Epelbaum et al., Eur. Phys. J. A19, 401 (2004).

 66

χ^2 /datum for the reproduction of the

1999 np database

N3LO Potential by Entem & Machleidt, PRC 68, 041001 (2003). NNLO and NLO Potentials by Epelbaum et al., Eur. Phys. J. A19, 401 $(2004).$

> Missing 3NFs: Where are they? INT 09-1, May 26, 2009

■

Deuteron Properties

Deuteron wave functions of N3LO potentials

red = Idaho, green = Bochum/Juelich Black lines = high-precision pots.

Results from applications of chiral twonucleon forces

• Latest Coupled Cluster results for A<48 using N3LO

Medium-Mass Nuclei from Chiral Nucleon-Nucleon Interactions

G. Hagen,¹ T. Papenbrock,^{2,1} D. J. Dean,¹ and M. Hjorth-Jensen³

¹Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ²Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA 3 Department of Physics and Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway (Received 20 June 2008; published 29 August 2008)

We compute the binding energies, radii, and densities for selected medium-mass nuclei within coupledcluster theory and employ a bare chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order. We find rather well-converged results in model spaces consisting of 15 oscillator shells, and the doubly magic nuclei ${}^{40}Ca$, ${}^{48}Ca$, and the exotic ${}^{48}Ni$ are underbound by about 1 MeV per nucleon within the coupled-cluster singles-doubles approximation. The binding-energy difference between the mirror nuclei ⁴⁸Ca and ⁴⁸Ni is close to theoretical mass table evaluations. Our computation of the one-body density matrices and the corresponding natural orbitals and occupation numbers provides a first step to a microscopic foundation of the nuclear shell model.

Chiral NN potential at N³LO underbinds by \sim 1MeV/nucleon. (Size extensivity at its best.)

4NF at N3LO (leading order)

Epelbaum, Phys. Lett. B639 (2006) 456 [nucl-th//0511025]

Note that only vertices from $\left| \mathcal{L}_{\pi\pi}^{(2)}, \mathcal{L}_{\pi N}^{(1)} \right|$ and $\mathcal{L}_{NN}^{(0)}$ are involved, • no new parameters, \bullet weak. First rough estimate: \approx 0.1 MeV to α binding.

Essentially negligible, as to be expected.

Interim summary

 \circ 2NF o.k. (except for the issue of non-perturbative renormalization) • 4NF (negligibly) small ...

Three-nucleon forces at N2LO

Strategy: Adjust D and E to two few-nucleon observables, e.g., the triton and alpha-particle binding energies. Then predict properties of other light nuclei.

Calculating the properties of light nuclei using chiral 2N and 3N forces

Calculating the properties of light nuclei using chiral 2N and 3N forces

Calculating the properties of light nuclei using chiral 2N and 3N forces

The A_y puzzle at low energies

$$
\sigma = \sigma_0(1 + pA_y \cos \phi)
$$

$$
\Rightarrow A_y = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}
$$

Calculations by Pisa group

Study of three-body systems at KVI

Why do we need 3NFs beyond NNLO?

• The 2NF is N3LO; consistency requires that all contributions are at the same order.

• There are unresolved problems in 3N, 4N scattering and nuclear structure.

What 3NFs are generated by ChPT beyond NNLO?

R. Machleidt

Missing 3NFs: Where are they? INT 09-1, May 26, 2009

28

The 3NF at N3LO explicitly

One-loop, leading vertices

 2π -exchange

 2π -l π -exchange

$$
\phi = \phi \cdot \phi = \phi \cdot \phi + \phi \cdot \phi
$$

ring diagrams

$$
\left(\begin{array}{ccc} -\phi & -\phi \\ -\phi & -\phi \end{array} \right) = \left(\begin{array}{ccc} -\phi & -\phi \\ -\phi & -\phi \end{array} \right) + \left(\begin{array}{ccc} -\phi & -\phi \\ -\phi & -\phi \end{array} \right) + \left(\begin{array}{ccc} -\phi & -\phi \\ -\phi & -\phi \end{array} \right) + \left(\begin{array}{ccc} -\phi & -\phi \\ -\phi & -\phi \end{array} \right) + \left(\begin{array}{ccc} -\phi & -\phi \\ -\phi & -\phi \end{array} \right) + \cdots
$$

contact- 1π -exchange

$$
X^{-1} = X^{-1} + X^{-1} + X^{-1} + X^{-1} + \cdots
$$

contact- 2π -exchange

$$
|\hat{X}^{-1}| = |X^{-1}| + |X^{-1}| + |X^{-1}| + |X^{-1}| + ...
$$

Missing 3NFs: Where are they? INT 09-1, May 26, 2009

R. Machleidt

Ishikawa & Robilotta, PRC 76, 014006 (2007)

> Bernard, Epelbaum, Krebs, Meissner, PRC 77, 064004 (2008)

> > In progress

> > > 34

virtual institute "Spin and strong QCD" (grant VH-VI-231). This work was further supported by the DFG (SFB/TR 16 "Submolesr Strotture of Matter") and by the EU Integrated Infrastructure Initiative Hadron Physics Project

APPENDIX A: EXPRESSIONS FOR RING DIAGRAMS IN MOMENTUM-SPACE

In this appendix we give lengthy expressions for ring diagrams in Fig. 4 in momentum space. The contributions from diagrams (1) and (2) can be expressed as:

 $V_{\rm ring} \; = \; \vec{\sigma}_1 \cdot \vec{\sigma}_2 \; \tau_2 \cdot \tau_3 \; R_1 + \vec{\sigma}_1 \cdot \vec{q}_1 \vec{\sigma}_2 \cdot \vec{q}_1 \; \tau_2 \cdot \tau_3 \; R_2 + \vec{\sigma}_1 \cdot \vec{q}_1 \vec{\sigma}_2 \cdot \vec{q}_3 \; \tau_2 \cdot \tau_3 \; R_3 + \vec{\sigma}_1 \cdot \vec{q}_3 \vec{\sigma}_2 \cdot \vec{q}_1 \; \tau_2 \cdot \tau_3 \; R_4$ $+ \;\; \vec{\sigma}_1 \cdot \vec{q}_5 \vec{\sigma}_2 \cdot \vec{q}_5 \; \textbf{\texttt{r}}_2 \cdot \textbf{\texttt{r}}_5 \; R_5 + \textbf{\texttt{r}}_1 \cdot \textbf{\texttt{r}}_3 \; R_6 + \vec{\sigma}_1 \cdot \vec{q}_1 \vec{\sigma}_5 \cdot \vec{q}_1 \; R_7 + \vec{\sigma}_1 \cdot \vec{q}_1 \vec{\sigma}_3 \cdot \vec{q}_5 \; R_8 + \vec{\sigma}_1 \cdot \vec{q}_5 \vec{\sigma}_3 \cdot \vec{q}_1 \; R_9 \qquad \text{(A.1)}$ $+\vec{\sigma}_1 \cdot \vec{\sigma}_S R_{10} + \vec{q}_1 \cdot \vec{q}_S \times \vec{\sigma}_2 \tau_1 \cdot \tau_2 \times \tau_3 R_{11}.$

where the functions $R_i \equiv R_i(q_1,\,q_3,\,z)$ with $z = \hat{q}_1 \cdot \hat{q}_3$ are defined as follows:

- $R_1 \;=\; \frac{\left(-1+z^2\right)g_A^6 M_\pi \left(2 M_\pi^2+q_3^2\right) \left(q_3^2 q_3+4 M_\pi^2 \left(s q_1+q_3\right)\right)}{128 F^6 \pi \left(4 \left(-1+z^2\right) M_\pi^2-q_3^2\right) \left(4 M_\pi^2 q_3+q_3^3\right)} \nonumber \\ -\; \frac{A \left(q_2\right)g_A^6 q_3^2 \left(2 M_\pi^2 \left(q_1+z q_3\right)+z q_3 \left(-q_1^2+q_3^2\right)\right)}{128 F^6 \pi \left(-1+z^$ $\frac{A\left(q_{3}\right)g_{A}^{6}\left(zq_{2}^{2}\left(zq_{1}-q_{3}\right)q_{3}+2M_{\pi}^{2}\left[z\left(-2+z^{2}\right)q_{1}^{2}-\left(1+z^{2}\right)q_{1}q_{3}-zq_{3}^{2}\right)\right]}{128F^{6}\pi\left(-1+z^{2}\right)q_{1}q_{3}}+\\$
	- $\frac{A\left(q_1\right)g_A^6\left(2M_\pi^2g_2^2+q_3\left(-zg_1^3+\left(2-3z^2\right)q_1^2q_3-z\left(-2+z^2\right)q_1q_3^2+q_3^3\right)\right)}{128F^6\pi\left(-1+z^2\right)q_1^2}$

 $\frac{I(4:0,-q_1,q_3;0)q_A^2q_2^2}{32F^6 \left(-1+z^2\right) \left(4 \left(-1+z^2\right) M_\pi^2-q_2^2\right) q_3} \left(8 \left(-1+z^2\right) M_\pi^4 \left(2z q_1+\left(1+z^2\right) q_3\right)+q_2^2 q_3 \left(z^2 q_1^2+\right)\right)$ $z\left(-1+z^2\right)q_1q_3-q_3^2\right)+2M_\pi^2\left(z\left(-2+z^2\right)q_1^3-\left(1+2z^2\right)q_1^2q_3+3z\left(-2+z^2\right)q_1q_3^2+\left(-3+2z^4\right)q_3^3\right)\right)\,,$

 $R_2 \; = \; \frac{A \left(q_2 \right) g_A^6 q_2^2 \left(-2 M_\pi^2 \left(\left(1+z^2 \right) q_1 + 2 z q_3 \right) + z q_3 \left(\left(1+z^2 \right) q_1^2 - 2 q_3^2 \right) \right)}{z_1 + z_2 + z_3} \; .$ $\frac{128F^6\pi\left(-1+z^2\right)^2q_1^3q_5^2}{128F^6\pi\left(-1+z^2\right)^2q_1^3q_5^2}$ $A\left(q_{3}\right)g_{A}^{6}\left(M_{\pi}^{2}\left(2zq_{1}^{2}+\left(1+3z^{2}\right)q_{1}q_{3}+2zq_{3}^{2}\right)+zq_{3}\left(-zq_{1}^{3}-z^{2}q_{1}^{2}q_{3}+zq_{1}q_{5}^{2}+q_{3}^{3}\right)\right)\label{eq:10}$ $64F^6\pi(-1+z^2)^2q_1^3q_3$

 $\frac{A \left({q_1}\right) g_A^6}{128 F^6 \pi \left(-1+z^2\right)^2 q_1^2 q_1^2} \left(2 M_\pi^2 \left(\left(1+z^2\right) q_1^2+z \left(3+z^2\right) q_1 q_3+\left(1+z^2\right) q_2^2\right)+$ $q_5 \left(- \left(z + z^3\right) q_1^3 + \left(2 - 5 z^2 + z^4\right) q_1^2 q_3 + z \left(1 + z^2\right) q_1 q_3^2 + \left(1 + z^2\right) q_3^3\right)\right) \frac{I(4\!:\!0,-q_1,q_5;0)g_A^6}{32F^6\left(-1+z^2\right)^2q_1^2\left(-4\left(-1+z^2\right)M_\pi^2+q_2^2\right)q_3}\left(q_2^4q_5\left(-2z^2q_1^2+\left(1+z^2\right)q_3^2\right) 8 (-1 + z) (1 + z) M_\pi^4 \left(z \left(2 + z^2\right) q_1^3 + \left(1 + 2 z^2\right)^2 q_1^2 q_3 + z \left(2 + 7 z^2\right) q_1 q_3^2 + \left(1 + 2 z^2\right) q_3^3 \right) +$ $2M_{\pi}^2q_2^2 \left(2zq_1^3+\left(1-z^2+6z^4\right)q_1^2q_5-2z\left(-1-3z^2+z^4\right)q_1q_5^2+\left(3+3z^2-4z^4\right)q_3^3\right)\right)$

 $\qquad \qquad +\frac{g_A^6 M_\pi \left(2 M_\pi^2+q_5^2\right) \left(q_2^2 q_3+4 M_\pi^2 \left(z q_1+q_3\right)\right)}{128 F^6 \pi q_1^2 \left(4 \left(-1+z^2\right) M_\pi^2-q_2^2\right) \left(4 M_\pi^2 q_3+q_3^3\right)}\, ,$ $R_5 \;=\; -\frac{zA\left(q_2\right)g_A^6q_2^2\left(-4M_\pi^2\left(q_1+zq_3\right)+q_3\left(2zq_1^2+\left(-1+z^2\right)q_1q_3-2zq_5^2\right)\right)}{128F^8\pi\left(-1+z^2\right)^2q_1^2q_3^3}\;.$

 $\frac{zA\left(q_3\right)g_A^6}{128F^6\pi\,\left(-1+z^2\right)^2q_1^2q_3^2}\left(M_x^2\left(-2z\left(-3+z^2\right)q_1^2+4\left(1+z^2\right)q_1q_3+4zq_3^2\right)+q_3\left(-\left(1+z^2\right)q_1^3-4\left(1+z^2\right)q_1^2\right)+q_1^2q_2^2\right)$ $2z^3q_1^2q_3+\left(1+z^2\right)q_1q_3^2+2zq_3^3)\big)$ $zA \left(q_1 \right) g_A^6 \left(2 M_{\pi}^2 \left(2 q_1^2 + 4 z q_1 q_3 + \left(1 + z^2 \right) q_3^2 \right) + q_3 \left(-2 z q_1^3 + \left(1 - 3 z^2 \right) q_1^2 q_3 + 2 z q_1 q_3^2 + \left(1 + z^2 \right) q_3^3 \right) \right)$ $128F^6\pi\left(-1+z^2\right)^2q_1q_3^3$

 $\frac{I(4:0,-q_1,q_3;0)sg_A^5}{32F^6\left(-1+z^2\right)^2q_1\left(-4\left(-1+z^2\right)M_x^2+q_2^2\right)q_3^2}\left(q_2^4q_3\left(\left(1+z^2\right)q_1^2+z\left(-1+z^2\right)q_1q_3-\left(1+z^2\right)q_3^2\right)+\right.$

$10z^2\right)q_1^2q_3+3z\left(1+2z^2\right)q_1q_3^2+\left(1+2z^2\right)q_3^3\right)+$ $\label{eq:1D1V:2} q_1^2 q_3 - z \left(5 + z^2\right) q_1 q_3^2 + \left(-3 - 3 z^2 + 4 z^4\right) q_3^3\right) \big) +$ $\frac{(zq_1+q_3)}{(4M^2+a^2)}$ $\qquad \qquad +\ 2M_\pi^2\left(2zq_1+\left(1+z^2\right)q_3\right)\Big)\quad .$ $\sqrt{27^2 g_0^2 g_0^3}$ $\frac{9193}{9193}+22q_3^2\big)+q_3\left(2z^2q_1^3+2z^3q_1^2q_3+\left(1-4z^2+z^4\right)q_1q_3^2-2zq_3^3\right)\big)\,.$ $128F_7(-1+x^2)^2$ and $\left(-3+z^2\right)q_1^2+z\left(3+z^2\right)q_1q_3+\left(1+z^2\right)q_3^2\right)+$ ${q_3 + z (1 + z^2) q_1 q_3^2 + (1 + z^2) q_3^3)}$) $\frac{1}{2+a^2\log^2}\left(q_2^4q_3\left(\left(x+z^3\right)q_1^2+\left(-1+z^2\right)^2q_1q_3-2zq_3^2\right)+\right.$ $\frac{\pi}{73}+\left(-2+9z^2+2z^4\right)q_1q_3^2+z\left(2+z^2\right)q_3^5\right)+$ $) q_1^2 q_3 + (4+5z^2 \left(-3+z^2\right)) q_1 q_3^2 + 2z \left(-3+z^2+z^4\right) q_3^3) \big) +$ $\frac{\left(2q_1+q_3\right)}{\frac{2}{4}\left(4M_\pi^2+q_3^2\right)}\,,$ $\frac{2zq_1^2+\left(-1+z^2\right)q_1q_3-2zq_3^2\right)\rangle}{\left. z^2\right\rangle ^2q_1q_2^4}=$ $3+x^2\big)\,q_1^2-2\,\left(1+x^2\right)\,q_1q_3-2\pi q_3^2\big)+q_3\,\left(\left(1+x^2\right)q_1^3+2\pi^3q_1^2q_3-$

 $\overline{11}$

 $\frac{\left.-z^2\right)q_3^2)+q_3\left(-2zq_1^3+\left(1-3z^2\right)q_1^2q_3+2zq_1q_3^2+\left(1+z^2\right)q_3^3)\right)}{128F^8\pi\left(-1+z^2\right)^2q_3^4}+$ $\frac{1}{1+q_{2}^{2})\,q_{3}^{3}}\left(q_{2}^{4}q_{3}\left(\left(1+z^{2}\right)q_{1}^{2}+z\left(-1+z^{2}\right)q_{1}q_{3}-\left(1+z^{2}\right)q_{3}^{2}\right)+\right.$ $+ q_2 q_3$
 $10z^2\bigl(q_1^2q_3 + 3z\left(1+2z^2\right)q_1q_3^2 + \left(1+2z^2\right)q_3^3\bigl) +$ $\hat{q}^2 q_3 - z \left(5 + z^2\right) q_1 q_3^2 + \left(-3 - 3 z^2 + 4 z^4\right) q_3^3\right)$ $\frac{q_1+q_3)\big)}{4M_\pi^2+q_3^2)}\,,$ $\frac{\mathrm{tr}\left(M_\pi^2+q_1^2\right)q_3+q_1\left(8M_\pi^2+3q_1^2+q_3^2\right)\right)}{128F^6\pi q_1}+$ $\frac{2}{\pi}+\sqrt{q}^2+3q_3^2\big)\big)$

 $\overline{d_{\pi}^2 - q_2^2) \, q_3 \, (4 M_{\pi}^2 + q_3^2)} \, \left[\left(5 + z^2\right) q_1^3 q_2^2 q_3^3 + 8 M_{\pi}^6 \left(z \left(-3 + 4 z^2\right) q_1^2 + \right.$ $\left(1+2M_x^4\left(4z\left(-1+z^2\right)q_1^4+\left(77-36z^2\right)q_1^3q_3+2z\left(33+8z^2\right)q_1^2q_5^2+\right.\right.$ + $2M_2^2q_1q_3$ (10 + z^2) q_1^4 + $2z$ (9 + $2z^2$) $q_1^2q_3$ + (29 - $7z^2$) $q_1^2q_1^2$ +

 $q_1q_2^2q_3\left(q_1^2+zq_1q_3+q_3^2\right)+4M_3^4\left(zq_1^2-2\left(-2+z^2\right)q_1q_3+zq_3^2\right)+$ $2M_{\pi}^2 (4q_1q_3 (q_1^2+q_1^2) + z (q_1^4+6q_1^2q_2^2+q_1^4))),$
 $2M_{\pi}^2 (4q_1q_3 (q_1^2+q_1^2) + z (q_1^4+6q_1^2q_2^2+q_1^4))),$

From: Bernard, Epelbaum, Krebs, Meissner, PRC 77, 064004 (2008)

$\label{eq:3.10} \frac{3A\left(q_3\right) g_A^6\left(2M_\pi^2+q_2^2\right) \left(\left(1+z^2\right) q_1+2zq_3\right) }{2}$ $\frac{1}{1-\frac{256 F^6 \pi \left(-1+{z}^{2}\right)^{2} q_{1}^{2}}{256 F^6 \pi \left(-1+{z}^{2}\right)^{2} q_{1}^{2}}-\qquad \qquad \nonumber \\ \frac{1}{256 F^6 \pi \left(-1+{z}^{2}\right)^{2} q_{1}^{2}}+\frac{3 A \left(q_{2}\right) g_{\rm A}^{6} \left(2 M_{\pi}^{2}+q_{2}^{2}\right) \left(2 {z} q_{1}^{2}+ \left(1+3{z}^{2}\right) q_{1} q_{3}+2 {z} q_{2}^{2}\right)}{256 F^$

 $\frac{q_{2}^{2})}{t^{2}_{s}-q_{2}^{2})}\left(-q_{2}^{2}\left(\left(1+x^{2}\right)q_{1}^{2}+z\left(3+x^{2}\right)q_{1}q_{3}+\left(1+x^{2}\right)q_{3}^{2}\right)+\right.$ $\left.\left. \left(2+z^2\right)q_1q_3+\left(1+2z^2\right)q_3^2\right)\right)\,,$ $\frac{1}{2)\, q_3}+\frac{3zA\,(q_3)\,g_A^6\,\left(2M_\pi^2+q_2^2\right)\,\left(\left(1+z^2\right)q_1+2zq_3\right)}{256F^6\pi\,(-1+z^2)^2\,q_1^2q_3}+\\$

 $\frac{1+z^2}{3}q_3\Big)-\frac{3zA(q_2)g_A^6\left(2M_\pi^2+q_2^2\right)\left(2zq_1^2+\left(1+3z^2\right)q_1q_3+2zq_3^2\right)}{256F^6\pi\left(-1+z^2\right)^2q_1^2q_3^2}\;.\label{eq:11}$ $\frac{+q_{2}^{2})}{l_{x}^{2}-q_{2}^{2})\,q_{3}}\left(-q_{2}^{2}\left(\left(1+z^{2}\right)q_{1}^{2}+z\left(3+z^{2}\right)q_{1}q_{3}+\left(1+z^{2}\right)q_{3}^{2}\right)+\right.$

 $\left(2+z^2\right)q_1q_3+\left(1+2z^2\right)q_3^2\right)$, $q_{1}^{2}+z\,\left(3+z^{2}\right) q_{1}q_{3}+\left(1+z^{2}\right) q_{3}^{2}\big) _{\quad \ }% \left(1+z^{2}\right) q_{4}^{2}\left(1+z^{2}\right) q_{5}^{2}\left(1+z^{2}\right) q_{6}^{2}\left(1+z^{2}\right) q_{7}^{2}\left(1+z^{2}\right) q_{8}^{2}\left(1+z^{2}\right) q_{9}^{2}\left(1+z^{2}\right) q_{1}^{2}\left(1+z^{2}\right) q_{1}^{2}\left(1+z^{2}\right) q_{1}^{2}\left(1+z^{2}\right)$ $\frac{\left(q_3+2 z \left(2+z^2\right) q_1 q_2^2+\left(1+z^2\right) q_3^2+2 M_\pi ^2 \left(2 z q_1+\left(1+z^2\right) q_3\right)\right)}{256 F^6 \pi \left(-1+z^2\right)^2 q_1^2 q_3}+$

 $\frac{(+q_2^2)}{M_\pi^2+q_2^2)\,q_3}\,\left(q_2^2 \left(-2q_1^2+z \left(-5+z^2\right) q_1 q_3-2q_3^2\right)+\right.$ $\left(168+\left(2+z^2\right)q_5^2\right)\right)-\frac{3zg_8^6M\pi \left(2M_\pi^2+q_2^2\right)}{256F^6\pi q_1 \left(-4 \left(-1+z^2\right)M_\pi^2+q_2^2\right)q_5}\,,$

 $-\frac{3A \left({q_2}\right) {g_A^6 \left(2 M_{\pi }^2+q_2^2\right) \left({z q_1}+{q_3}\right) \left({q_1}+{z q_3}\right)}{256 F^6 \pi \left(-1+{z}^2\right) {q_1} {q_3}}\,.$ $\left.\frac{z\left(-4+z^2\right)q_1q_3^2+q_3^3+2M_\pi^2\left(zq_1+q_3\right)\right)}{z}$

 $\pi(-1+z^2)$ $\begin{array}{l}+\frac{(-1+z+1)q_3}{(1+2z^2)}\frac{q_1q_3^2+zq_3^3+2M_\pi^2\left(q_1+zq_3\right))}{q_1^2}+\\ \frac{1}{\pi\left(-1+z^2\right)q_1} \end{array}+$ $\frac{5}{9\cdot 3^2} \left(-q_2^2 \left(q_1^2-z \left(-3+z^2\right) q_1 q_3+q_3^2\right)+\right.$

 $\frac{zq_1q_3+2q_3^2)+q_3\left(zq_1^3+\left(-1+2z^2\right)q_1^2q_3+zq_1q_3^2+q_3^3\right)\right)}{256F^6\pi\left(-1+z^2\right)q_1^2q_3^2}+$ $\frac{A\left(q_{1}\right)g_{A}^{5}\left(2M_{\pi}^{2}\left(2q_{1}^{2}+2zq_{1}q_{3}+\left(-1+z^{2}\right)q_{2}^{2}\right)+q_{1}\left(q_{1}^{3}+zq_{1}^{2}q_{3}+\left(-1+2z^{2}\right)q_{1}q_{3}^{2}+zq_{3}^{3}\right)\right)}{256F^{8}\pi\left(-1+z^{2}\right)q_{1}^{2}q_{3}^{2}}$

 $\begin{array}{c} I(4:0,-q_1,q_3;0)g_A^{\sigma_2}g_A^{\sigma_3} \\ \hline \left(64F^6\left(-1+x^2\right)q_1^2\left(-4\left(-1+x^2\right)M_\pi^2+q_2^2\right)q_3^2\right)\left(-\left(2M_\pi^2+q_1^2\right)\left(2M_\pi^2+q_3^2\right)\left(4M_\pi^2+q_1^2+q_3^2\right)+\right. \\ \hline \left.2 s^3q_1q_3\left(-4M_\pi^4+q_1^2q_3^2\right)+z^2\left(4M_\pi^2+q_1$ $z q_1 q_3 \left(8 M_\pi^4 + q_1^4 + q_3^4 + 4 M_\pi^2 \left(q_1^2 + q_3^2 \right) \right) \, .$

 $\left(1+z^2 \right) q_3^2 \big)$,

 $z\,A\left(q_{2}\right) g_{A}^{4}\left(\left(1+z^{2}\right) q_{1}^{2}+z\left(3+z^{2}\right) q_{1}q_{3}+\left(1+z^{2}\right) q_{3}^{2}\right)$ $128F^6\pi(-1+z^2)^2q_1q_3$

 $\frac{}{\left(+\, q_5^2 \right)} \left(-2 \, z^2 \left(4 M_\pi^4 q_1^2 \left(4 M_\pi^2 + q_1^2 \right) + \right.$ $\hspace{4.5cm} +\, q_{1}^{2} + q_{3}^{2} \big) \left(q_{1}^{2} q_{3}^{2} + 2 M_{\pi}^{2} \left(q_{1}^{2} + q_{3}^{2} \right) \right) - \nonumber$ $\frac{2}{\pi}\left(q_1^4+4q_1^2q_3^2+q_3^4\right)\right)$. $(A, 2)$ s the magnitudes of the corresponding three-momenta $_3$]. Further, the function $I(d:p_1,p_2,p_3;p_4)$ refers to

The ring diagrams

 $\frac{1}{1 - M_{\pi}^2 + i\epsilon} \frac{1}{(l+p_3)^2 - M_{\pi}^2 + i\epsilon} \frac{1}{v \cdot (l+p_4) + i\epsilon}$. (A.3) $\eta.$ For the case $p^0_i=0$ which we are interested in, it an space $J\left(d\,;\,\vec{p}_1,\vec{p}_2,\vec{p}_3\right)$ $\overline{(\vec{l}+\vec{p}_{2})^{2}+M_{\pi}^{2}}\,\, \overline{(\vec{l}+\vec{p}_{3})^{2}+M_{\pi}^{2}}$ xpressions for R_i can be written as 3 : $\vec{0},-\vec{q}_1,\vec{q}_3\Big)$.

 $\tilde{\sigma_3}\cdot \tilde{q_1}\; \boldsymbol{\tau_1}\cdot \boldsymbol{\tau_2}\; \boldsymbol{S_3} + \vec{\sigma_1}\cdot \vec{q_1} \vec{\sigma_3}\cdot \vec{q_3}\; \boldsymbol{\tau_1}\cdot \boldsymbol{\tau_2}\; \boldsymbol{S_4}$ $\vec{q}_1 \cdot \vec{q}_3 \times \vec{\sigma}_1 \; \tau_1 \cdot \tau_2 \times \tau_3 \; S_7$ $(A, 6)$

 $\frac{q_3^2)}{q_3^2} = \frac{A\left(q_3\right)g_A^4\left(2M_\pi^2+q_3^2\right)}{100E^4} +$

 $+\frac{z^2}{2\sqrt{2}}$ + $3z^2) q_1q_3 + 2zq_3^2$

 \cdot $z^2)$ $q_3)$ +

 $\frac{^{2})\,q_{3})}{^{6}}+\frac{zA\left(q_{2}\right) g_{A}^{4}\left(-2q_{1}^{2}+z\left(-5+z^{2}\right) q_{1}q_{3}-2q_{3}^{2}\right) }{128F^{6}\pi\left(-1+z^{2}\right) ^{2}q_{1}q_{3}}\,.$ $\left(3+z^{2}\right) q_{1}q_{3}+\left(1+z^{2}\right) q_{3}^{2}\right)$

 $\left(\begin{matrix} 2 \\ 2 \end{matrix} \right) q_1 q_3 - 2 z q_3^2 \Big)$

 $\frac{\eta^4_A \left(2 z q_1 + \left(1+z^2\right) q_3\right)}{8 F^6 \pi \left(-1+z^2\right)^2 q_3} +$ $+\,2z\,q_1^2+\left(1+3z^2\right)\,q_1q_3+2z\,q_3^2\big)\quad .$ $+\,z^2)\,q_5^2\big)$ (A, A) $\frac{(-3+z^2) q_1 q_3 + q_3^2)}{(-1+z^2)} - \frac{A (q_1) q_A^4 q_1 (q_1 + z q_3)}{128 F^6 \pi (-1+z^2)} +$ $\frac{1}{2}$, $(A, 5)$

 $\frac{+g_3)+2M_{\pi}^2\left({q_1}+{z} q_3\right)}{-1+{z}^{2})}{q_1q_3^{2}}+\frac{zA\left({q_3}\right)g_A^4\left(2M_{\pi}^2+q_3^2\right)}{256F^6\pi\left(-1+{z}^{2}\right)q_1q_3}.$

ie individual terms in the expressions for R_i and S_i are singular virtuse, however, cancel in such a way that the resulting terms in cossible to obtain a representation for functions R_i and S_i which is lar, the si

 $)\Big[\frac{J(d\,;\vec{0},\vec{q_1})}{q_3^2+q_1q_3}+\frac{J(d\,;\vec{0},\vec{q}_3)}{q_1^2+q_1q_3}-\frac{J(d\,;\vec{0},\vec{q_1}+\vec{q}_3)}{q_1q_3}\Big]$ $+\frac{J(d:\vec{0},\vec{q_1}+\vec{q_3})}{2}\Big]\Big\},$ (A, S)

 $\label{eq:zeta} z)^2\Big[\frac{J(d\,;\vec{0},\vec{q_1})}{q_3^2-q_1q_3}+\frac{J(d\,;\vec{0},\vec{q_3})}{q_1^2-q_1q_3}+\frac{J(d\,;\vec{0},\vec{q_1}+\vec{q_3})}{q_1q_3}\Big]$ $(A, 9)$ $\frac{-q_3(2q_1-q_3)}{-q_3)^3}J(d\,;\vec{0},\vec{q}_1)$

 $\left[\frac{2q_3}{q_3} J(d\,;\vec 0,\vec q_3) + \frac{2(4M^2+(d-2)(q_1-q_3)^2)}{(d-1)q_1q_3(q_1-q_3)^2} J(d\,;\vec 0,\vec q_1+\vec q_3) \right] \right]$ $\frac{1}{2}$ $J(d:\vec{0}, \vec{q}_1 + \vec{q}_3)$ $\frac{q_3(2q_1+q_3)}{3}J(d\,;\vec{0},\vec{q}_1)$

 $\left.\frac{^{2}q_{3})}{^{2}d\left(d:\vec{0},\vec{q}_{3}\right)-\frac{2(4M^{2}+(d-2)(q_{1}+q_{3})^{2})}{(d-1)q_{1}q_{3}(q_{1}+q_{3})^{2}}J(d:\vec{0},\vec{q}_{1}+\vec{q}_{3})\right]\Big]\Big\},$

 $\rm _3)$ and uses certain linear combinations of two-point functions and o-point function is defined as

 $(A.10)$ $\frac{1}{(x)^d} \frac{1}{(\vec{l} + \vec{p}_1)^2 + M_{\pi}^2} \frac{1}{(\vec{l} + \vec{p}_2)^2 + M_{\pi}^2}$

 $(A, 7)$

[1] N. Kalantar-Nayestanaki and E. Epelbaum, Nucl. Phys. News 17, 22 (2007) [arXiv:mucl-th/0703089] D. R. Entem and R. Machleidt, Phys. Rev. C $68, 041001$ (2003) [arXiv:nucl-th/0204018].

Missing 3NFs: Where are they? INT 09-1, May 26, 2009

R. Machleidt

Proton-deuteron elastic scattering

Black line: 2NF only Red dashed line: $2NF + 3NF(N2LO+2nN3LO) \approx 2NF + 3NF(N2LO)$

Interim balance

• The 3NF at N3LO may be generally weak. • Reason: only "leading" vertices are involved, which are known to be weak (e.g., from NN). • Thus, the 3NF at N3LO may not solve any of the outstanding problems.

What now?

Go to the next order!

R. Machleidt

Missing 3NFs: Where are they? INT 09-1, May 26, 2009

38

What to expect from those N4LO 1-loop diagrams?

Compare to "similar" 2NF diagrams.

R. Machleidt

Missing 3NFs: Where are they? INT 09-1, May 26, 2009

40

Corresponding 2NF contributions

1-loop One c_i vert.

Corresponding 2NF contributions

So, we will have to go to N4L0!?

· No, not necessarily. • There is an alternative: go to N3LO, but include △ (1232) isobars explicitly.

pi-N Lagrangian with two derivatives ("next-to-leading" order)

$$
\mathcal{L}_{\pi N, c_i}^{(2)} = \bar{N} \left[2 c_1 m_{\pi}^2 (U + U^{\dagger}) + \left(c_2 - \frac{g_A^2}{8M_N} \right) u_0^2 + c_3 u_{\mu} u^{\mu} + \frac{i}{2} \left(c_4 + \frac{1}{4M_N} \right) \vec{\sigma} \cdot (\vec{u} \times \vec{u}) \right] N
$$

Bernard et al. '97

The 3NF in the Δ -full theory

R. Machleidt

Missing 3NFs: Where are they? INT 09-1, May 26, 2009

49

However, there is a however ...

• For reasons of consistency, the 2NF must then also include \triangle 's---up to N3LO! • So, what does that look like?

In summary:

R. Machleidt

Missing 3NFs: Where are they? INT 09-1, May 26, 2009

53

The chiral 2NF: Δ-less vs. Δ-full

Whatever we decide (Δ -less or Δ -full), it will be impossible to do a complete calculation anytime soon; so what's a good strategy?

• Assume "resonance saturation" for the 2NF, i.e., stay with the present Δ -less N3LO 2NF (this has flaws!) • Add the A-full 3NF at N3LO.

Conclusions

• BNFs beyond N2LO are needed! • The 3NF at N3LO of the A-less theory may be weak and useless. **• This calls for further 3NF contributions:** - A-less N4LO or - A-full N3LO, they will be large, but none will be easy. **• ChPT of nuclear forces has been fairly easy and** straightforward, so far; but what's left won't be easy, no matter how you do it.

The missing three-nucleon forces: Where are they?

They are

Dat N4LO in A-less or Oat N3LO in A-full.

R. Machleidt