πN scattering in the delta-isobar region

--- Towards delta-ful nuclear forces

Bingwei Long (ECT*, U. Arizona)

 $U. \; van \; Kolck \; (\texttt{U. Arizona})$

Outline

Why delta?

Power counting

Fitting phase shifts (preliminary)

Conclusion

Delta in nuclear forces

$$\delta \equiv m_{\Delta} - m_N \approx 300 \text{ MeV} \approx 2 m_{\pi} \ll M_{QCD} (\sim 1 \text{ GeV})$$

Delta-less 3NF makes error of ~25% Pandharipande, Phillips & van Kolck (2005)

An incomplete "recipe" for EFT

- Relevant *degrees of freedom* at low energies
- Symmetries
- *Power counting*: a scheme to weigh numerous contributions

EFT of nuclear physics

Standard ChPT counting

- **one-nucleon** (or purely mesonic) processes

N- π couplings : infinitely many but well organized

Truncation \rightarrow approximation of N- π interactions

Counting pion loops

Assume: renormalization has been properly done.

Check: the established counting provides enough counterterms for renormalization.

Where comes the delta resonance?

 \rightarrow

A resonance *cannot* be generated by a perturbative series

change standard ChPT power counting to generate the delta resonance

In P_{33} channel, the LECs are unnatural

But...

 $N^{\dagger}N \nabla \pi \nabla \pi$ non-renormalizable interactions (NR)

- Isn't EFT supposed to make use of NR interactions?

- Not necessarily so when NR interactions are non-perturbative.

What would happen is...

 \rightarrow promote yet another counterterm \rightarrow

An incomplete "recipe" for EFT

- Relevant *degrees of freedom* at low energies
- Symmetries
- Power counting: a scheme to weigh numerous contributions

Explicit Delta DOF

Delta propagator $\sim \frac{1}{E-\delta}$ E : center-of-mass energy

To produce the delta resonance,

With explicit delta: - Natural LECs

- Resonance arises due to $E - \delta$ diverging

What have been done

Ellis & Tang (1998)

pion-nucleon scattering & explicit delta but very different power counting

Fettes & Meissner (2001)

pion-nucleon scattering & explicit delta but below delta

Pascalutsa & Phillips (2003)

photon-nucleon scattering & explicit delta, similar power counting but $m_{\pi} << \delta << M_{_{QCD}}$

Delta as a nonrelativistic baryon

- $Q \ll M_N$, $M_{\Delta} \rightarrow$ nucleon and delta are nonrelativistic (heavy baryons) If $Q \sim M_N$, ChPT already breaks down
- Perturbative Lorentz invariance in powers of Q/M
- A bottom-up approach (the one we use)
 - Rotational invariant (RI) operators Delta field: 4-component spinor (spin 3/2) e.g. $N^{\dagger}\vec{S}\Delta \cdot \vec{\nabla}\pi$ (isospin suppressed)
 - Order-by-order boost transformation rules constrains coefficients of RI operators

Foldy-Wouthuysen rep.

 $\chi(t,ec{x})$ (2s+1)-component spinor

An infinitesimal boost $\chi'(t, \vec{x}) \equiv (1 - i\vec{\xi} \cdot \vec{K})\chi(t, \vec{x})$ rapidity Boost generators

$$ec{K} = rac{1}{2} \left(ec{x}\omega + \omega ec{x}
ight) - rac{ec{s} imes ec{p}}{m+\omega} - t ec{p}$$

 $ec{p} \equiv -i ec{
abla} \quad \omega \equiv (m^2 + p^2)^{rac{1}{2}} \quad ec{s} : ext{spin operators}$

- ω is nonlocal → not so easy to construct a fully relativistic theory
- A formal expansion in p/m → order-by-order trans. rules for boosts

$$\vec{K}^{(0)} = m\vec{x} - t\vec{p} \quad \text{(Galilean transformation)}$$
$$\vec{K}^{(1)} = \frac{1}{4m} \left(p^2\vec{x} + \vec{x}p^2 \right) - \frac{1}{2m}\vec{s} \times \vec{p}$$

Power counting

one- Δ -reducible : diagrams with a pure delta intermediate state

one- Δ -**ir**reducible: no need to dress regardless of E (standard counting applies)

$$\frac{1}{E+\delta} \sim \frac{1}{E+\delta}$$
 no cancellation between E & δ

Sewing two regions

Two countings for two different regions \rightarrow a piece-wise description ?

P-wave phase shifts (Preliminary)

Dots - PSA inputs (SAID program,
George Washington group)Blue dashed - LO
Red solid - NNLO

Fitted parameters

 $\delta = 318 \text{ MeV}$ *not* Breit-Wigner mass $h_A = 2.48$ leading $\pi N\Delta$ coupling $\kappa = 0.131$ related to subleading $\pi N\Delta$ coupling

P-wave phase shifts (Preliminary)

Conclusion

- Delta is important for nuclear forces

Pion-nucleon scattering around the delta peak $\rightarrow \pi N\Delta$ couplings

- Explicit delta DOF

- A non-standard ChPT power counting

- A good description of π N scattering with 3 parameters