Non-Empirical Pairing Functional

$\begin{array}{ccc} \underline{\mathrm{T. \ Lesinski}}^{1,2} & \mathrm{K. \ Hebeler}^{3,4} & \mathrm{T. \ Duguet}^{3,5} & \mathrm{A. \ Schwenk}^4 \\ & \mathrm{K. \ Bennaceur}^1 & \mathrm{J. \ Meyer}^1 \end{array}$

¹Université de Lyon, Institut de Physique Nucléaire

²Oak Ridge National Laboratory, University of Tennessee

³ESNT, DSM/Irfu/SPhN, CEA Saclay

⁴TRIUMF

⁵NSCL, Michigan State University

EFT & MBT workshop, INT, Seattle, 04/10/2009

イロト スピト メヨト メヨト

Outline		

Introduction EDF with pairing

Non ampirical pairing functional: Formali

- Separable operator representation of $V_{\text{low k}}$
- EDF calculations in spherical nuclei

3 Non-empirical pairing functional: Results

- Hadronic part of $V_{\text{low k}}$
- Results: gaps, Coulomb

In Effective-mass approximation

- Λ -dependence
- Choice of effective mass

Summary

- EDF: only general method applicable to the heavier nuclei
- $\pmb{\mathsf{x}}$ Empirical in nature: limited to observables used for fitting
- ▶ Long-term goal: build a nuclear EDF (partly) from first principles
- Pairing part
 - ✗ Parameters hard to constrain (esp. isovector dependence)
 - ✓ Dominated by ${}^{1}S_{0}$ channel at low density
 - Starting point: use perturbative $V_{\text{low }k}$ at first order
- Origin of superfluidity
 - Relative importance of bare $V_{\text{low }k, \text{ NN}}$?
- Assess first-order $V_{\text{low }k, \text{ NN}}$ contribution to pairing gaps by using
 - \blacksquare $V_{\text{low }k, \text{ NN}}$ (pp channel)
 - A Skyrme EDF with consistent $m^* = m^*_{\text{HF, INM}}$ (ph channel)

イロト イロト イヨト イヨト 二日

■ Starting from effective zero-range, momentum-dependent vertices :

$$\mathcal{E}[\rho,\kappa^*,\kappa] \equiv \sum_{ij} t_{ij} \rho_{ij} + \frac{1}{2} \sum_{ijkl} \overline{V}_{ijkl}^{\rho\rho} \rho_{ik} \rho_{jl} + \frac{1}{4} \sum_{ijkl} \overline{V}_{ijkl}^{\kappa\kappa} \kappa^*_{ij} \kappa_{kl}$$
$$\rho_{ij} = \langle \Phi | c_j^{\dagger} c_i | \Phi \rangle, \qquad \kappa_{ij} = \langle \Phi | c_j c_i | \Phi \rangle$$

Bogolyubov-de Gennes equations

$$\begin{pmatrix} h-\lambda & \Delta \\ -\Delta^* & -h^*+\lambda \end{pmatrix} \begin{pmatrix} U_i \\ V_i \end{pmatrix} = E_i \begin{pmatrix} U_i \\ V_i \end{pmatrix}, h_{ij} = \frac{\delta \mathcal{E}}{\delta \rho_{ji}}, \quad \Delta_{ij} = \frac{\delta \mathcal{E}}{\delta \kappa_{ij}^*}$$

Quasiparticle energy $E_i = \sqrt{(h_{ii} - \lambda)^2 + \Delta_{i\bar{i}}^2}$ (*i*: q.p. or canonical state) Odd-mass nucleus ~ 1-q.p. state: linked to odd-even mass difference

$$\Delta_{n}^{(3)} = \frac{(-1)^{N}}{2} \left[\mathcal{E}(N-1) - 2\mathcal{E}(N) + \mathcal{E}(N+1) \right] \simeq \Delta_{\text{LCS}}^{n}(N) \text{ (Nodd)}$$

■ Starting from effective zero-range, momentum-dependent vertices :

$$\mathcal{E}[\rho,\kappa^*,\kappa] \equiv \sum_{ij} t_{ij} \rho_{ij} + \frac{1}{2} \sum_{ijkl} \overline{V}_{ijkl}^{\rho\rho} \rho_{ik} \rho_{jl} + \frac{1}{4} \sum_{ijkl} \overline{V}_{ijkl}^{\kappa\kappa} \kappa^*_{ij} \kappa_{kl}$$
$$\rho_{ij} = \langle \Phi | c_j^{\dagger} c_i | \Phi \rangle, \qquad \kappa_{ij} = \langle \Phi | c_j c_i | \Phi \rangle$$

Bogolyubov-de Gennes equations

$$\begin{pmatrix} h-\lambda & \Delta \\ -\Delta^* & -h^*+\lambda \end{pmatrix} \begin{pmatrix} U_i \\ V_i \end{pmatrix} = E_i \begin{pmatrix} U_i \\ V_i \end{pmatrix}, h_{ij} = \frac{\delta \mathcal{E}}{\delta \rho_{ji}}, \quad \Delta_{ij} = \frac{\delta \mathcal{E}}{\delta \kappa_{ij}^*}$$

- Quasiparticle energy $E_i = \sqrt{(h_{ii} \lambda)^2 + \Delta_{ii}^2}$ (*i*: q.p. or canonical state)
- Odd-mass nucleus \sim 1-q.p. state: linked to odd-even mass difference

$$\Delta_{n}^{(3)} = \frac{(-1)^{N}}{2} \left[\mathcal{E}(N-1) - 2\mathcal{E}(N) + \mathcal{E}(N+1) \right] \simeq \Delta_{\text{LCS}}^{n}(N) \text{ (Nodd)}$$

■ Starting from effective zero-range, momentum-dependent vertices :

$$\mathcal{E}[\rho,\kappa^*,\kappa] \equiv \sum_{ij} t_{ij} \rho_{ij} + \frac{1}{2} \sum_{ijkl} \overline{V}_{ijkl}^{\rho\rho} \rho_{ik} \rho_{jl} + \frac{1}{4} \sum_{ijkl} \overline{V}_{ijkl}^{\kappa\kappa} \kappa^*_{ij} \kappa_{kl}$$
$$\rho_{ij} = \langle \Phi | c_j^{\dagger} c_i | \Phi \rangle, \qquad \kappa_{ij} = \langle \Phi | c_j c_i | \Phi \rangle$$

Bogolyubov-de Gennes equations

$$\begin{pmatrix} h-\lambda & \Delta \\ -\Delta^* & -h^*+\lambda \end{pmatrix} \begin{pmatrix} U_i \\ V_i \end{pmatrix} = E_i \begin{pmatrix} U_i \\ V_i \end{pmatrix}, h_{ij} = \frac{\delta \mathcal{E}}{\delta \rho_{ji}}, \quad \Delta_{ij} = \frac{\delta \mathcal{E}}{\delta \kappa_{ij}^*}$$

■ Quasiparticle energy E_i = √(h_{ii} - λ)² + Δ²_{ii} (i: q.p. or canonical state)
➡ Odd-mass nucleus ~ 1-q.p. state: linked to odd-even mass difference

$$\Delta_{n}^{(3)} = \frac{(-1)^{N}}{2} \left[\mathcal{E}(N-1) - 2\mathcal{E}(N) + \mathcal{E}(N+1) \right] \simeq \Delta_{\text{LCS}}^{n}(N) \text{ (Nodd)}$$

Introduction $OO \bullet$			
Introduction : "S	kyrme" EDF		

- Kohn-Sham-like approach : Minimize $\mathcal{E}[\rho, \kappa]$, with ρ and κ characterizing a Bogolyubov quasiparticle vacuum (BCS state) $|\Phi\rangle$.
- Form of the functional (particle-hole)
 - Integral of an energy density bilinear in ρ + "density-dependent" terms
 - Local + up to 2^{nd} -order derivatives

$$\mathcal{H}_{\text{Skyrme}} = \sum_{t=0,1} \left\{ C_t^{\rho}[\rho_0] \rho_t^2 + C_t^{\Delta \rho} \rho_t \Delta \rho_t + C_t^{\tau} \rho_t \tau_t + \frac{1}{2} C_t^J \vec{J}_t^2 + C_t^{\nabla \cdot J} \rho_t \nabla \cdot \vec{J}_t \right\}$$

Outline		

2 Non-empirical pairing functional: Formalism

- Separable operator representation of $V_{\text{low k}}$
- EDF calculations in spherical nuclei

3 Non-empirical pairing functional: Results

- Hadronic part of $V_{\text{low k}}$
- Results: gaps, Coulomb

4) Effective-mass approximation

- Λ -dependence
- Choice of effective mass

5 Summary

If High precision separable representation of rank n

$$V_n^{1}S_0(k,k';\Lambda) = \sum_{\alpha=1}^n g_\alpha(k) \lambda_\alpha g_\alpha(k')$$

Fit of $g_{\alpha}(k)$ and λ_{α} to $V_{\text{low }k}^{^{1}S_{0}}(k,k';\Lambda)$ and $T_{\text{low }k}^{^{1}S_{0}}(k,k';k^{2};\Lambda)$ For $\Lambda = 1.8/4.0/"\infty" \text{ fm}^{-1}$ (rank 2/4/9) and smooth cutoff

If High precision separable representation of rank n

$$V_n^{1}S_0(k,k';\Lambda) = \sum_{\alpha=1}^n g_\alpha(k) \lambda_\alpha g_\alpha(k')$$

Fit of $g_{\alpha}(k)$ and λ_{α} to $V_{\text{low }k}^{^{1}S_{0}}(k,k';\Lambda)$ and $T_{\text{low }k}^{^{1}S_{0}}(k,k';k^{2};\Lambda)$

For $\Lambda = 1.8/4.0/$ " ∞ " fm⁻¹ (rank 2/4/9) and smooth cutoff

If High precision separable representation of rank n

$$V_n^{1}S_0(k,k';\Lambda) = \sum_{\alpha=1}^n g_\alpha(k) \lambda_\alpha g_\alpha(k')$$

Fit of $g_{\alpha}(k)$ and λ_{α} to $V_{\text{low }k}^{^{1}S_{0}}(k,k';\Lambda)$ and $T_{\text{low }k}^{^{1}S_{0}}(k,k';k^{2};\Lambda)$ For $\Lambda = 1.8/4.0/"\infty"$ fm⁻¹ (rank 2/4/9) and smooth cutoff

Separable force in coordinate-space

$$\langle \mathbf{r}_1' \mathbf{r}_2' | V^{^1S_0} | \mathbf{r}_1 \mathbf{r}_2 \rangle = \sum_{\alpha} G_{\alpha}(s') \lambda_{\alpha} G_{\alpha}(s) \, \delta(\mathbf{R}' - \mathbf{R}),$$

$$\mathbf{s} = \mathbf{r}_1 - \mathbf{r}_2, \quad \mathbf{R} = (\mathbf{r}_1 + \mathbf{r}_2)/2$$

■ Coordinate-space form factor $G_{\alpha}(s)$: Fourier transform $g_{\alpha}(k)$

"Pseudo-local" pairing functional

$$E_{\text{pair}}[\kappa^*,\kappa] = \frac{1}{2} \int d^3 \mathbf{R} \sum_{\alpha=1}^n \check{\chi}^*_{\alpha}(\mathbf{R}) \,\lambda_{\alpha} \,\check{\chi}_{\alpha}(\mathbf{R})$$

The effective pair densities $\check{\chi}_{\alpha}(\mathbf{R})$ contain the finite range/non-locality of the pairing vertex

$$\check{\chi}_{\alpha}(\mathbf{R}) = \int d^{3}\mathbf{s} \sum_{\sigma} (-)^{\frac{1}{2}-\sigma} G_{\alpha}(s) \,\kappa\left(\mathbf{R}+\frac{\mathbf{s}}{2},\sigma;\mathbf{R}-\frac{\mathbf{s}}{2},-\sigma\right)$$

Non-local potential and pairing field

・ロト ・日ト ・ヨト ・ヨト

Introduction
ocoFormalism
ocoResults
ocoEff. mass
ocococoSummary
ococococoEDF calculations in spherical nuclei (2)

■ Define a reduced two-body wave function

4

$$\begin{split} \check{\Psi}^{\alpha}_{i\hat{j}}(\mathbf{R}) &= \int d^{3}\mathbf{s} \ G_{\alpha}(s)\Psi_{i\hat{j}}(\mathbf{R}+\mathbf{s}/2,\mathbf{R}-\mathbf{s}/2) \\ \Psi_{ij}(\mathbf{r},\mathbf{r}') &= \sum_{\sigma} (-)^{s-\sigma}\phi_{i}(\mathbf{r},\sigma)\phi_{j}(\mathbf{r}',-\sigma). \end{split}$$

The φ_i are basis functions : the Ψ^α_{ij}(**R**) are computed once
Build densities and pairing field matrix elements

$$\begin{split} \breve{\chi}_{\alpha}(\mathbf{R}) &= \sum_{ij;\ i>0, j<0} \breve{\Psi}_{ij}^{\alpha}(\mathbf{R}) \ \kappa_{ij} \\ \Delta_{\alpha}(\mathbf{R}) &= \frac{1}{2} \sum_{\alpha} \lambda_{\alpha} \ \breve{\chi}_{\alpha}(\mathbf{R}) \\ \Delta_{ij} &= \sum_{\alpha} \int d^{3}\mathbf{R} \ \breve{\Psi}_{ij}^{\alpha}(\mathbf{R}) \ \Delta_{\alpha}(\mathbf{R}) \end{split}$$

■ Basic tool: CoM/relative coordinate separation in spherical symmetry

- Basis of spherical Bessel functions $j_{\ell}(kr)$, $k < k_{\max} = \Lambda + 1.0 \text{ fm}^{-1}$
- ✓ Natural representation for continuum states (\rightarrow drip line...)

Outline		

• EDF with pairing

2 Non-empirical pairing functional: Formalism

- Separable operator representation of $V_{\rm low\ k}$
- EDF calculations in spherical nuclei

8 Non-empirical pairing functional: Results

- Hadronic part of $V_{\text{low k}}$
- Results: gaps, Coulomb

I Effective-mass approximation

- Λ -dependence
- Choice of effective mass

5 Summary

・ロト ・回ト ・ヨト ・ヨト

- $\blacksquare E_{LQP}: lowest quasiparticle energy,$ $<math display="block">\Delta_{LCS}: corresponding gap$
- Theoretical Δ_{LCS}^{n} close (n) or above (p) exp. $\Delta_{\text{odd}}^{(3)}$ values

Coulomb decreases gaps by $\sim 30\%$

 \blacksquare $V_{\rm NN}$ (incl. Coulomb) at first order matches the magnitude of the gaps

■ Coulomb effect consistent with Madrid group (Gogny)

		$\begin{array}{c} \text{Results} \\ 0 \\ 0 \\ 0 \\ \end{array}$		
HF effective mass				

・ロト ・回ト ・ヨト ・ヨト

Outline		

1 Introduction

• EDF with pairing

2 Non-empirical pairing functional: Formalism

- Separable operator representation of $V_{\text{low k}}$
- EDF calculations in spherical nuclei

(3) Non-empirical pairing functional: Results

- Hadronic part of $V_{\text{low k}}$
- Results: gaps, Coulomb

4 Effective-mass approximation

- Λ -dependence
- Choice of effective mass

5 Summary

Milan group: SLy4 + Argonne v_{14} yields ca. 1 MeV gap in ¹²⁰Sn (A. Pastore et al. PRC 78 (2008) 024315)

		Eff. mass 0●00000	
Λ -dependence: SLy4			

■ Non-local pair density in ¹²⁰Sn

Short-range part Λ -dependent

■ Long-range part Λ -independent up to $\Lambda \simeq 4.0 \text{ fm}^{-1}$

ъ

・ロト ・日ト ・ヨト

		Eff. mass 00●0000	
Some comments			

- Missing in this calculation:
 - Higher partial waves
 - ▼ Three-body force
 - ▼ Two-body CoM correction (H. Hergert, R. Roth)
 - A Phonon coupling
 - ▲ Coulomb screening ?
 - Blocking
- These effects seem to cancel out "near" the valley of stability
- ✗ Still valid in highly asymmetric nuclei ?
 - High isospin asymmetry \Rightarrow effect of NNN on proton gaps ?
 - ➡ Continuum effects beyond first order ?
- Λ -dependence: soft \neq hard interactions
- Genuine disagreement likely
- Issue: effective-mass approximation (cf. Kai Hebeler yesterday)
 - Skyrme-EDF has $m^*(\rho)$, not $m^*(\rho,k)$
 - **Reliable approximation with low-momentum** V_{NN}
 - Uncertainty due to m^* averaging with hard V_{NN}

		Eff. mass 00●0000	
Some comments			

- Missing in this calculation:
 - Higher partial waves
 - ▼ Three-body force
 - ▼ Two-body CoM correction (H. Hergert, R. Roth)
 - A Phonon coupling
 - ▲ Coulomb screening ?
 - Blocking
- These effects seem to cancel out "near" the valley of stability
- ✗ Still valid in highly asymmetric nuclei ?
 - High isospin asymmetry \Rightarrow effect of NNN on proton gaps ?
 - ➡ Continuum effects beyond first order ?
- Λ -dependence: soft \neq hard interactions
- Genuine disagreement likely
- Issue: effective-mass approximation (cf. Kai Hebeler yesterday)
 - Skyrme-EDF has $m^*(\rho)$, not $m^*(\rho,k)$
 - Reliable approximation with low-momentum V_{NN}
 - Uncertainty due to m^* averaging with hard V_{NN}

		Eff. mass 00●0000	
Some comments			

- Missing in this calculation:
 - Higher partial waves
 - ▼ Three-body force
 - ▼ Two-body CoM correction (H. Hergert, R. Roth)
 - A Phonon coupling
 - ▲ Coulomb screening ?
 - Blocking
- These effects seem to cancel out "near" the valley of stability
- ✗ Still valid in highly asymmetric nuclei ?
 - High isospin asymmetry \Rightarrow effect of NNN on proton gaps ?
 - ➡ Continuum effects beyond first order ?
- Λ -dependence: soft \neq hard interactions
- Genuine disagreement likely
- Issue: effective-mass approximation (cf. Kai Hebeler yesterday)
 - Skyrme-EDF has $m^*(\rho)$, not $m^*(\rho,k)$
 - \blacksquare Reliable approximation with low-momentum V_{NN}
 - Uncertainty due to m^* averaging with hard V_{NN}

Soft V_{NN} : HF m^*

I Hard V_{NN} : BHF k-mass, averaged over k or point-evaluated at $k_{\rm F}$

メロト メタト メミト メミト

			0000000	
Effective-mass approximation				

・ロト ・回ト ・ヨト ・ヨト

- Consistent treatment of self-energy effects: ω -dependence of $\Sigma(k,\omega)$
 - Pole approximation: $Z(k) = [1 + \partial_{\omega} \Sigma(k, \omega)|_{\omega = \varepsilon_k}]^{-1}$
 - Soft interaction: HF m^*
 - Hard interaction: BHF total m^* and Z(k), averaged over k or point-evaluated

			Eff. mass 000000●	
Effective-mass app	proximation – ful	l self-energy		

・ロト ・回ト ・ヨト ・ヨト

Outline		

Introduction

• EDF with pairing

2 Non-empirical pairing functional: Formalism

- Separable operator representation of $V_{\text{low k}}$
- EDF calculations in spherical nuclei

Son-empirical pairing functional: Results

- Hadronic part of $V_{\text{low k}}$
- Results: gaps, Coulomb

Effective-mass approximation

- Λ -dependence
- Choice of effective mass

5 Summary

Summary and out	look		

- Systematic calculation of pairing gaps in spherical nuclei
- Low-momentum NN interaction (including Coulomb potential) yields gaps of the order of exp. mass differences
 - ➡ Stong reduction of proton gaps due to Coulomb
 - ▶ Effects beyond present calculation cancel each other ?
 - Corrections at first order (NNN,CoM...) should leave room for higher orders
- Future work with separable forces
 - 3-body force, through an LDA or DME scheme (TL, K. Hebeler, A. Schwenk, T. Duguet)
 - DME: non-empirical local pairing functional (B. Gebremariam, S. Bogner, T.Duguet)
 - Other channels of the interaction $({}^{3}P, {}^{1}D)$ to be added (S. Baroni)

・ロト ・日ト ・ヨト ・ヨト

Thank you !		

Non-Empirical Pairing Functional

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Two-body CoM c	orrection		

・ロト ・回ト ・ヨト ・ヨト

$V_{\text{low }k}$ vs. Argoni	ne		

Coulomb / INM	gaps		

æ

・ロト ・御 ト ・ ヨ ト ・ ヨ ト