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Outline

What is lattice effective field theory?

Computational strategies on the lattice

Dilute neutron matter at NLO

Studies of light nuclei at NNLO

New connections, summary, and FAQ’s

Chiral effective field theory for nucleons

Auxiliary fields, signs, and complex actions 

Phase shifts and unknown operator coefficients 



First lattice EFT simulation of nuclear and neutron matter: 

Müller, Koonin, Seki, van Kolck, PRC 61 (2000) 044320

Non-linear realization of chiral symmetry with static nucleons:

Chandrasekharan, Pepe, Steffen, Wiese, JHEP 12 (2003) 35

Chiral perturbation theory using lattice regularization: 

Shushpanov, Smilga, Phys. Rev. D59: 054013 (1999); 

Lewis, Ouimet, PRD 64 (2001) 034005; 

Borasoy, Lewis, Ouimet, hep-lat/0310054

Recent review: D.L., 0804.3501 [nucl-th]

First lattice study of nuclear matter (using momentum lattice):

Brockman, Frank, PRL 68 (1992) 1830
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Early lattice EFT work



Bulgac, Drut, Magierski, PRL 96 (2006) 090404; 

PRA 78 (2008) 023625; …

Juillet, New J. Phys. 9 (2007)163

Burovski, Prokofev, Svistunov, PRL 96 (2006) 160402; 

New J. Phys. 8 (2006) 153; …

Wingate, cond-mat/0502372

Abe, Seki, 0708.2523; 0708.2524
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D.L., Schaefer, PRC 73 (2006) 015202; …

Pionless EFT for neutrons / Unitarity limit

Review: D.L., 0804.3501, PPNP in press

Chen, Kaplan, PRL 92 (2004) 257002
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Lattice EFT for nucleons
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Construct the effective potential order by order

…

Solve Lippmann-Schwinger equation non-perturbatively

Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3
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Chiral EFT for low-energy nucleons



Ordonez et al. ’94; Friar & Coon ’94; 
Kaiser et al. ’97; Epelbaum et al. ’98,‘03; 

Kaiser ’99-’01; Higa et al. ’03; …
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Nuclear

Scattering Data

Effective

Field Theory
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Leading order on lattice
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Next-to-leading order on lattice
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Computational strategy
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LO
Non-perturbative – Monte Carlo Perturbative corrections

“Improved LO”
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Lattice formulations



Free nucleons:

Free pions:

Pion-nucleon coupling:
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Euclidean-time transfer matrix



CI contact interaction:

C contact interaction:
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… with auxiliary fields
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Mij(s; sI; ¼I) = h~pijM(Lt¡1)(s; sI; ¼I) ¢ ¢ ¢M(0)(s; sI; ¼I) j~pji

hÃinitjM(Lt¡1)(s; sI; ¼I) ¢ ¢ ¢ ¢ ¢M(0)(s; sI; ¼I) jÃiniti = detM(s; sI; ¼I)

Auxiliary-field determinantal Monte Carlo

¿2M¿2 =M
¤

For A nucleons, the matrix is A by A.

For the leading-order calculation, if there is no pion coupling and the 

quantum state is an isospin singlet then

This shows the determinant is real.  Actually can show the determinant 

is positive semi-definite.
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With nonzero pion coupling the determinant is real for a spin-singlet 

isospin-singlet quantum state

¾2¿2M¾2¿2 =M
¤

but the determinant can be both positive and negative

Some comments about Wigner’s approximate SU(4) symmetry…

Theorem: Any fermionic theory with SU(2N) symmetry and two-body 

potential with negative semi-definite Fourier transform 

obeys SU(2N) convexity bounds (see next slide)

Corollary: It can be simulated without sign oscillations
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Chen, D.L. Schäfer, PRL 93 (2004) 242302;

D.L., PRL 98 (2007) 182501
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SU(2N) convexity bounds
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jÃinitihÃinitj

=MLO =MSU(4) =Oobservable

jÃinitihÃinitj

Znt;LO =

Z
hOi
nt;LO

=

e¡E0;LOat = limnt!1Znt+1;LO=Znt;LO

hOi0;LO = limnt!1Z
hOi
nt;LO

=Znt;LO

=MNLO =MNNLO

Hybrid Monte Carlo sampling
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Schematic of projection calculations 
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LO3:  Gaussian smearing only in even partial waves

LO1:  Pure contact interactions

LO2:  Gaussian smearing
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Unknown operator

coefficients

Physical 

scattering data

Spherical wall imposed in the center of 

mass frame

Spherical wall method
Borasoy, Epelbaum, Krebs, D.L., Meißner, 

EPJA 34 (2007) 185
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Energy levels with hard spherical wall

Energy shift from free-particle values gives the phase shift
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LO3:  S waves
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LO3:  P waves
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Neutron-neutron scattering amplitude:

Unitarity limit:

ξ is a dimensionless number

Neutron matter close to unitarity limit for 
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Dilute neutrons and the unitarity limit

Free Fermi gas ground state Unitarity limit ground state
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Dilute neutron matter at NLO



N = 8, 12, 16 neutrons at L3 = 43, 53, 63, 73

Epelbaum, Krebs, D.L, Meißner, 0812.3653 [nucl-th], EPJA in press
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Borasoy, Epelbaum, Krebs, D.L, Meißner, 0712.2993, EPJA35 (2008) 357

Earlier lattice results
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Agreement when perturbatively calculated 

NLO corrections for each are small
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Fit cD and cE to spin-1/2 nucleon-deuteron 

scattering and 3H binding energy
E D

3H binding energy

Fitting point

Spin-1/2 nucleon-deuteron
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Three-body forces at NNLO



Spin-3/2 nucleon-deuteron scattering
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Alpha-particle energy
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(no Coulomb, isospin symmetric)



jÃinitihÃinitjZnt;LO =

Storing lattice EFT configurations for further EFT calculations

Config. #XXXXXX

jÃinitihÃinitj

jÃinitihÃ0initj

Correlation functions, soft pion scattering, neutrino scattering, etc.

Transition matrix elements of light nuclei

38

New connections: lattice EFT ↔ analytic EFT



Finite volume matching for two-nucleon states

For the same periodic volume, compute two-nucleon energies in 

Lattice QCD and match to two-nucleon energies Lattice EFT

Pion mass dependence?

p

n n

p

E(L) E(L)

39

New connections: lattice EFT ↔ lattice QCD



Calculate gA for the two-neutron state at finite volume 

For given lattice spacing in lattice EFT, use the value of gA

obtained via Lattice QCD at the same volume to fix cD

n

n

cD

gA(L) gA(L)
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Testing quark-hadron duality in region of overlap



Promising but relatively new tool that combines the framework of

effective field theory and computational lattice methods

Applications to zero and nonzero temperature simulations of cold

atoms, light nuclei, neutron matter

Summary



Keep going – higher orders, smaller lattice spacing, larger volume, 

more nucleons

Include Coulomb effects and isospin breaking effects

SU(4) models of asymmetric nuclear matter (no sign oscillations)

Future directions
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Storing lattice EFT configurations for general use

Soft pion, neutrino, and neutron scattering on light nuclei



For what nuclear systems can lattice approaches be used to implement EFT? 

How can we improve the many-body methods using EFT idea/methods?

How do the low-energy theories of many interacting atoms and 

of many interacting nucleons compare?

Frequently Asked Questions on EFT and Many-Body Physics

http://www.physics.ohio-state.edu/~ntg/eftfaq/


