Extended EDF with Density-Dependent Coupling Constants

Markus Kortelainen

Department of Physics and Astronomy, UT, Knoxville, TN 37996, USA Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Outline

- Skyrme EDF
- Extensions of Skyrme EDF
- Density dependent coupling constants
- Single particle energies
- Unstable region
- Conclusions

Skyrme EDF

 $E_t^{even} = C_t^{\rho} \rho_t^2 + C_t^{\tau} \rho_t \tau_t + C_t^{\Delta \rho} \rho_t \Delta \rho_t^2 + C_t^{\nabla J} \rho_t \nabla J_t + C_t^{J} J_t^2 , t=0,1$ $C_t^{\rho} = C_{t0}^{\rho} + C_{tD}^{\rho} \rho_0^{\sigma}$

- Uses local density approximation
- Density dependence included only in ρ_t^2 term
- Derivatives of densities up to second order

Skyrme EDF

Skyrme EDF

Possible extensions of EDF

- Higher order terms
- Density dependent coupling constants
- A mixture of these two
- All extended functionals should include also Skyrme

Higher order terms

No.		$C_{mI,nLvJ}^{n'L'v'J'}$	${}^{\rho}n'L'v'J'$ Time-even	D_{mI}	ρ_{nLvJ} Time-even
1	•	$C^{0000}_{40,0000}$	[ρ] ₀	$[\nabla\nabla]_0^2$	[ρ] ₀
2	٠	$C^{0000}_{20,2000}$	$[\rho]_0$	$[\nabla \nabla]_0$	$[[kk]_0 \rho]_0$
3	٠	$C^{0000}_{22,2202}$	$[\rho]_0$	$[\nabla \nabla]_2$	$[[kk]_2\rho]_2$
4	٠	$C^{0000}_{00,4000}$	$[\rho]_0$	1	$[[kk]_{0}^{2}\rho]_{0}$
5	٠	$C^{2000}_{00,2000}$	$\left[\left[kk\right]_{0} ho ight]_{0}$	1	$[[kk]_0\rho]_0$
6	•	$C^{2202}_{00,2202}$	$[[kk]_2\rho]_2$	1	$[[kk]_2\rho]_2$

B. G. Carlsson et. al. Phys. Rev. C78, 044326 (2008)

Density-dependent coupling constants

I. Density dependence of all the coupling constants

For the time-reversal and spherical symmetries imposed, the extended EDF reads

 $egin{aligned} \mathcal{H}_t(r) &= C_t^
ho
ho_t^2 + C_t^ au
ho_t au_t + C_t^{\Delta
ho}
ho_t \Delta
ho_t \ &+ rac{1}{2} C_t^J J_t^2 + C_t^{
abla J}
ho_t
abla \cdot J_t \ &+ C_t^{
abla
ho} (
abla
ho_t)^2 \ &+ C_t^{
abla
ho'} (
abla
ho_t) \cdot J_t \end{aligned}$

and depends linearly on 38 coupling constants,

 $C_t^{\rho}, \quad C_t^{\tau}, \quad C_t^{\Delta \rho}, \quad C_t^{\mathrm{J}}, \quad \mathrm{and} \quad C_t^{\nabla \mathrm{J}},$

 $\alpha_t^{\rho}, \ \alpha_t^{\tau}, \ \alpha_t^{\Delta \rho}, \ \alpha_t^{\mathrm{J}}, \ \alpha_t^{\nabla \mathrm{J}}, \ \alpha_t^{\nabla \rho}, \ \mathrm{and} \ \alpha_t^{\nabla \rho'},$

 $\beta_t^\rho, \ \beta_t^\tau, \ \beta_t^{\Delta\rho}, \ \beta_t^{\mathrm{J}}, \ \beta_t^{\nabla \mathrm{J}}, \ \beta_t^{\nabla\rho}, \ \mathrm{and} \ \beta_t^{\nabla\rho'},$

for t = 0 and 1, i.e.,

$$C_t^m(
ho_0,
ho_1) = C_t^m \left[1 + lpha_t^m \left(1 - \left(rac{
ho_0}{
ho_{ ext{sat}}}
ight)^{\gamma_t^m}
ight) + eta_t^m \left(\left(rac{
ho_1}{
ho_{ ext{sat}}}
ight)^2
ight)^{\eta_t^m}$$

and on 28 powers γ_t^m and η_t^m .

Density-dependent coupling constants

- Inside the nucleus coupling constant remains close to its original value
- On surface the value of the coupling constant changes

Nuclear matter properties

- 8 nuclear matter parameters
- Symmetric nuclear matter: E/A, ρ_{sat}, K_∞, m*_s

Asymmetric nuclear matter:

 $\mathbf{a}_{\text{sym}},\,\mathbf{L}_{\text{NM}},\,\Delta\mathbf{K}_{\text{NM}},\,\mathbf{m^{*}}_{\text{v}}$

• 8 EDF parameters fixed: $C^{\rho}_{0}, C^{\rho}_{1}, C^{\tau}_{0}, C^{\tau}_{1},$ $\alpha^{\rho}_{0} \alpha^{\rho}_{1}, \alpha^{\tau}_{0}, \alpha^{\tau}_{1}$

- Powers $\gamma_{0,}^{\rho} \gamma_{1}^{\rho}, \gamma_{0,}^{\tau}$ γ_{1}^{τ} free parameters
- $\beta^{\rho}_{0}, \beta^{\rho}_{1}, \beta^{\tau}_{0}, \beta^{\tau}_{1}$, and $\eta^{\rho}_{0}, \eta^{\rho}_{1}, \eta^{\tau}_{0}, \eta^{\tau}_{1}$ free parameters in volume part

Saturation curves

Powers γ^{ρ} and γ^{τ} in finite nuclei

- Nuclear matter properties fix the saturation curve at saturation density
- Below saturation density the effect of γ^ρ and γ^τ on the shape of the saturation curve is small
- Effect of γ^ρ and γ^τ on the finite nuclei is also small on masses

RMS of the masses [MeV] with c.m. Included. SLy4: 1.99MeV $\gamma_{0,1}^{t}$ PRELIMINARY RESULTS

 $\gamma^{\tau}_{0,1}$ 0.1 0.2 0.6 8.0 0.3 0.4 0.5 0.7 0.9 1.0 1.56 1.56 1.53 0.1 1.57 1.55 1.57 1.54 1.55 1.50 1.54 0.2 1.62 1.61 1.63 1.62 1.63 1.61 1.59 1.61 1.64 1.61 $\gamma^{\rho}_{0,1}$ 0.3 1.62 1.68 1.63 1.66 1.67 1.69 1.71 1.70 1.72 1.73 0.4 1.62 1.66 1.68 1.71 1.72 1.75 1.77 1.80 1.82 1.83 0.5 1.64 1.67 1.69 1.73 1.76 1.78 1.82 1.86 1.89 1.92 0.6 1.56 1.67 1.69 1.74 1.78 1.81 1.84 1.91 1.95 1.99

 Removing the c.m. correction makes dependency on powers even smaller in masses

Density dependence on $C^{\nabla \rho}_{0}$

• Density dependent $C^{\nabla \rho}_{0}$ seems to improve fitted masses

On charge radii improvement seems to be even better

 $\gamma^{0}_{0,1}=1/6$

SLy4: 1.99 [MeV]

Single particle energies

- Instead of considering nuclear bulk properties one could also fit only to the single-particle energies
- s.p. energies in ¹⁶O, ^{40,48}Ca, ⁵⁶Ni, ¹³²Sn, and ²⁰⁸Pb studied

Single particle energies

For linear one-step fit one needs to know the linear regression coefficients

Fitting coupling-constants to s.p. energies

E

Single particle energies

- Fit only to the single-particle energies, all other properties disregarded
- Linear one-step fit predicts rms for s.p. energies \approx 0.6 0.7MeV, when all C's, α 's, and β 's adjusted (Sly5: rms \approx 1.6 Mev)
- Very small dependency on the powers γ and η

Single particle energies and unstable region

- Parameters coming from the one-step linear fit outside the stable region of the HFB solution
- Real rms probably around 0.9 MeV. By adjusting only Cc's one can get rms around 1.1 MeV

Unstable region of the HFB solution

- Some areas in the parameter space are unstable
- Nuclear matter RPA can give some of the stability limits, but not all of them
- Limits coming from the RPA are in good agreement with HFB calculations
- The lower limit of $\gamma^{\Delta\rho}$ is probably related to surface instabilities

K. Mizuyama, to be published

Conclusions

- Possible expansions of Skyrme EDF include higher order terms and density dependent coupling constants
- For infinite nuclear matter only certain powers $\gamma^{\!\rho}$ and $\gamma^{\!\tau}$ give acceptable saturation curves
- γ^o and γ^t (when reasonable) can not affect much to the saturation curve below saturation density. Also, effect on finite nuclei is small
- Density dependence on $C^{\nabla\rho}_{0}$ improves masses and charge radii
- Density dependency can not improve much single particle energies
- Parameter space is limited by unstable region

Open questions and future plans

- Effect of other density-dependent volume terms in functional
- Which of the 38 coupling constant parameters are important
- Values of the powers γ and η
- Mapping of the stable region of the HFB solution
- Density dependence on deformed nuclei
- Other density-dependent functionals (DME, Fayans, ...)

ORNL/UTK T. Lesinski W. Nazarewicz N. Schunck M. Stoitsov Warsaw/Jyväskylä Jacek Dobaczewski FiDiPro team

University of Lyon K. Bennaceur

