Three-Body Problem; Low Momentum Interactions and Offshell Effects

H.S. Kohler Physics Department University of Arizona Tucson AZ

Motivation

EFT has brought us into a new era for nuclear many-body theory. Combine this with what we learnt for the past 50 years, what do we get. I try to answer some questions, but may generate more questions. Numerical exercises for nuclear matter and the Triton making things as simple as possible, not looking for a quantitative solution but only extracting what I think is important.

Relevance for shell model calculations?

Topics of concern related to EFT are:

- In-medium 'effective' Interactions.
- Momentum cut-offs and off-shell effects.
- Three-body, Many-body.....
- Observables and UN-observables

- Main Topic:
- Triton energy.
- n-Deuteron scattering length.
- Momentum cut-off.
- Effect of short-ranged (high momentum) repulsion on low momentum effective interactions.
- On-shell NN-potential by Inverse Scattering, exact fits.
- Nuclear Matter, what can we learn?
- S-state potentials are separable.
- Off-shell is unobservable but if separable??!!.
- Off-shell-----Three-body connection.
- Effect of high energy off-shell on low momentum Triton and n-D.

- I shall not get into the business of constructing QCD (meson) theoretical potentials.
- Instead I take a short-cut by taking the information experiments can give.
- Inputs in my calculations are:
- 2-body scattering phase-shifts
- Deuteron data matched to Bonn-A,B,C

My experimental Aircraft

- Of course this is not enough to uniquely define a potential or T-matrix or ...
- Off-shell important in many-body problem
- Two potentials may be 'phase-shift' equivalent but off-shell difference gives different many-body results.
- I'll get back to that.

2-body scattering

Freespace :

$$T = V + V \frac{1}{e_0 + i\eta} T \quad \text{scattering } e^{i\delta} \sin \delta$$

$$R = V + PV \frac{1}{e_0} R \quad \text{React ance matrix } \tan \delta / k$$

$$In - medium :$$

$$K = V + V(Q/e)K \quad \text{Brueckner Reaction matrix}$$

$$"Effective Interaction"$$

$$Q \text{ is Pauli operator}$$

$$e_0 = k^2 - k^{2}$$

 $e = e_0 + mean$ field

NOTE:

In the limit $Q \to 1, e \to e_0$ $K \neq R$ Instead $\langle k | K | k \rangle = \delta(k)$

R-matrix generalised (e.g. for Triton) $t(k,k',\omega) = V(k,k') + V(k,k'') \frac{1}{\omega - k''^2} t(k'',k',\omega)$

Separable potential Inverse Scattering

Assume a rank-1 attractive potential:

$$V(\mathbf{k},\mathbf{k}') = -\mathbf{v}(\mathbf{k})\mathbf{v}(\mathbf{k}')$$
phase shifts (input)
$$v^{2}(k) = -\frac{(4\pi)^{2}}{k}\sin\delta(k) |D(k^{2})|$$

Then by 'standard' inverse scattering techniques: Principal value

D

$$D(k^2) = \frac{k^2 + E_B}{k^2} \exp\left[\frac{2}{\pi} P \int_0^\infty \frac{k' \delta(k')}{k^2 - k'^2} dk'\right]. \quad E_B \text{ is binding energy.}$$

- Why use separable potentials?
- 1. Inverse Scattering with exact fit to On-shell data and the Deuteron.
- 2. 'Realistic' for S-states, pole at zero energy
- 3. Higher rank potentials to adjust Off-shell (Ranks varying from1 to 4 are used here)

Example, Unitary limit :

Infinite scattering length, effective range = 0:

$$\delta(k) = \frac{\pi}{2}$$
$$v^{2}(k) = -\frac{4\pi}{\sqrt{\Lambda^{2} - k^{2}}}$$

Brueckner Theory

 Brueckner theory in its 'standard' form contains the minimal physics needed around saturation density. Less is doomed to failure. More is better.

Two- and three-body diagrams in Brueckner theory

Main 3-body saturation

Two-body ladders

'rearrangement' Saturation of finite nuclei For separable potential

In-medium effective Interaction

Compare Bonn-B and Separable										
Separable fits Arndt phases and										
Bonn-B Deuteron										
${}^{1}S_{0}$			${}^{3}S_{1}$							
k_{f}	Bonn	Sep	Bonn	Sep						
1.35	-16.66	-16.57	-21.34	-21.33						
1.60	- 22.62	-22.76	- 26.59	- 26.27						
1.90	-28.72	- 29.84	- 31.36	- 31.45						

Brueckner Nuclear Matter energies/particle contributions

	Brueckner with Bonn-B and								
separable.									
	k_F 1.3 Bonn - B	\downarrow	I.60 Bonn - B	\downarrow	1.90 Bonn - B	\downarrow			
${}^{1}S_{0}$	-16.66	-16.57	- 22.62	- 22.76	- 28.72	- 29.84			
${}^{3}S_{1}$	-21.34	- 21.33	- 26.59	- 26.27	- 31.36	- 31.45			
\overline{P}_{0}	-3.55	- 3.28	-5.24	-5.02	- 6.67	- 7.00			
${}^{3}D_{1}$	1.48	2.13	2.95	4.35	5.58	8.58			
${}^{1}P_{1}$	4.43	3.59	8.01	6.93	14.47	13.34			
${}^{3}P_{1}$	9.99	11.47	18.47	21.46	34.13	41.00			
${}^{3}P_{2}$	-7.45	- 7.80	-14.27	-14.73	- 26.68	- 27.01			
${}^{3}F_{2}$	-0.55	-0.18	-1.22	- 0.39	- 2.50	-0.84			
${}^{1}D_{2}$	-2.37	-2.36	- 4.82	- 4.97	- 9.62	-10.22			
${}^{3}D_{2}$	- 3.97	- 3.50	- 7.68	- 6.62	-14.45	-12.13			
J > 2	1.69	1.10	3.35	2.10	6.23	3.74			
Total	- 38.30	- 36.75	- 49.67	-45.91	- 59.58	- 51.84			

- Bonn and separable both fit same on-shell and Deuteron (n-p bound state)
- In-medium off-shell not fitted so maybe different.
- What about it???
- Next slide.

FIG. 4. Half-shell reactance matrix elements in the ${}^{1}S_{0}$ channel calculated with the Bolsterli-MacKenzie rank 2 potential in this work (solid) and the Bonn-B potential (dashed).

- Why the off-shell agreement?
- Answer: S-state potentials ARE separable!!
- Why? Really?
- Answer: Separable for low momenta around the low energy pole.
- OPEP a local potential!!
- Yes, but shown separable approx. good for low momenta.

L

FIG. 5. Half-shell reactance matrix elements in the ${}^{3}P_{1}$ channel calculated with the rank 1 separable potential in this work (solid) and the Bonn-B potential (dashed).

• What about momentum cut-offs Λ

1S0; R and V for different cut-off Lambda

Note that the on-shell R is independent of cut-off. It is fixed by the phase-shifts.

Note that the low momentum part of R is (nearly) independent of cut-off While the potential is not.

- Last slide relates to a well-known fact.
- R and/or T that are directly related to scattering are much better approximations to in-medium interactions than the potential.
- Many early works used that relationship with some success.

Comparison with V-low-k Left figure

Effect of cut-off (three-body) on saturation

Off-shell (three-body) effect

1 ...

$$K = V + \frac{Q}{\omega - e} K$$

$$K' = V + \frac{Q}{\omega' - e} K$$

$$K' = K + K(\frac{Q}{\omega' - e} - \frac{Q}{\omega - e}) K'$$

$$K' - K = I_w(\omega' - \omega) \rightarrow I_w * U \text{ (U is mean field)}$$

$$I_w = \int (\Psi - \Phi)^2 dr$$

$$\Psi = \Phi + \frac{Q}{\omega - e} K$$

'wound'-integral

 Next slides will show that the decrease at small Lambda is associated with a decrease in 2-body correlations.

Off-shell---3-body term is lost.

In-medium Wave-function $\Lambda = 9.8 \, \text{fm}^{-1}$

Kohler-Moszkowski (ARXIV)

In-medium Wave-function $\Lambda = 2.0 \, fm^{-1}$

Summary of last slides

Independence of cut-off if it is larger than 2-3 1/fm

Mean field (three-body) has a repulsive effect that decreases for small cut-offs.

• Consistent with:

Repulsion ~ wound-integral*mean field because we saw correlations and therefore wound-integral small for cut-off=2 1/fm

Repulsion is due to a 3-body term (not intrinsic 3-body force)

- Triton problem a low momentum problem
- Only S-states (almost).
- So separable approximation should be good here.

Faddeev equation

$$\chi(q) = \frac{2}{D(E_T - \frac{3}{4}q^2)} \int \frac{v(|k + \frac{q}{2}|)v(|q + \frac{k}{2}|)}{q^2 + q.k + k^2 - E_T} \chi(q) dk$$

For separable potential

In-medium effective Interaction

PHILLIPS line

THREE-BODY SUMMARY

- Triton energy too low
- n-D scattering length too small
 Too low on the Phillips line

Solution: Three-body force (term?) —Off-shell correction

Off-shell correction

- Increase the rank of the separable potential.
- V=-g(k)g(k')+h(k)h(k')
- g is long-ranged in coordinate space
- h is short ranged

define h by phase-shifts $\delta_s(k) = kr_c/(1+ck^2)$

g and h are then obtained by inverse scattering to fit the singlet S phases

PHILLIPS line

Half-shell Reactance

SUMMARY

On - shell $\delta(k) < \Lambda$ In Many BodySystemalso Off - shell $\delta(k) > \Lambda$ Use: Attractive force $\delta(k) < \Lambda$ Repulsive force for off - shell Contact force Λ – dependent 2 - body Correlations generate a 3 - body term

Conclusion

- Three-body term important for Nuclear Matter and Finite Nuclei.
- Three-body term generated by 2-body correlations.