Some recent work on EFT

David Kaplan Institute for Nuclear Theory

with:

Sílas Beane Aleksí Vuorinen

and work in progress with M. Endres, J.-W. Lee, A. Nicholson

Some recent work on EFT

David Kaplan Institute for Nuclear Theory

with:

Sílas Beane Aleksí Vuorinen

University of New Hampshire

and work in progress with M. Endres, J.-W. Lee, A. Nicholson

Some recent work on EFT

David Kaplan Institute for Nuclear Theory

with:

Sílas Beane Aleksí Vuorínen

University of New Hampshire **Undisclosed location in Mitteleuropa**

and work in progress with M. Endres, J.-W. Lee, A. Nicholson

Effective field theory for nuclear physics?

Effective field theory for nuclear physics?

EFT:

Effective field theory for nuclear physics?

EFT:

• Separate "long distance" and "short distance physics"

Effective field theory for nuclear physics?

EFT:

- Separate "long distance" and "short distance physics"
- Account for light degrees of freedom explicitly

Effective field theory for nuclear physics?

EFT:

- Separate "long distance" and "short distance physics"
- Account for light degrees of freedom explicitly
- Expand short distance physics in terms of contact interactions, coefficients fit to low energy data

Effective field theory for nuclear physics?

EFT:

- Separate "long distance" and "short distance physics"
- Account for light degrees of freedom explicitly
- Expand short distance physics in terms of contact interactions, coefficients fit to low energy data
- Benefit: model-independent & predictive characterization of data

Effective field theory for nuclear physics?

EFT:

- Separate "long distance" and "short distance physics"
- Account for light degrees of freedom explicitly
- Expand short distance physics in terms of contact interactions, coefficients fit to low energy data
- Benefit: model-independent & predictive characterization of data

To be "effective":

- Hierarchy of length scales
- A power counting scheme: order the expansion, estimate errors

Quintessential examples of EFT:

Quintessential examples of EFT:

Fermi's theory of weak interactions

n <u>p provincia</u> **Quintessential examples of EFT:**

 $\overline{}$ Euler-Heisenberg li Classic example: light-light-scattering (Euler, Heisenberg, 1936) Euler-Heisenberg light-by-light scattering

n <u>p provincia</u> **Quintessential examples of EFT:**

 $\overline{}$ Euler-Heisenberg li Classic example: light-light-scattering (Euler, Heisenberg, 1936) Euler-Heisenberg light-by-light scattering

Rayleigh light-by atom scattering

n <u>p provincia</u> **Quintessential examples of EFT:**

All *weak* interactions at low energy

 $\sigma_{\nu\nu\rightarrow\nu\nu} \propto$ $E_{\nu\nu}^2$ M_Z^4

 $\overline{}$ Euler-Heisenberg li Classic example: light-light-scattering (Euler, Heisenberg, 1936) Euler-Heisenberg light-by-light scattering

Rayleigh light-by atom scattering

 $\begin{array}{ccccccccccccc} \mathcal{L} & & & & \mathcal{L} & & \mathcal{L} & \mathcal$

D. Kaplan INT 6/5/09 $\sigma_{\gamma A \rightarrow \gamma A} \propto$ E_γ^4 (*rA*)−⁶

Above examples:

$$
\sigma \sim (\text{Energy})^p / (\text{mass scale})^{p+2}
$$

 $p = 2 \times dim[op]-10$

Above examples:

$$
\sigma \sim (\text{Energy})^p / (\text{mass scale})^{p+2}
$$

 $p = 2 \times dim[op] - 10$

For NN scattering, expect mass scales to be set by:

 m_{π} = 140 MeV, f_{π} =93 MeV, $m_{\rho,\omega}$ ~ 770 MeV ...

What do we see?

Not like νν scattering in Fermi theory!

Not like νν scattering in Fermi theory!

Weinberg: *don't* perform EFT expansion of the scattering amplitude. Instead:

- (i) expand NN potential in EFT
- (ii) solve Lippmann-Schwinger eq. exactly ⇐ *nonperturbative*

Weinberg method:

- Expand NN potential in chiral perturbation theory
- Sum up:

Procedure implemented to NNNLO by Epelbaum et al.

Next-to-leading order

Next-to-next-to-leading order

Next-to-next-to-next-to-leading order

Can fit the data well...but there's a problem:

Expand V to order n in the EFT expansion

iterating V requires counterterms at higher order in expansion

Can fit the data well...but there's a problem:

Expand V to order n in the EFT expansion

titerating V requires counterterms at higher order in expansion

- cannot remove regulator
- *answer is sensitive to short-distance physics*
- *end result only modest improvement over conventional potential models?*

1. Inconsistent power counting: can't renormalize & remove cutoff

Singular potential Higher order singularities

Simple example:

LO diagram has log divergence for NLO operator: $D_2(N^\dagger M_q N)(N^\dagger N)$ Without counterterm, can't sensibly compute **quark mass matrix**

quark mass dependence of deuteron BE, for example.

Weinberg approach, with pions

2. Singular tensor potential

$$
\frac{1}{\sqrt{1-\frac{1}{r^3}}} \quad V(r) \sim -\frac{1}{r^3}
$$

- Divergences at LO in every attractive tensor channel
- Counterterms only at higher order
- Requires a cutoff that cannot be removed
- RG analysis in Birse (2006, 2007)

Weinberg approach, with pions

$1S_0$ NN phase shift, Weinberg approach

Epelbaum, Gloeckle, Meissner 2005

Friday, June 5, 2009

Weinberg approach, with pions

³S₁-³D₁ NN phase shifts, Weinberg approach

Epelbaum, Gloeckle, Meissner (2005)

• Two momentum cutoffs

We are using
the Weinberg
EFT **We are using the Weinberg EFT**

torture nuclear physics like You can't

torture nuclear

physics like

that!

Not torture:

enhanced

investigation **Not torture: enhanced investigation**

Not torture:

enhanced

investigation **Not torture: enhanced**

Unjustifiable! Injustifiable!
Ineffective!

It yields
reliable
intelligence **It yields reliable**

Unjustifiable! Injustifiable!
Ineffective!

It yields
reliable
intelligence **It yields reliable**

A recurring theme of this program:

ENDS JUSTIFY
THE MEANS THE MEANS

Always the same outcome:

Always the same outcome:

KSW approach:

D.K., Savage, Wise (1998)

$$
\mathcal{L} = - C_0 (N^{\dagger} N)^2 - C_2 (N^{\dagger} \nabla^2 N)(N^{\dagger} N) + h.c. + \dots
$$

C₀ interaction corresponds to a $\delta^3(r)$ potential: singular! C₀ runs...

$$
\text{Consider solution} \n\text{equation} \n\begin{aligned}\n\text{conjugate's:} \\
\text{Equation:} \n\begin{aligned}\n\text{Equation:} \n\text{Equation:} \\
\text{Equation:} \n\begin{aligned}\n\text{Equation:} \n\end{aligned}\n\text{Equation:} \n\end{aligned}
$$

The bubble:

$$
\bigodot = \left(\frac{\mu}{2}\right)^{4-D} \int \frac{d^{D-1}}{(2\pi)^{D-1}} \frac{1}{E - \frac{|\mathbf{q}|^2}{M} + i\epsilon} \xrightarrow{PDS} -\frac{M}{4\pi}(\mu + ip)
$$

Find:

$$
\mathcal{A}(p) = -\frac{4\pi}{M} \frac{1}{p \cot \delta(p) + ip} \simeq -\frac{4\pi}{M} \frac{1}{\frac{4\pi}{M C_0} + \mu + ip}
$$
\nD. KAPLAN INT 6/5/09

$$
\mathcal{A}(p) = -\frac{4\pi}{M} \frac{1}{p \cot \delta(p) + ip} \simeq -\frac{4\pi}{M} \frac{1}{\frac{4\pi}{MC_0} + \mu + ip}
$$

$$
\mathcal{A}(p) = -\frac{4\pi}{M} \frac{1}{p \cot \delta(p)} + ip \simeq -\frac{4\pi}{M} \frac{1}{\frac{4\pi}{M C_0} + \mu + ip}
$$

$$
p \cot \delta(p) \simeq -\frac{1}{a} + \frac{1}{2} r_0 p^2 + \dots
$$

$$
\mathcal{A}(p) = -\frac{4\pi}{M} \frac{1}{p \cot \delta(p) + ip} \simeq -\frac{4\pi}{M} \frac{1}{\frac{4\pi}{M C_0} + \mu + ip}
$$

$$
p \cot \delta(p) \simeq -\frac{1}{a} + \frac{1}{2} r_0 p^2 + \dots
$$

$$
C_0(\mu) = -\frac{4\pi}{M} \frac{1}{\mu + \frac{1}{a}}
$$

$$
\mathcal{A}(p) = -\frac{4\pi}{M} \frac{1}{p \cot \delta(p) + ip} \simeq -\frac{4\pi}{M} \frac{1}{\frac{4\pi}{M C_0} + \mu} + ip
$$

$$
p \cot \delta(p) \simeq -\frac{1}{a} + \frac{1}{2} r_0 p^2 + \dots
$$

$$
C_0(\mu) = -\frac{4\pi}{M} \frac{1}{\mu + \frac{1}{a}}
$$

86 scale

$$
\mathcal{A}(p) = -\frac{4\pi}{M} \frac{1}{p \cot \delta(p) + ip} \simeq -\frac{4\pi}{M} \frac{1}{\frac{4\pi}{M C_0} + \mu} + ip
$$

$$
p \cot \delta(p) \simeq -\frac{1}{a} + \frac{1}{2} r_0 p^2 + \dots
$$

$$
\boxed{C_0(\mu)} = -\frac{4\pi}{M} \frac{1}{\mu + \frac{1}{a}}
$$

RG scale

$$
C_0(\mu) = -\frac{4\pi}{M} \frac{1}{\mu + \frac{1}{a}}
$$

Define a dimensionless coupling:

The beta function is then given by: $\quad \widehat{\beta}$

$$
\widehat{C}_0 \equiv -\frac{M\mu}{4\pi}C_0 = \frac{\mu}{\mu + \frac{1}{a}}
$$

 $= -C_0$

 $\sqrt{ }$

C

 $C_0 - 1$

 \setminus

 $=$ μ

∂*C*

 $\partial \mu$

 $\frac{1}{2}$

D. Kaplan INT 6/5/09

$$
C_0(\mu) = -\frac{4\pi}{M} \frac{1}{\mu + \frac{1}{a}}
$$

Define a dimensionless coupling:

$$
\widehat{C}_0 \equiv -\frac{M\mu}{4\pi}C_0 = \frac{\mu}{\mu + \frac{1}{a}}
$$

The beta function is then given by: σ

$$
\widehat{\beta} = \mu \frac{\partial \widehat{C}_0}{\partial \mu} = -\widehat{C}_0 \left(\widehat{C}_0 - 1 \right)
$$

$$
C_0(\mu) = -\frac{4\pi}{M} \frac{1}{\mu + \frac{1}{a}}
$$

Define a dimensionless coupling:

$$
\widehat{C}_0 \equiv -\frac{M\mu}{4\pi}C_0 = \frac{\mu}{\mu + \frac{1}{a}}
$$

The beta function is then given b

$$
\mathbf{y:} \quad \widehat{\beta} = \mu \frac{\partial \widehat{C}_0}{\partial \mu} = -\widehat{C}_0 \left(\widehat{C}_0 - 1 \right)
$$

$$
C_0(\mu) = -\frac{4\pi}{M} \frac{1}{\mu + \frac{1}{a}}
$$

 $\widehat{C}_0 \equiv -\frac{M\mu}{4\pi}$

 4π

 $C_0 =$

µ

 $\mu + \frac{1}{a}$

a

 \setminus

Define a dimensionless coupling:

The beta function is then given by: $\quad \widehat{\beta}$ $=$ μ ∂*C* $\frac{1}{2}$ $\partial \mu$ $= -C_0$ $\sqrt{ }$ *C* $C_0 - 1$

KSW expansion: expand about the nontrivial fixed point = a conformal theory with infinite scattering length:

KSW expansion: expand about the nontrivial fixed point = a conformal theory with infinite scattering length:

Simple power counting in pionless theory: expand amplitude in powers of "*Q*":

$$
\mu, p, \frac{1}{a} \sim Q
$$

\n $\frac{M}{C_0} \sim Q^{-1}$
\n $C_2 \sim Q^{-2}$
\n...

KSW expansion: expand about the nontrivial fixed point = a conformal theory with infinite scattering length:

Simple power counting in pionless theory: expand amplitude in powers of "*Q*":

$$
\mu, p, \frac{1}{a} \sim Q
$$
Distance from
\n
$$
\begin{array}{ccc}\nM & \sim & Q & \text{fixed point} \\
C_0 & \sim & Q^{-1} \\
C_2 & \sim & Q^{-2} \\
\cdots\n\end{array}
$$

KSW expansion: expand about the nontrivial fixed point = a conformal theory with infinite scattering length:

Simple power counting in pionless theory: expand amplitude in powers of "*Q*":

$$
\mu, p, \frac{1}{a} \sim Q
$$
Distance from
\n
$$
C_0(\mu) = -\frac{4\pi}{M} \frac{1}{\mu + \frac{1}{a}}
$$

$$
C_0 \sim Q^{-1}
$$

\n
$$
C_2 \sim Q^{-2}
$$

\n...

KSW expansion of the *amplitude* \Rightarrow renormalizable:

$$
Q^{-1}
$$
: $iA_{-1} = \sqrt{2} + \sqrt{2} + \sqrt{2} + ...$

 $Q^0: i \mathcal{A}_0 =$

Applications (few-body, low momentum):

- Radiative breakup of the deuteron (Big Bang)
- Neutrino breakup of the deuteron (SNO)
- N d scattering
- Solar fusion processes

CAN ATTAIN 1% ACCURACY

• ...

• Key: local operators for 2-body EM current

A new parameter appears in deuteron physics: 2-body axial charge

A new parameter appears in deuteron physics: 2-body axial charge

A new parameter appears in deuteron physics: 2-body axial charge

A new parameter appears in deuteron physics: 2-body axial charge

• μ capture on deuterium: MuSun experiment will determine $L^{1}{}_{A}$ to 1.5 fm³

A new parameter appears in deuteron physics: 2-body axial charge

- μ capture on deuterium: MuSun experiment will determine $L^{1}{}_{A}$ to 1.5 fm³
- deuteron breakup by neutrinos: conventional calculations differ by \sim 5%. N^2 LO EFT calculation + L^1 _A measurement will greatly reduce major systematic error for σ_{CC}/σ_{NC} at SNO. (Butler et al., 2000)

A new parameter appears in deuteron physics: 2-body axial charge

- μ capture on deuterium: MuSun experiment will determine $L^{1}{}_{A}$ to 1.5 fm³
- deuteron breakup by neutrinos: conventional calculations differ by \sim 5%. N^2 LO EFT calculation + L^1 _A measurement will greatly reduce major systematic error for σ_{CC}/σ_{NC} at SNO. (Butler et al., 2000)
- pp fusion in the sun, N^5LO : measurement of L^1 _A gives fusion rate to ~1% (Butler, Chen 2001)

Phillips line: 3H binding energy - Nd scattering length correlation

Tjon line

Correlation between 3- and 4-body binding energies

Tjon line

Correlation between 3- and 4-body binding energies

Tjon line

Correlation between 3- and 4-body binding energies

Tjon line

Correlation between 3- and 4-body binding energies

Friday, June 5, 2009

obtained with an ultracold sample of cesium atoms at negative scattering lengths show a resonant enhancement Evidence for EFT prediction of "tetramers" in trapped atoms to Efimov trimers via universal relations. Our findings confirm recent theoretical predictions and demonstrate

 Γ enrichment of the Effinite is added to the Effinite is added to the generic three-body problem. **Evidence for universal four-body states tied to an Efimov trimer**

F. Ferlaino,¹ S. Knoop,¹ M. Berninger,¹ W. Harm,¹ J. P. D'Incao,^{2,3} H.-C. Nägerl,¹ and R. Grimm^{1,2}

D. KAPLAN INT 6/5/09 **07000 is a triatomic Effimov resonance in the shaded by and the shaded in the sh** \blacksquare sal system of four interests and interests are plotted as D . RAPLAN in INT

of the inverse scattering length. The red solid lines illustrate the pairs

of universal tetramer states (Tetra1 and Tetra2) associated with each

(Dated: April 9, 2009)

We report on the measurement of four-body recombination rate coefficients in an atomic gas. Our results

obtained with an ultracold sample of cesium atoms at negative scattering lengths show a resonant enhancement Evidence for EFT prediction of "tetramers" in trapped atoms to Efimov trimers via universal relations. Our findings confirm recent theoretical predictions and demonstrate

 Γ enrichment of the Effinite is added to the Effinite is added to the generic three-body problem. **Evidence for universal four-body states tied to an Efimov trimer**

F. Ferlaino,¹ S. Knoop,¹ M. Berninger,¹ W. Harm,¹ J. P. D'Incao,^{2,3} H.-C. Nägerl,¹ and R. Grimm^{1,2}

of the inverse scattering length. The red solid lines illustrate the pairs

(Dated: April 9, 2009)

We report on the measurement of four-body recombination rate coefficients in an atomic gas. Our results

Limitations of the pionless nuclear EFT

- \bullet Can't treat scattering at $p \gtrsim m_\pi/2 = 70 \,\, \mathrm{MeV}$
- •Can't treat nuclei heavier than 3H/3He

...so include the pions. Chiral perturbation theory: $m_{\pi} \sim p$

KSW approach, with pions

$$
\frac{q^2}{1-\frac{q^2}{4f_\pi^2}} = i\frac{g_A^2}{4f_\pi^2} \frac{(\mathbf{q}\cdot\sigma_1)(\mathbf{q}\cdot\sigma_2)(\tau_1\cdot\tau_2)}{|\mathbf{q}|^2+m_\pi^2}
$$

One pion exchange: $O(Q^0)$ in power counting

KSW approach, with pions

NNLO:

Fleming, Mehen, Stewart (1999)

KSW approach, with pions

Fleming, Mehen, Stewart (1999)

Works well for ¹S₀

D. Kaplan INT 6/5/09

Friday, June 5, 2009

THE MORAL:

THE MORAL:

The KSW expansion is theoretically virtuous

THE MORAL:

The KSW expansion is theoretically virtuous

Virtue's rewards aren't always in this world

Problem with convergence of KSW is linked to attractive tensor force 0.0010

- No ground state; pathological scattering states
- •Can't be "fixed" with contact interactions
- •Perturbation theory in pion exchange is going to break down

...But the problem is "fake": should be able to eliminate *1/r3* in *V(r)* at small *r* in favor of contact interactions

r

S. Beane, D.K., A. Vuorinen (2008):

Follow KSW expansion, but modify pion propagator:

$$
G_{\pi}(q,m) = i\frac{g_A^2}{4f_\pi^2} \frac{(\mathbf{q} \cdot \boldsymbol{\sigma}_1)(\mathbf{q} \cdot \boldsymbol{\sigma}_2)(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)}{\mathbf{q}^2 + m^2}
$$
 pion, l=d, mass m
\n
$$
G_{(1,0)}(q,\lambda) = i\frac{g_A^2}{4f_\pi^2} \frac{\lambda^2}{\mathbf{q}^2 + \lambda^2} (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)
$$
 l=d, J=0, mass λ
\n
$$
I/r^3
$$
 cancels for S=1
\n
$$
G_{\pi}(q,m_{\pi}) - G_{\pi}(q,\lambda) + G_{(1,0)}(q,\lambda)
$$

Power counting: KSW + $\lambda \sim O(Q)$

S. Beane, D.K., A. Vuorinen (2008)

 $1S₀$ (and all S=0 channels) unchanged...same as KSW

S. Beane, D.K., A. Vuorinen (2008)

Meaning of λ ?

Like μ in PQCD:

- unphysical
- controls resummation of log divergences into coupling constant
- controls convergence of perturbative expansion
- λ is:
	- unphysical
	- controls resummation *1/r3* effects into contact interactions
	- controls convergence of perturbative expansion

. KAPLAN INT 6/5/09 $\lambda \rightarrow \infty$ yields the (poorly converging) KSW expansion

- · Looks pretty good in ¹S₀, ³S₁, ³D₁
- Looks pretty bad in ε₁...just an accidentally small angle?

•what about other partial waves?

- · Looks pretty good in ¹S₀, ³S₁, ³D₁
- Looks pretty bad in ει...just an accidentally small angle? |S
|...
tio
- •what about other partial waves?

³P₀ may be the biggest challenge:

(dashed line), and 100 MeV (dotted line), and 100 MeV (dotted line). And 100 MeV (dotted line). And 100 MeV (d
), and 100 MeV (dotted line). And 100 MeV (dotted line). And 100 MeV (dotted line). And 100 MeV (dotted line)

5.0

10.0

15.0

20.0

25.0

P0

Check N³LO (includes 1st contact interaction)?

Lots to do to see if expansion will converge:

- •Higher partial waves (eg, ${}^{3}D_{2}$)
- •N3LO amplitudes
- •Electromagnetic & weak 2-nucleon processes
- •3-body physics

•high-precision, low energy few-body physics

•high-precision, low energy few-body physics

EFT is in the process of making a big impact:

•bridge between lattice QCD and nuclear structure

•high-precision, low energy few-body physics

EFT is in the process of making a big impact: •bridge between lattice QCD and nuclear structure

•high-precision, low energy few-body physics

EFT is in the process of making a big impact: •bridge between lattice QCD and nuclear structure

EFT making a big impact?

•new, more efficient way to do N-body physics via **lattice EFT**?

•high-precision, low energy few-body physics

EFT is in the process of making a big impact: •bridge between lattice QCD and nuclear structure

- •new, more efficient way to do N-body physics via **lattice EFT**?
	- No QCD-like sign problem?

•high-precision, low energy few-body physics

EFT is in the process of making a big impact: •bridge between lattice QCD and nuclear structure

- •new, more efficient way to do N-body physics via **lattice EFT**?
	- **No QCD-like sign problem?**
	- No QCD-like signal/noise problem?

•high-precision, low energy few-body physics

EFT is in the process of making a big impact: •bridge between lattice QCD and nuclear structure

- •new, more efficient way to do N-body physics via **lattice EFT**?
	- **No QCD-like sign problem?**
	- No QCD-like signal/noise problem?
	- Path integrals avoid big Hilbert space

$$
S = \sum_{\mathbf{n}} \left[\bar{\psi}_{\mathbf{n}} (K\psi)_{\mathbf{n}} + \frac{1}{2} m^2 \phi_{\mathbf{n}}^2 \right]
$$

$$
(K\psi)_{\mathbf{n}} = (\psi_{\mathbf{n}} - \psi_{\mathbf{n} - \hat{\mathbf{t}}}) - \frac{1}{2M} (\nabla^2 \psi)_{\mathbf{n}} - \phi_{\mathbf{n}} \psi_{\mathbf{n} - \hat{\mathbf{t}}}
$$

mu=0 version of Chen, Kaplan (2003)

•Field φ generates the C_0 interaction

$$
S = \sum_{\mathbf{n}} \left[\bar{\psi}_{\mathbf{n}} (K\psi)_{\mathbf{n}} + \frac{1}{2} m^2 \phi_{\mathbf{n}}^2 \right]
$$

$$
(K\psi)_{\mathbf{n}} = (\psi_{\mathbf{n}} - \psi_{\mathbf{n} - \hat{\mathbf{t}}}) - \frac{1}{2M} (\nabla^2 \psi)_{\mathbf{n}} - \phi_{\mathbf{n}} \psi_{\mathbf{n} - \hat{\mathbf{t}}}
$$

mu=0 version of Chen, Kaplan (2003)

- •Field φ generates the C_0 interaction
- φ only lives on time links

mu=0 version of Chen, Kaplan (2003)

- •Field φ generates the C_0 interaction
- φ only lives on time links
- •Fermions only propagate forward in

mu=0 version of Chen, Kaplan (2003)

mu=0 version of Chen, Kaplan (2003)

- •Field φ generates the C_0 interaction
- φ only lives on time links
- •Fermions only propagate forward in
- •Dirichlet BC for fermions

D. Kaplan INT 6/5/09

Friday, June 5, 2009

- •Field φ generates the C_0 interaction
- φ only lives on time links
- •Fermions only propagate forward in
- •Dirichlet BC for fermions
- •Fermion determinant is trivial: no dependence on ϕ

mu=0 version of Chen, Kaplan (2003)

- •Field φ generates the C_0 interaction
- φ only lives on time links
- •Fermions only propagate forward in time
- •Dirichlet BC for fermions
- •Fermion determinant is trivial: no dependence on ϕ
- •Tune *m* to get unitary fermions

 $S = \sum$ n $\sqrt{ }$ $\bar{\psi}_{\mathbf{n}}(K\psi)_{\mathbf{n}} +$ 1 2 $m^2\phi_{\mathbf{n}}^2$ $\overline{1}$ $(K\psi)_\mathbf{n} = (\psi_\mathbf{n} - \psi_\mathbf{n-\hat{t}}) - \frac{1}{2\Lambda}$ $\frac{1}{2M}(\nabla^2\psi)_\mathbf{n} - \phi_\mathbf{n}\psi_{\mathbf{n}-\mathbf{\hat{t}}}$

mu=0 version of Chen, Kaplan (2003)

• Field
$$
φ
$$
 generates the $C0$ interaction

- φ only lives on time links
- •Fermions only propagate forward in time
- •Dirichlet BC for fermions
- •Fermion determinant is trivial: no dependence on φ
- •Tune *m* to get unitary fermions
- •Compute correlation functions (like Savage)

$$
S = \sum_{\mathbf{n}} \left[\bar{\psi}_{\mathbf{n}} (K\psi)_{\mathbf{n}} + \frac{1}{2} m^2 \phi_{\mathbf{n}}^2 \right]
$$
 Savage)

$$
(K\psi)_{\mathbf{n}} = (\psi_{\mathbf{n}} - \psi_{\mathbf{n} - \hat{\mathbf{t}}}) - \frac{1}{2M} (\nabla^2 \psi)_{\mathbf{n}} - \phi_{\mathbf{n}} \psi_{\mathbf{n} - \hat{\mathbf{t}}}
$$

mu=0 version of Chen, Kaplan (2003)

e.g: measuring the nucleon mass in LQCD:

- i. Create a set of appropriately weighted gauge field configurations {A}
- ii. Measure correlation function C(A): 3 quarks propagating for time T

e.g: measuring the nucleon mass in LQCD:

- i. Create a set of appropriately weighted gauge field configurations {A}
- ii. Measure correlation function C(A): 3 quarks propagating for time T

$$
\langle C \rangle = \frac{1}{N} \sum_{\{A\}} C(A) \propto e^{-\frac{M}{M}T} + \dots
$$
 nucleon mass. lightest state contributing

e.g: measuring the nucleon mass in LQCD:

- i. Create a set of appropriately weighted gauge field configurations {A}
- ii. Measure correlation function C(A): 3 quarks propagating for time T

$$
\langle C \rangle = \frac{1}{N} \sum_{\{A\}} C(A) \propto e^{-\frac{M}{M}T} + \dots
$$
 But what is the signal/noise?
nucleon mass. lightest state contributing

$$
\langle C \rangle = \frac{1}{N} \sum_{\{A\}} C(A) \propto e^{-\frac{M}{M}T} + \dots
$$
 nucleon mass

Dispersion in measurement:

$$
\langle C \rangle = \frac{1}{N} \sum_{\{A\}} C(A) \propto e^{-\frac{M}{M}T} + \dots
$$
 nucleon mass

Dispersion in measurement:

$$
\langle C \rangle = \frac{1}{N} \sum_{\{A\}} C(A) \propto e^{-\frac{M}{M}T} + \dots
$$
 nucleon mass

Dispersion in measurement:

For A nucleons: exponentially hard

In a single given gauge field configuration, the quarks are confused!

- Are they going to be in a pion? (long correlation length!)
- **For are they going to be in a nucleon? (short correlation** length!)

In a single given gauge field configuration, the quarks are confused!

- Are they going to be in a pion? (long correlation length!)
- **For are they going to be in a nucleon? (short correlation** length!)

What does QCD do?

- Has quarks propagate far in each gauge field configuration
- Whittles down *baryon* correlators through big cancelations when summing over gauge fields

In a single given gauge field configuration, the quarks are confused!

- Are they going to be in a pion? (long correlation length!)
- or are they going to be in a nucleon? (short correlation length!)

What does QCD do?

- Has quarks propagate far in each gauge field configuration
- Whittles down *baryon* correlators through big cancelations when summing over gauge fields

The problem: lightest state per quark \neq baryons

• Measure correlation functions: avoid huge Hilbert space encountered in Hamiltonian approach

(correlation function cost αA^3 , not A!) ∝

• Unlike QCD: no exponential signal/noise problem! (Also: nonrelativistic = QUENCHED!)

• Measure correlation functions: avoid huge Hilbert space encountered in Hamiltonian approach

(correlation function cost αA^3 , not A!) ∝

• Unlike QCD: no exponential signal/noise problem! (Also: nonrelativistic = QUENCHED!)

QCD: lightest multi-quark states = pions, not nucleons \Leftrightarrow noise.

Currently can study ~12 pions in a box using LQCD

Nuclear EFT: lightest multi-nucleon states are nuclei! Preliminary scaling estimates:

106 processor-hours = 100s of fermions

• Measure correlation functions: avoid huge Hilbert space encountered in Hamiltonian approach

(correlation function cost αA^3 , not A!) ∝

• Unlike QCD: no exponential signal/noise problem! (Also: nonrelativistic = QUENCHED!)

QCD: lightest multi-quark states = pions, not nucleons \Leftrightarrow noise.

Currently can study ~12 pions in a box using LQCD

Nuclear EFT: lightest multi-nucleon states are nuclei! Preliminary scaling estimates:

106 processor-hours = 100s of fermions

D. Kaplan INT 6/5/09

A new approach currently being explored

Friday, June 5, 2009

Going beyond 2 species (spin states) of unitary fermions: *some tricks*

• Implementation of nonperturbative 3-body interaction via discrete HS field:

$$
\frac{1}{3} \sum_{\omega} e^{\omega(n^{\dagger} n + p^{\dagger} p)} = e^{(n^{\dagger} n + p^{\dagger} p)^3} \qquad \omega = \{1, e^{2\pi i/3}, e^{4\pi i/3}\}
$$
\n2 flavors, 2 spins

• Other tricks for inserting pions, C_n coefficients perturbatively w/o tears for implementing KSW expansion

Can this new lattice EFT offer a different (and for some things, *better*) way to do N-body nuclear physics?

Or are we asking to much of it?

Can this new lattice EFT offer a different (and for some things, *better*) way to do N-body nuclear physics? Or are we asking to much of it?

Can this new lattice EFT offer a different (and for some things, *better*) way to do N-body nuclear physics? Or are we asking to much of it?

D. Kaplan INT 6/5/09

Friday, June 5, 2009