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Degrees of Freedom: From QCD to Nuclei

Renormalization Group =⇒ focus on relevant dof’s
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Resolution Analogy

Which picture should I use?

E.D. Jurgenson SRG and 3NF



Nuclear Interactions in Momentum Space

Fourier transform in partial waves (Bessel transform)

VL=0(k, k
′) =

∫
d3r j0(kr)V (r)j0(k

′r) = 〈k|VL=0|k ′〉

Repulsive core =⇒ big high-k (≥ 2 fm−1) components
EFTs are softer - but still have high-k components
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Computational Aside: Digital Potentials
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Try a Low-Pass Filter

Start with a
potential
[AV18 - 1S0]

Cut at Λ
[2.2 fm−1]

Compute
observables
[δ0(E )]

Compare to uncut

E.D. Jurgenson SRG and 3NF



Try a Low-Pass Filter

Start with a
potential
[AV18 - 1S0]

Cut at Λ
[2.2 fm−1]

Compute
observables
[δ0(E )]

Compare to uncut

E.D. Jurgenson SRG and 3NF



Try a Low-Pass Filter

Start with a
potential
[AV18 - 1S0]

Cut at Λ
[2.2 fm−1]

Compute
observables
[δ0(E )]

Compare to uncut

E.D. Jurgenson SRG and 3NF



Try a Low-Pass Filter

Start with a
potential
[AV18 - 1S0]

Cut at Λ
[2.2 fm−1]

Compute
observables
[δ0(E )]

Compare to uncut

E.D. Jurgenson SRG and 3NF



What’s wrong with the Low-Pass Filter

Basic problem: high and low are coupled!

Perturbation theory for scattering

〈k|V |k〉+
∑
k ′

〈k|V |k ′〉〈k ′|V |k〉
(k2 − k ′2)/m

+ . . .

Can’t just change high-momentum elements
(intermediate virtual states)

Absorb high-energy effects into low-energy
Hamiltonians ⇒ ‘‘Renormalization Group”
(Here: “flow equations”)

Unitary transformation:

En = (〈ψn|U†)UHU†(U|ψn〉)
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What is the SRG? [arXiv:nucl-th/0611045]

Transform an initial Free-Space Hamiltonian, H = T + Vs

Hs = U(s)HU†(s) ≡ T + Vs

where s is the flow parameter. Differentiating wrt s:

dHs

ds
= [η(s),Hs ] with η(s) =

dU(s)

ds
U†(s) = −η†(s)

η(s) is specified by the commutator with generator, Gs :

η(s) = [Gs ,Hs ] ,

which yields the flow equation,

dHs

ds
=

dVs

ds
= [[Gs ,Hs ],Hs ]

Gs determines flow =⇒ Many choices! (e.g., Gs = T )
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What is the Similarity Renormalization Group (SRG)?

Hs = U(s)HU†(s) =⇒ dHs

ds
= [[Trel ,Hs ],Hs ] (λ = 1/s1/4)
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The Mechanics of Decoupling

dVλ
dλ

∝ [[T ,Vλ],T + Vλ] (εk ≡ k2/M)

dVλ(k, k
′)

dλ
= −(εk − εk ′)2Vλ(k, k

′)+
∑

q
(εk + εk ′ − 2εq)Vλ(k, q)Vλ(q, k

′)

Vλ=2.5 + 1st term + 2nd term → Vλ=1.5

Off-diagonal elements
=⇒ Vλ(k, k

′) ∝ VNN(k, k ′)e−[(εk−εk′ )/λ2]2

Relevant physics flows to low momentum elements

E.D. Jurgenson SRG and 3NF



Unitary Transformations =⇒ Preserve Observables
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Now Low-Pass Filters Work!

Phase shifts with Vs(k, k
′) = 0 for k, k ′ > kmax

Tested quantitatively in arXiv: 0711.4252 and 0801.1098
E.D. Jurgenson SRG and 3NF



Flow of N3LO Chiral EFT Potentials

1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

See http://www.physics.ohio-state.edu/∼ntg/srg/ for more!
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Many-Body Forces

Why do we need many-body forces?

3NFs arise from eliminating dof’s
Omitting 3NFs leads to model dependence
(Tjon line)
3NF saturates nuclear matter correctly
Many-body methods must deal with them
(e.g., CI,CC,...)

SRG will induce many-body forces!
dV
ds = [[

∑
a†a,

∑
a†a†aa︸ ︷︷ ︸
2−body

],
∑

a†a†aa︸ ︷︷ ︸
2−body

]

= . . .+
∑

a†a†a†aaa︸ ︷︷ ︸
3−body !

+ . . .

Stop evolution if induced 3NF becomes
unnatural
RG flows with SRG extend consistently to
many-body spaces
Recent progress: 3NF evolved!!!
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Current Realistic NCSM Calculations

Triton calculations from P. Navratil (arXiv:0707.4680)
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Evolving NN Forces in NCSM A=3 space
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Unitary evolution of initial NN-only forces!

Currently using MATLAB: working toward parallelization

~ω = 28 is optimal for initial interaction, ~ω = 20 for λ = 2

Trade-off in convergence under investigation
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Evolving Three-Body Forces in NCSM!
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Same plots but now including an initial 3NF from N2LO

Unitary evolution in A = 3 =⇒ Triton experimental energy
preserved
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Comparing the SRG to Lee-Suzuki

SRG converges rapidly and smoothly from above
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What about the size of induced 4NFs in 4He?
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4He results: Brand New!!!
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Encouraging results even
for preliminary procedure

very small induced 4NF at
λ = 2
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Tjon Line
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Insights from the One-Dimensional Model

1-D model: V (2)(x) = V1

σ1
√
π
e−x2/σ2

1 + V2

σ2
√
π
e−x2/σ2

2

[Negele et al.: Phys.Rev.C 39 1076 (1989)]

λ = ∞ λ = 5 λ = 3 λ = 2

How do we handle many-body forces? −→ use a discrete
basis to avoid “dangerous” delta functions

EDJ and R. J. Furnstahl - [arXiv:0809.4199]
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Embedding: initial potential

Symmetrized Jacobi Oscillator Basis (here: Bosons)

EDJ and R. J. Furnstahl - [arXiv:0809.4199]

V (p, p′) −→ V (N2,N
′
2) −→ V (N3,N

′
3)

diagonalize symmetrizer ⇒ 〈NA||NA−1; nA−1〉; use recursively

3D: Use Navratil et al. technology for NCSM

embedding is everything, SRG coding is trivial

E.D. Jurgenson SRG and 3NF



Embedding: evolved potential - λ = 2

Symmetrized Jacobi Oscillator Basis (here: Bosons)

EDJ and R. J. Furnstahl - [arXiv:0809.4199]

V (p, p′) −→ V (N2,N
′
2) −→ V (N3,N

′
3)

diagonalize symmetrizer ⇒ 〈NA||NA−1; nA−1〉; use recursively

3D: Use Navratil et al. technology for NCSM

embedding is everything, SRG coding is trivial
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Some many-body examples

Legend: Embedding, Evolving, BE calculation, Initial 3NF

A=3 (2N only):
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A=4 (2N+3N only):

V
(2)
osc

embed
=⇒ V

(2)
3Nosc

SRG
=⇒ V

(2+3)
λ,3Nosc

embed
=⇒ V

(2+3)
λ,4Nosc

diag
=⇒ BE

(2N+3Nonly)
4

3NF
=⇒ +V
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3Nosc . . .
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Induced Many-Body Forces are Small - A=3
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Induced Many-Body Forces are Small - A=3
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Induced Many-Body Forces are Small - A=4
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Induced Many-Body Forces are Small - A=4
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Induced Many-Body Forces are Small - A=5
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V (3) analysis
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Hierarchy of contributions
>
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V (4) analysis
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Fitting Three-Body Force Evolution

Evolve in two-particle oscillator space → fit 3-body
parameters to missing energy

One term V (3) = Ce−[(k2+k ′2)/Λ2]n reduces λ dependence to
the 80-90% level.

Future work: add a second, short distance 3NF term with a
gradient correction to test systematic reduction
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Operator Evolution

Hs = U†
s H0Us =⇒ Us =

∑
i |ψi (0)〉〈ψi (s)|

Here unevolved operator (a†a) with evolved wavefuntions
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More of this to come from E. R. Anderson
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Decoupling in the Oscillator Basis

⇒ Evolve with Trel and cut off to study decoupling
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SRG space: 2-body only 3-body

Decoupling not straightforward with Trel SRG

Decoupling improves until some λ and then degrades

What about other SRG generators?
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Using other SRG Generators

Matrices in NCSM basis for Trel and V

In this basis Trel will not drive to diagonal

Harmonic Oscillator Hamiltonian (Hho = Trel + Vho) is
diagonal in this basis
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Evolving with Hho

Using G = Hho improves convergence dramatically
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Compare Trel on the left with Hho on the right

Work in progress: Spurious bound states contaminate
evolution with Hho → need further investigation
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Block-Diagonal SRG: [arXiv:0801.1098]

[Anderson, Bogner, Furnstahl, EDJ, Perry, Schwenk - arXiv:0801.1098]

dHs
ds = [[Gs ,Hs ],Hs ]

H∞ =

(
PH∞P 0

0 QH∞Q

)
=⇒ Gs =

(
PHsP 0

0 QHsQ

)
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Block-Diagonal SRG: [arXiv:0801.1098]
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Recap

SRG Decouples high- and low-energy DOF

SRG is very flexible - can use different generators to evolve
potentials

One-D model gives proof-of-principle of many-body hierarchy

provides toolbox to gain intuition quickly - everything is
directly applicable to 3D NCSM

Results for 3NF evolution in the NCSM basis are very
encouraging!
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Future Work

Some items to investigate

Operator evolution
SRG generators (Hho , HBD , HD)
Basis issues
Fitting procedures

All of these can be started in 3D now

Door is opening quickly to other areas (CI,CC,. . .)
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Harmonic Oscillator Basis Overview
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resulting truncated delta function
δ̃(k − k ′) =
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n=0 |ψn(k)〉〈ψn(k

′)|
tradeoff between small ~ω resolution and large ~ω scope

bigger Nmax → flatter in ~ω
optimal ~ω will shift with SRG evolution
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3H results: Brand New!!!
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Good NN convergence even at Nmax=20

Try this another way (cut in A=2)
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Testing Decoupling Quantitatively

[EDJ, Bogner, Furnstahl, Perry - arXiv:0711.4252]

Λ
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Tool for Study
1 - run SRG to λ
2 - set tail to zero

- Vs,Λ =

e−( k2

Λ2 )nVse
−( k′2

Λ2 )n

- n = 4,8,12,...
3 - relative errors

1S0 Partial Wave, N3LO (500 MeV) E/M
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Decoupling above λ

Decoupling clean and universal for all observables!
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Decoupling above λ
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Phase Shifts:Decoupled above λ - vary λ

Relevant physics flows to low momentum → Decoupling!
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Phase Shifts:Decoupled above λ - vary n

Relevant physics flows to low momentum → Decoupling!
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Deuteron Observables

Deuteron Observables

Binding Energy

Quadrupole
Moment

RMS radius
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4He Energy using No Core Shell Model

dependence on Nmax
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SRG improves convergence with basis size in NCSM

NN-only =⇒ different 4He Binding Energies
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6Li Energy using No Core Shell Model

dependence on λ
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SRG improves convergence with basis size in NCSM

NN-only =⇒ different 6Li Binding Energies
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Block Diagonalization

See edj et al.: arXiv:0801.1098

Goal −→ H∞ =

(
PH∞P 0

0 QH∞Q

)
SRG −→ dHs

ds
= [ηs,Hs] = [[Gs,Hs],Hs]

sharp −→ Gs =

(
PHsP 0

0 QHsQ

)
smooth −→ Gs = fHsf + (1− f)Hs(1− f)

f (k) = e−(k2/Λ2
BD)n
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Block-Diagonal SRG - Sharp
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Block-Diagonal SRG - Smooth (n=4)

E.D. Jurgenson SRG and 3NF


