Similarity Renormalization Group and Evolution of Many-Body Forces

E.D. Jurgenson

Department of Physics, The Ohio State University

INT – Seattle, WA – March 31, 2009

Work supported by NSF and UNEDF/SciDAC (DOE) Collaborators: E.R. Anderson, S.K. Bogner, R.J. Furnstahl,

P. Navratil, R.J. Perry, A. Schwenk

- Overview of Similarity Renormalization Group (SRG) and Decoupling
- Evolving Three-Nucleon Forces (3NFs in 3D!!)
- Insights from a One-Dimensional Model
- **Conclusions and Future Work**

Degrees of Freedom: From QCD to Nuclei

• Renormalization Group \implies focus on relevant dof's

Resolution Analogy

Which picture should I use?

Nuclear Interactions in Momentum Space

Fourier transform in partial waves (Bessel transform)

$$
V_{L=0}(k, k') = \int d^3r \, j_0(kr) V(r) j_0(k'r) = \langle k | V_{L=0} | k' \rangle
$$

Repulsive core \Longrightarrow big high-k (\geq 2 fm $^{-1}$) components

EFTs are softer - but still have high-k components

Computational Aside: Digital Potentials

Although momentum is continuous in principle, in practice \bullet represented as discrete (gaussian quadrature) grid:

Calculations become just matrix multiplications! E.g., \bullet

$$
\langle k|V|k\rangle + \sum_{k'} \frac{\langle k|V|k'\rangle \langle k'|V|k\rangle}{(k^2 - k'^2)/m} + \cdots \Longrightarrow V_{ij} + \sum_{j} V_{ij} V_{ji} \frac{1}{(k_i^2 - k_j^2)/m} + \cdots
$$

100 \times 100 Resolution is sufficient for many significant figures \bullet

- **•** Start with a potential $[AV18 - 1S₀]$
- Cut at Λ $[2.2 \text{ fm}^{-1}]$
- **•** Compute observables $[\delta_0(E)]$
- Compare to uncut

- **•** Start with a potential $[AV18 - 1S₀]$
	- Cut at Λ $[2.2 \text{ fm}^{-1}]$
	- **•** Compute observables $[\delta_0(E)]$
	- Compare to uncut

- **•** Start with a potential $[AV18 - 1S₀]$
- Cut at Λ $[2.2 \text{ fm}^{-1}]$
- **•** Compute observables $[\delta_0(E)]$
- Compare to uncut

- **•** Start with a potential $[AV18 - 1S₀]$
- Cut at Λ $[2.2 \text{ fm}^{-1}]$
- **•** Compute observables $[\delta_0(E)]$
- Compare to uncut

What's wrong with the Low-Pass Filter

- Basic problem: high and low are coupled!
- Perturbation theory for scattering

$$
\langle k|V|k\rangle + \sum_{k'} \frac{\langle k|V|k'\rangle \langle k'|V|k\rangle}{(k^2 - k'^2)/m} + \ldots
$$

- **Can't just change high-momentum elements** (intermediate virtual states)
- **•** Absorb high-energy effects into low-energy Hamiltonians \Rightarrow "Renormalization Group" (Here: "flow equations")
- Unitary transformation:

$$
E_n = (\langle \psi_n | U^{\dagger} \rangle U H U^{\dagger} (U | \psi_n \rangle)
$$

What is the SRG? [arXiv:nucl-th/0611045]

• Transform an initial Free-Space Hamiltonian, $H = T + V_s$

$$
H_s = U(s) H U^{\dagger}(s) \equiv T + V_s
$$

where s is the flow parameter. Differentiating wrt s:

$$
\frac{dH_s}{ds} = [\eta(s), H_s] \quad \text{ with } \quad \eta(s) = \frac{dU(s)}{ds} U^{\dagger}(s) = -\eta^{\dagger}(s)
$$

 $\eta(\bm{s})$ is specified by the commutator with generator, $\mathit{G}_{\bm{s}}$:

$$
\eta(s) = \left[\mathit{G}_{s}, \mathit{H}_{s} \right] \,,
$$

which yields the flow equation,

$$
\frac{dH_s}{ds} = \frac{dV_s}{ds} = [[G_s, H_s], H_s]
$$

• G_s determines flow \implies Many choices! (e.g., $G_s = T$)

$$
H_{s} = U(s)HU^{\dagger}(s) \Longrightarrow \frac{dH_{s}}{ds} = [[T_{rel}, H_{s}], H_{s}] \quad (\lambda = 1/s^{1/4})
$$

\n¹s₀ λ = 20.0 fm⁻¹
\n² $\frac{3}{3}$ $\frac{4}{1.5}$
\n^{0.5}
\n^{0.5}
\n^{0.5}
\n^{1.5}
\n^{0.5}
\n^{0.5}
\n^{1.5}
\n^{0.5}
\n^{0.5}
\n^{1.5}
\n^{0.5}
\n<

$$
H_{s} = U(s)HU^{\dagger}(s) \Longrightarrow \frac{dH_{s}}{ds} = [[T_{rel}, H_{s}], H_{s}] \quad (\lambda = 1/s^{1/4})
$$

\n¹s₀ λ =15.0 fm⁻¹
\n² $\frac{3}{3}$ $\frac{4}{15}$
\n^{0.5} $\frac{1.5}{0.5}$
\n^{0.5} $\frac{1.5}{0.5}$

$$
H_{s} = U(s)HU^{\dagger}(s) \Longrightarrow \frac{dH_{s}}{ds} = [[T_{rel}, H_{s}], H_{s}] \quad (\lambda = 1/s^{1/4})
$$

\n¹s₀ λ = 12.0 fm⁻¹
\n¹s₀

$$
H_{s} = U(s)HU^{\dagger}(s) \Longrightarrow \frac{dH_{s}}{ds} = [[T_{rel}, H_{s}], H_{s}] \quad (\lambda = 1/s^{1/4})
$$

\n¹s₀ $\lambda = 10.0 \text{ fm}^{-1}$
\n $\lambda = 10.0 \text{ fm}^{-1}$

$$
H_{s} = U(s)HU^{\dagger}(s) \Longrightarrow \frac{dH_{s}}{ds} = [[T_{rel}, H_{s}], H_{s}] \quad (\lambda = 1/s^{1/4})
$$

\n¹s₀ $\lambda = 0.0 \text{ fm}^{-1}$
\n² $\frac{3}{3}$ $\frac{4}{1.5}$
\n^{0.5} $\frac{1.5}{1.5}$
\n^{0.5} $\frac{1.5}{1.5}$

$$
H_{s} = U(s)HU^{\dagger}(s) \Longrightarrow \frac{dH_{s}}{ds} = [[T_{rel}, H_{s}], H_{s}] \quad (\lambda = 1/s^{1/4})
$$

\n¹s₀ $\lambda = 0.0 \text{ fm}^{-1}$
\n² $\frac{3}{3}$ $\frac{4}{1.5}$
\n^{0.5} $\frac{1.5}{1.5}$
\n^{0.5} $\frac{1}{1.5}$
\n^{0.5} $\frac{1}{1.5}$

$$
H_{s} = U(s)HU^{\dagger}(s) \Longrightarrow \frac{dH_{s}}{ds} = [[T_{rel}, H_{s}], H_{s}] \quad (\lambda = 1/s^{1/4})
$$

\n¹s₀ $\lambda = 5.0 \text{ fm}^{-1}$
\n¹s₀ $\lambda = 5.0 \text{ fm}^{-1}$

$$
H_{s} = U(s)HU^{\dagger}(s) \Longrightarrow \frac{dH_{s}}{ds} = [[T_{rel}, H_{s}], H_{s}] \quad (\lambda = 1/s^{1/4})
$$

\n¹s₀ $\lambda = 4.0 \text{ fm}^{-1}$
\n²s₃ ³ ⁴
\n^{0.5} ^{1.5}
\n^{1.5} ^{0.5} ^{1.5}

$$
H_{s} = U(s)HU^{\dagger}(s) \Longrightarrow \frac{dH_{s}}{ds} = [[T_{rel}, H_{s}], H_{s}] \quad (\lambda = 1/s^{1/4})
$$

\n¹s₀ $\lambda = 3.5 \text{ fm}^{-1}$
\n¹s₀ $\lambda = 3.5 \text{ fm}^{-1}$

$$
H_{s} = U(s)HU^{\dagger}(s) \Longrightarrow \frac{dH_{s}}{ds} = [[T_{rel}, H_{s}], H_{s}] \quad (\lambda = 1/s^{1/4})
$$

\n¹s₀ $\lambda = 3.0 \text{ fm}^{-1}$
\n¹s₀ $\lambda = 3.0 \text{ fm}^{-1}$

$$
H_{s} = U(s)HU^{\dagger}(s) \Longrightarrow \frac{dH_{s}}{ds} = [[T_{rel}, H_{s}], H_{s}] \quad (\lambda = 1/s^{1/4})
$$

\n¹s₀ $\lambda = 2.8 \text{ fm}^{-1}$
\n¹s₀ $\lambda = 2.8 \text{ fm}^{-1}$

$$
H_{s} = U(s)HU^{\dagger}(s) \Longrightarrow \frac{dH_{s}}{ds} = [[T_{rel}, H_{s}], H_{s}] \quad (\lambda = 1/s^{1/4})
$$

\n¹s₀ $\lambda = 2.5 \text{ fm}^{-1}$
\n¹s₀

The Mechanics of Decoupling

$$
\frac{dV_{\lambda}}{d\lambda} \propto [[T, V_{\lambda}], T + V_{\lambda}] \quad (\epsilon_k \equiv k^2/M)
$$

- Off-diagonal elements $\implies V_{\lambda} (k,k') \propto V_{NN} (k,k') e^{-[(\epsilon_k - \epsilon_{k'})/\lambda^2]^2}$
- Relevant physics flows to low momentum elements

Unitary Transformations \implies Preserve Observables

Now Low-Pass Filters Work!

Phase shifts with $V_s(k, k') = 0$ for $k, k' > k_{max}$

Tested quantitatively in arXiv: 0711.4252 and 0801.1098

E.D. Jurgenson [SRG and 3NF](#page-0-0)

Flow of N³LO Chiral EFT Potentials

See http://www.physics.ohio-state.edu/∼ntg/srg/ for more!

Flow of N³LO Chiral EFT Potentials

See http://www.physics.ohio-state.edu/∼srg/ for more!

Many-Body Forces

- Why do we need many-body forces?
	- 3NFs arise from eliminating dof's
	- Omitting 3NFs leads to model dependence (Tjon line)
	- 3NF saturates nuclear matter correctly
	- Many-body methods must deal with them (e.g., CI,CC,...)
- SRG will induce many-body forces! $\frac{dV}{ds} = [[\sum a^{\dagger} a, \sum a^{\dagger} a^{\dagger} a a], \sum a^{\dagger} a^{\dagger} a a]$ $2 - body$ $2 - body$ $= \ldots + \sum_{i} a^{\dagger} a^{\dagger} a^{\dagger}$ aaa $+ \ldots$ $3 - body!$
	- Stop evolution if induced 3NF becomes unnatural
	- RG flows with SRG extend consistently to many-body spaces
	- Recent progress: 3NF evolved!!!

Current Realistic NCSM Calculations

Triton calculations from P. Navratil (arXiv:0707.4680)

• 3NF parameters c_F and c_D are fit to two observables

Evolving NN Forces in NCSM $A=3$ space

- Unitary evolution of initial NN-only forces!
	- Currently using MATLAB: working toward parallelization
- $\hbar\omega = 28$ is optimal for initial interaction, $\hbar\omega = 20$ for $\lambda = 2$
	- Trade-off in convergence under investigation

Evolving NN Forces in NCSM $A=3$ space

- Unitary evolution of initial NN-only forces!
	- Currently using MATLAB: working toward parallelization
- $\hbar\omega = 28$ is optimal for initial interaction, $\hbar\omega = 20$ for $\lambda = 2$
	- Trade-off in convergence under investigation

Evolving NN Forces in NCSM $A=3$ space

- Unitary evolution of initial NN-only forces!
	- Currently using MATLAB: working toward parallelization
- $\hbar\omega = 28$ is optimal for initial interaction, $\hbar\omega = 20$ for $\lambda = 2$
	- Trade-off in convergence under investigation
Evolving NN Forces in NCSM $A=3$ space

- Unitary evolution of initial NN-only forces!
	- Currently using MATLAB: working toward parallelization
- $\hbar\omega = 28$ is optimal for initial interaction, $\hbar\omega = 20$ for $\lambda = 2$
	- Trade-off in convergence under investigation

Evolving NN Forces in NCSM $A=3$ space

- Unitary evolution of initial NN-only forces!
	- Currently using MATLAB: working toward parallelization
- $\hbar\omega = 28$ is optimal for initial interaction, $\hbar\omega = 20$ for $\lambda = 2$
	- Trade-off in convergence under investigation

Evolving NN Forces in NCSM $A=3$ space

- Unitary evolution of initial NN-only forces!
	- Currently using MATLAB: working toward parallelization
- $\hbar\omega = 28$ is optimal for initial interaction, $\hbar\omega = 20$ for $\lambda = 2$
	- Trade-off in convergence under investigation

Evolving Three-Body Forces in NCSM!

- Same plots but now including an initial 3NF from N2LO
- Unitary evolution in $A = 3 \implies$ Triton experimental energy preserved

Comparing the SRG to Lee-Suzuki

• SRG converges rapidly and smoothly from above

• What about the size of induced $4NFs$ in $4He$?

⁴He results: Brand New!!!

⁴He results: Brand New!!!

Tjon Line

E.D. Jurgenson [SRG and 3NF](#page-0-0)

Tjon Line

E.D. Jurgenson [SRG and 3NF](#page-0-0)

Insights from the One-Dimensional Model

1-D model: $V^{(2)}(x) = \frac{V_1}{\sigma_1\sqrt{\pi}}e^{-x^2/\sigma_1^2} + \frac{V_2}{\sigma_2\sqrt{\pi}}$ $\frac{V_2}{\sigma_2\sqrt{\pi}}e^{-x^2/\sigma_2^2}$ [Negele et al.: Phys.Rev.C 39 1076 (1989)]

- How do we handle many-body forces? \longrightarrow use a discrete basis to avoid "dangerous" delta functions
- EDJ and R. J. Furnstahl [arXiv:0809.4199]

Embedding: initial potential

- \bullet diagonalize symmetrizer \Rightarrow $\langle N_A||N_{A-1}; n_{A-1}\rangle$; use recursively
- 3D: Use Navratil et al. technology for NCSM
- embedding is everything, SRG coding is trivial

Embedding: evolved potential - $\lambda = 2$

- diagonalize symmetrizer \Rightarrow $\langle N_A || N_{A-1}; n_{A-1} \rangle$; use recursively
- 3D: Use Navratil et al. technology for NCSM
- **•** embedding is everything, SRG coding is trivial

Legend: Embedding, Evolving, BE calculation, Initial 3NF \bullet A=3 (2N only):

 $V_{osc}^{(2)} \stackrel{\text{SRG}}{\Longrightarrow} V_{\lambda.o.}^{(2)}$ $\chi_{\lambda, {\rm osc}}^{(2)} \stackrel{\small \mathsf{embed}}{\Longrightarrow} V_{\lambda, 3}^{(2)}$ $_{\lambda,3}$ Nosc $\stackrel{diag}{\Longrightarrow} BE_3^{(2\text{Nonly})}$ \bullet A=4 (2N only):

 $V_{osc}^{(2)} \stackrel{\text{SRG}}{\Longrightarrow} V_{\lambda.o.}^{(2)}$ $\chi_{\lambda, \textsf{osc}}^{(2)} \stackrel{\mathsf{embed}}{\Longrightarrow} V_{\lambda, 3}^{(2)}$ $\chi^{(2)}_{\lambda,3Nosc} \stackrel{\mathsf{embed}}{\Longrightarrow} V^{(2)}_{\lambda,4}$ $\lambda,$ 4 N osc $\stackrel{diag}{\Longrightarrow} BE_4^{(2\text{Nonly})}$ • $A=4$ (2N+3N only):

$$
V_{osc}^{(2)} \stackrel{\text{embed}}{\Longrightarrow} V_{3Nosc}^{(2)} \stackrel{\text{SRG}}{\Longrightarrow} V_{\lambda,3Nosc}^{(2+3)} \stackrel{\text{embed}}{\Longrightarrow} V_{\lambda,4Nosc}^{(2+3)} \stackrel{\text{diag}}{\Longrightarrow} BE_4^{(2N+3Nonly)}
$$

$$
\stackrel{3NF}{\Longrightarrow} + V_{3Nosc}^{(3init)} \dots
$$

Induced Many-Body Forces are Small - $A=3$

- Basis independent: same evolution in momentum or HO basis \bullet
- Black: Same evolution pattern for 2-body only as 3D NN-only \bullet

Induced Many-Body Forces are Small - $A=3$

- Basis independent: same evolution in momentum or HO basis
- Black: Same evolution pattern for 2-body only as 3D NN-only
- Red: Three-body forces induced Unitary!

Induced Many-Body Forces are Small - $A=5$

- Five-body force is negligible
- Hierarchy of induced many-body forces

$V^{(3)}$ analysis

d $\frac{d}{d\lambda} \langle \psi_{\lambda}^{(3)} \rangle$ $\lambda^{(3)}|V_{\lambda}^{(3)}$ $\chi_\lambda^{(3)} | \psi_\lambda^{(3)}\rangle$ $\langle\substack{(3) \\ \lambda}\rangle = \langle\psi_{\lambda}^{(3)}\rangle$ $\sqrt[(3)]$
 $\sqrt[(3)]$
 $\sqrt[(2)]$ $\chi^{(2)}$, $V_{\lambda}^{(2)}$ $[\overline{V}_{\lambda}^{(2)}]_c-[\overline{V}_{\lambda}^{(3)}]$ $\chi^{(3)}$, $V_{\lambda}^{(3)}$ $[\psi^{(3)}_{\lambda}]|\psi^{(3)}_{\lambda}\rangle$ $\binom{5}{\lambda}$

- Majority evolution dominated by $[\overline{V}^{(2)},V^{(2)}],\, (\overline{V}\equiv [\overline{T},V])$
- Hierarchy of contributions

$V^{(4)}$ analysis

 $\frac{d}{d\lambda}\langle \psi_{\lambda}^{(4)}|V_{\lambda}^{(4)}|\psi_{\lambda}^{(4)}\rangle=\langle \psi_{\lambda}^{(4)}|[\overline{V}_{\lambda}^{(2)},V_{\lambda}^{(3)}]_{\mathsf{c}}+[\overline{V}_{\lambda}^{(3)},V_{\lambda}^{(2)}]_{\mathsf{c}}+[\overline{V}_{\lambda}^{(3)},V_{\lambda}^{(3)}]_{\mathsf{c}}-[\overline{V}_{\lambda}^{(4)},V_{\lambda}^{(4)}]|\psi_{\lambda}^{(4)}\rangle$

• ∴ Induced 4-body is small - Hierarchy persists

Fitting Three-Body Force Evolution

- Evolve in two-particle oscillator space \rightarrow fit 3-body parameters to missing energy
- One term $V^{(3)} = C e^{-[(k^2 + k'^2)/\Lambda^2]^n}$ reduces λ dependence to the 80-90% level.

Future work: add a second, short distance 3NF term with a gradient correction to test systematic reduction

Operator Evolution

Here unevolved operator $(a^{\dagger} a)$ with evolved wavefuntions

• More of this to come from E. R. Anderson

Decoupling in the Oscillator Basis

- Decoupling not straightforward with T_{rel} SRG
- Decoupling improves until some λ and then degrades
- What about other SRG generators?

Using other SRG Generators

• Matrices in NCSM basis for T_{rel} and V

- In this basis T_{rel} will not drive to diagonal
- Harmonic Oscillator Hamiltonian $(H_{ho} = T_{rel} + V_{ho})$ is diagonal in this basis

- Compare T_{rel} on the left with H_{ho} on the right
- Work in progress: Spurious bound states contaminate evolution with $H_{ho} \rightarrow$ need further investigation

Block-Diagonal SRG: [arXiv:0801.1098]

- [Anderson, Bogner, Furnstahl, EDJ, Perry, Schwenk arXiv:0801.1098]
- $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ $H_{\infty} = \begin{pmatrix} PH_{\infty}P & 0 \\ 0 & OH \end{pmatrix}$ 0 $QH_{\infty}Q$ $=\int G_s = \begin{pmatrix} PH_sP & 0 \ 0 & OH\end{pmatrix}$ 0 QH_sQ \setminus

Block-Diagonal SRG: [arXiv:0801.1098]

- [Anderson, Bogner, Furnstahl, EDJ, Perry, Schwenk arXiv:0801.1098]
- $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ $H_{\infty} = \begin{pmatrix} PH_{\infty}P & 0 \\ 0 & OH \end{pmatrix}$ 0 $QH_{\infty}Q$ $=\int G_s = \begin{pmatrix} PH_sP & 0 \ 0 & OH\end{pmatrix}$ 0 QH_sQ \setminus

- SRG Decouples high- and low-energy DOF
- SRG is very flexible can use different generators to evolve potentials
- One-D model gives proof-of-principle of many-body hierarchy
	- provides toolbox to gain intuition quickly everything is directly applicable to 3D NCSM
- Results for 3NF evolution in the NCSM basis are very encouraging!
- Some items to investigate
	- Operator evolution
	- SRG generators (H_{ho}, H_{BD}, H_D)
	- **Basis issues**
	- Fitting procedures
- All of these can be started in 3D now
- Door is opening quickly to other areas (CI,CC,. . .)

Extra Slides

Harmonic Oscillator Basis Overview

- HO wavefunction examples $\psi_n(k)$ with $\hbar\omega = 4$
- resulting truncated delta function $\widetilde{\delta}(k - k') = \sum_{n=0}^{N_{max}} |\psi_n(k)\rangle \langle \psi_n(k')|$
- tradeoff between small $\hbar\omega$ resolution and large $\hbar\omega$ scope
- bigger $N_{max} \rightarrow$ flatter in $\hbar \omega$
- optimal $\hbar\omega$ will shift with SRG evolution

- Good NN convergence even at $N_{\text{max}}=20$
- Try this another way (cut in $A=2$)

Testing Decoupling Quantitatively

 \bullet ¹S₀ Partial Wave, N³LO (500 MeV) E/M

Decoupling above λ

• Decoupling clean and universal for all observables!

Decoupling above λ

Decoupling clean and universal for all observables! \bullet

Phase Shifts:Decoupled above λ - vary λ

• Relevant physics flows to low momentum \rightarrow Decoupling!
Phase Shifts:Decoupled above λ - vary n

Relevant physics flows to low momentum \rightarrow Decoupling! \bullet

Deuteron Observables

Deuteron Observables

- **•** Binding Energy
- **Quadrupole** Moment
- **•** RMS radius

⁴He Energy using No Core Shell Model

• SRG improves convergence with basis size in NCSM

• NN-only \implies different ⁴He Binding Energies

⁶Li Energy using No Core Shell Model

- SRG improves convergence with basis size in NCSM
- NN-only \implies different ⁶Li Binding Energies

Block Diagonalization

See edj et al.: arXiv:0801.1098

$$
\text{Goal} \longrightarrow \text{H}_{\infty} = \begin{pmatrix} PH_{\infty}P & 0 \\ 0 & QH_{\infty}Q \end{pmatrix}
$$

$$
\text{SRG} \longrightarrow \frac{\text{dH}_s}{\text{ds}} = [\eta_s, \text{H}_s] = [[\text{G}_s, \text{H}_s], \text{H}_s]
$$

$$
\text{sharp} \longrightarrow \text{G}_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}
$$

$$
\text{smooth} \longrightarrow \text{G}_s = f\text{H}_s f + (1 - f)\text{H}_s(1 - f)
$$

$$
f(k) = e^{-(k^2/\Lambda_{BD}^2)^n}
$$

Block-Diagonal SRG - Sharp

Block-Diagonal SRG - Smooth (n=4)

