configuration interaction methods

Morten Hjorth-Jensen^{1,2} and Simen Kvaal²

Effective interactions and convergence criteria for

¹Department of Physics, University of Oslo, N-0316 Oslo, Norway

² Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway

April 30, 2009

[Outline](#page-1-0)

1 [Motivation and Overview](#page-2-0)

Motivation

- **1** Can we find a similarity transformation which reduces the role of many-body forces?
- 2 Which conditions give such an optimal reduction?
- **3** How do we define good model spaces? And which consequences does a good model space have for many-body interactions?
- **4** How do we link standard many-body methods and EFT?

In this talk I will first discuss some mathematical properties of effective interactions and CI methods applied to quantum dots. Then I will show a model many-body problem where many-body forces and the definition of the model space play significant roles.

Definitions

We consider a general A-body situation where a Hilbert space of finite dimension n is given along with an A-body Hamiltonian \hat{H} with spectral decomposition given by

$$
\hat{H} = \sum_{k=1}^{n} E_k \left| \psi_k \right\rangle \left\langle \psi_k \right|,
$$

where $\{\ket{\psi_k}\}_{k=1}^n$ is an orthonormal basis of eigenvectors and where E_k are the corresponding eigenvalues. We choose the dimension n to be finite for simplicity, but the theory may be generalized to infinite dimensional settings where \hat{H} has a purely discrete spectrum.

Definitions

The Hilbert space is divided into the model space P , and its complement, denoted by Q. We assume that $m = \dim(\mathcal{P})$.

The effective Hamiltonian \hat{H}_{eff} is defined in the $\mathcal{P}_{\hat{i}}$ space *only*, and by definition its eigenvalues are identical to the m eigenvalues of \hat{H} . This is equivalent to \hat{H}_eff being given by

$$
\hat{H}_{eff} := \hat{P} \mathcal{H} \hat{P} \n= \hat{P} e^{-\hat{G}} \hat{H} e^{\hat{G}} \hat{P},
$$

where H is assumed to obey the de-coupling equation

$$
\hat{Q} \mathcal{H} \hat{P} = 0.
$$

If the latter is satisfied, the P-space is easily seen to be invariant under H , and since similarity transformations preserve eigenvalues, \hat{H}_eff is seen to have m eigenvalues of \hat{H}

Definitions

Without loss of generality, we assume that the eigenvalues E_k of \hat{H} are arranged so that $\hat{H}_{{\sf eff}}$, which is non-Hermitian in general, has the spectral decomposition

$$
\hat{H}_{\text{eff}} = \sum_{k=1}^{m} E_k \, |\phi_k\rangle \, \langle \tilde{\phi}_k|,
$$

where $\{\ket{\phi_k}\}_{k=1}^m$ is a basis for the $\mathcal P$ -space, and where $\braket{\phi_k | \tilde{\phi_\ell}} = \delta_{k,\ell}$ defines the bi-orthogonal basis $\{\ket{\tilde{\phi}_k}\}_{k=1}^m$.

Definitions

The similarity transform operator $\exp(\hat{G})$ is of course not unique; E_k , $k = 1, \cdots, m$ can be chosen in many ways, and even if the effective eigenvector $|\phi_k\rangle$ is chosen to be related to $|\psi_k\rangle$, there is still great freedom of choice left.

Assume that we have determined the eigenvalues $E_k, \ k=1,\ldots,m$ that $\hat{H}_{{\rm eff}}$ should have. Two choices of the corresponding $|\phi_k\rangle$ are common: The Bloch-Brandow choice, and the canonical Van Vleck choice, resulting in "the non-Hermitian" and "the Hermitian" effective Hamiltonians, respectively. For a discussion of these approaches see the recent work of Simen Kvaal, Phys. Rev. C 78, 044330 (2008).

Definitions

In the Bloch-Brandow scheme, the effective eigenvectors are simply chosen as

$$
|\phi_k\rangle := \hat{P} |\psi_k\rangle,
$$

which gives meaning whenever $\hat{P} |\psi_k\rangle$ defines a basis for P -space. In this case, $\hat{G} = \hat{\omega}$, where $\hat{\omega} = \hat{Q}\hat{\omega}\hat{P}$, defined by

$$
\hat{\omega}\hat{P}|\psi_k\rangle := \hat{Q}|\psi_k\rangle\,,\quad k=1,\cdots,m.
$$

Definitions

In contrast, the canonical Van Vleck effective Hamiltonian chooses a certain orthogonalization of $\{\hat{P} | \psi_k \rangle \}_{k=1}^m$ as effective eigenvectors. In this case, $\hat{G}=$ artanh $(\hat{\omega}-\hat{\omega}^{\dagger})$, which relates the two effective Hamiltonians to each other. The canonical effective interaction $\hat{H}_{{\sf eff}}$ minimizes the quantity Δ defined by

$$
\Delta(|\chi_1\rangle,\cdots,|\chi_m\rangle):=\sum_{k=1}^m||\chi_k\rangle-|\psi_k\rangle||^2,
$$
 (1)

where the minimum is taken with respect to all orthonormal sets of \mathcal{P} -space vectors χ . The Bloch-Brandow effective eigenvectors, on the other hand, yield the global minimum of ∆.

Definitions

We have not specified *which* of the eigenvalues of H is to be reproduced by \hat{H}_{eff} . In general, we would like it to reproduce the ground state and the other lowest eigenstates of H if $m > 1$.

We define the effective *interaction* $\hat{\mathsf{V}}_{\mathsf{eff}}$ as

$$
\hat{V}_{eff}:=\hat{H}_{eff}-\hat{P}\hat{H}_0\hat{P},
$$

where $[\hat{H}_0, \hat{P}] = 0$ is assumed. This is satisfied whenever the model space is spanned by Slater determinants being eigenvectors of \hat{H}_0 . Common choice in many-body physics.

Algorithm

Let us briefly summarize the numerical algorithm for computing the (sub-cluster) effective a-body interaction $\hat{V}_{\rm eff}^{(a)}$. (see Phys. Rev. C **78**, 044330 (2008)). We assume here, that the computational basis is given by $\{\ket{k}\}_{k=1}^n$, and that \hat{P} and \hat{Q} are given by

$$
\hat{P} \equiv \sum_{k=1}^{m} |k\rangle \langle k|
$$

and

$$
\hat{Q} \equiv \hat{1} - \hat{P} = \sum_{k=m+1}^{n} |k\rangle \langle k|,
$$

respectively. We will let all operators be represented by their matrices in this basis.

Algorithm

The numerical algorithm can then be summarized as follows:

 \bullet Completely diagonalize the a-body Hamiltonian matrix H, viz,

$$
H=UEU^{\dagger},
$$

where U is an $n \times n$ unitary matrix, where $U_{i,k} = \langle j|\psi_k \rangle$, and where E is diagonal, with $E_{k,k} = E_k$.

- **Sort the eigenvalues and eigenvectors, i.e., permute the eigenvalues and columns** of U, according to increasing energy or model space overlap, whatever is desired.
- **•** Let $\tilde{U} = PUP = U_{1...m,1...m}$, i.e., the upper $m \times m$ block.

Algorithm

 \bullet Compute the singular value decomposition (SVD) of \tilde{U} , viz,

$$
\tilde{U}=X\Sigma Y^{\dagger},
$$

where X and Y are unitary matrices, and Σ is diagonal with diagonal elements $\sigma_1 > \sigma_2 > \cdots \sigma_m$.

O Compute the $m \times m$ matrix V given by

$$
V = XY^{\dagger}, \tag{2}
$$

with $V_{i,k} = \langle j | \phi_k \rangle$. Eq. [\(2\)](#page-12-0) solves the minimization of Δ in Eq. [\(1\)](#page-8-0).

• Compute the effective interaction matrix, viz,

$$
V_{\text{eff}} = VE_{1...m,1...m}V^{\dagger} - PH_0P.
$$

Extract occupation number matrix elements $u^{\alpha_1,\cdots,\alpha_a}_{\beta_1,\cdots,\beta_a}$ from V_{eff} .

Definitions and convergence criteria

The Hamiltonian of the quantum dot is given by

$$
H := T + U,\tag{3}
$$

where T is the many-body HO Hamiltonian, and U is the inter-electron Coulomb interactions. Thus, in dimensionless units,

$$
U:=\sum_{i
$$

The parameter λ measures the strength of the interaction over the confinement of the HO, viz,

$$
\lambda := \frac{1}{\hbar\omega}\left(\frac{e^2}{4\pi\epsilon_0\epsilon}\right),
$$

where we recall that $\sqrt{\hbar/m\omega}$ is the length unit. Typical values for GaAs semiconductors are close to $\lambda = 2$. Increasing the trap size leads to a larger λ , and the quantum dot then approaches the classical regime.

Definitions and convergence criteria

For two particles in a parabolic trap, for certain values of the trap, one has closed-form solutions (Taut 1993 and 1994).

The Hamiltonian [\(3\)](#page-13-1) becomes

$$
H = -\frac{1}{2}(\nabla_1^2 + \nabla_2^2) + \frac{1}{2}(r_1^2 + r_2^2) + \frac{\lambda}{r_{12}},
$$
\n(4)

where $r_{12} = ||\vec{r}_1 - \vec{r}_2||$ and $r_i = ||\vec{r}_i||$. Introduce a set of scaled centre of mass coordinates given by $\vec{R} = (\vec{r}_1 + \vec{r}_2)/\sqrt{2}$ and $\vec{r} = (\vec{r}_1 - \vec{r}_2)/\sqrt{2}$. This leads to the separable Hamiltonian

$$
H = -\frac{1}{2}(\nabla_r^2 + \nabla_R^2) + \frac{1}{2}(\|\vec{r}\|^2 + \|\vec{R}\|^2) + \frac{\lambda}{\sqrt{2}\|\vec{r}\|}
$$

= $H_{\text{HO}}(\vec{R}) + H_{\text{rel}}(\vec{r}).$

Definitions and convergence criteria

The ground state (having $m = m' = 0$, $n = n' = 0$) for $\lambda = 1$ is given by

$$
\Psi_0(\vec{R},\vec{r}) = \frac{D}{\sqrt{2}}(r_{12} + \sqrt{2}a)e^{-(r_1^2 + r_2^2)/2},
$$

with D and a being constants.

Observe that this function has a cusp at $r = 0$, i.e., at the origin $x = y = 0$ (where we have introduced Cartesian coordinates $\vec{r} = (x, y)$ for the relative coordinate). Indeed, the partial derivatives $\partial_x\psi_0$ and $\partial_y\psi_0$ are not continuous there. The cusp stems from the famous "cusp condition" which simply states that, for a non-vanishing wave function at $r_{12} = 0$, the Coulomb divergence must be compensated by a similar divergence in the Laplacian.

Definitions and convergence criteria

On the other hand, the non-smooth function $\Psi_{0,0}(\vec{R}, \vec{r})$ is to be expanded in the HO eigenfunctions, e.g., Fock-Darwin orbitals. For $m = 0$, we have

$$
\Phi_{n,0}^{\rm FD}(r) = \sqrt{\frac{2}{\pi}} L_n(r^2) e^{-r^2/2},
$$

using the fact that these are independent of θ . Thus,

$$
\Psi_0(\vec{r}) = \Phi_{0,0}^{\rm FD}(R)u_{0,0}(r) = \Phi_{0,0}^{\rm FD}(R)\sum_{n=0}^{\infty}c_n\Phi_{n,0}^{\rm FD}(r), \qquad (5)
$$

The functions $\Phi_{n,0}^{\rm FD}(r)$ are very smooth, as is seen by noting that $L_n(r^2) = L_n(x^2 + y^2)$ is a polynomial in x and y, while $u_{0,0}(r) = u_{0,0}(\sqrt{x^2 + y^2})$, so Eqn. [\(5\)](#page-16-0) is basically approximating a square root with a polynomial. Therefore, the cusp at $r = 0$ cannot be well approximated.

Definitions and convergence criteria

One can show that the smoothness properties of the wave function Ψ is equivalent to a certain decay rate of the coefficients c_n in Eqn. [\(5\)](#page-16-0) as $n \to \infty$. In this case, we will show that

$$
\sum_{n=0}^{\infty} n^k |c_n|^2 < +\infty,
$$

so that

$$
|c_n|=o(n^{-(k+1+\epsilon)/2}). \hspace{1.5cm} (6)
$$

Here, k is the number of times Ψ may be differentiated weakly, i.e., $\Psi\in H^k(\mathbb{R}^2),$ and $\epsilon \in [0, 1)$ is a constant. For the function Ψ_0 we have $k = 1$. This kind of estimate directly tells us that an approximation using only a few HO eigenfunctions necessarily will give an error depending directly on the smoothness k .

Definitions and convergence criteria

In a many-body context, define all possible Slater determinants for A particles in d dimensions, constrained by the energy

$$
E\leq R_{ho}+\frac{Ad}{2}
$$

where R_{ho} is the last oscillator shell, one can show (see Simen Kvaal, arxiv:0808.2145, and Phys. Rev. B, in press) that the error in the many-body energy by omitting shells above R_{ho} is given by

$$
\Delta E \leq C \sum_{n=R_{ho}+1}^{\infty} (n+\frac{1}{2})|c_n|^2,
$$

with C a constant and replacing the sum by an intergral it can be approximated as

$$
\Delta E \sim O(R_{ho}^{-k+\epsilon-1}).
$$

This gives a precise error estimate when truncating the many-particle Hilbert space. It depends on the properties (cusp conditions) of the wave function at $r = 0$.

Numerical experiments, bare interaction vs effective

Numerical experiments, bare interaction vs effective

Numerical experiments, bare vs effective interaction

Numerical experiments, bare vs effective interaction

Petit summary

- Quantum dots are in general kind problems. The two-particle problem has a closed-form solution.
- **•** Precise convergence criterion for bare interaction
- An effective interaction improves considerably the convergence, and a much small set of single-particle states is necessary. However, not easy to find precise convergence criterion
- Coupled-cluster calculations should exhibit similar convergence patterns
- **•** Can extend the convergence criterion to other basis functions
- **O** Can we define a priori what is a good model space?

A nastier case

Our specific model consists of N doubly-degenerate and equally spaced single-particle levels labelled by $p = 1, 2, \ldots$ and spin $\sigma = \pm 1$. We write the Hamiltonian as

$$
\hat{H}=\hat{H}_0+\hat{V},
$$

where

$$
\hat{H}_0=\xi\sum_{\rho\sigma}(\rho-1)a^\dagger_{\rho\sigma}a_{\rho\sigma}
$$

and

$$
\hat{V}=-\frac{1}{2}g\sum_{pq}a_{p+}^{\dagger}a_{p-}^{\dagger}a_{q-}a_{p+}-\frac{1}{2}f\sum_{pqr}\left(a_{p+}^{\dagger}a_{p-}^{\dagger}a_{q-}a_{r+}+\mathrm{h.c.}\right)
$$

A nastier case

Here, H_0 is the unperturbed Hamiltonian with a spacing between successive single-particle states given by ξ , which we may set to a constant value $\xi = 1$ without loss of generality. The two-body operator \hat{V} has two terms. The first term represents the pairing contribution and carries a constant strength g (it easy to extend our model to include a state dependent interaction). The indices $\sigma = \pm$ represent the two possible spin values.

A nastier case

The first term of the interaction can only couple pairs and excites therefore only two particles at the time.

The second interaction term, carrying a constant strength f , acts between a set of particles with opposite spins and allows for the breaking of a pair or just to excite a single-particle state. The spin of a given single-particle state is not changed. This interaction can be interpreted as a particle-hole interaction if we label single-particle states within the model space as hole-states. The single-particle states outside the model space are then particle states.

In our model we have kept both the interaction strength and the single-particle level

as constants. In a realistic system like a nucleus this is not the case, however if a harmonic oscillator basis is used, as done in the no-core shell-model calculations at least the single-particle basis mimicks the input to realistic calculations.

A nastier case

Finding $\hat{H}_{{\sf eff}}$ is equivalent to solving the original problem. In order to be useful, we need some sort of approximation scheme to find $\hat{H}_{{\rm eff}}$.

In our model, $\mathcal P$ is defined by restricting the allowed leves accessible for the A particles under study. Thus,

$$
\mathcal{P}^{(A)} := \mathsf{span} \left\{ \left| (p_1, \sigma_1) \cdots (p_A, \sigma_A) \right\rangle \ : \ p_k \leq N_P \right\},\
$$

where $N_P \le N$ is the number of levels accessible in the model space. This is the way model spaces in general are built up, simply restricting the single-particle orbitals accessible. It is by no means the only possible choice. On the other hand, this way of defining the model space has a very intuitive appeal, as it naturally leads to a view of \hat{H}_eff as a renormalization of \hat{H} . It also gives a natural relation between model spaces for different A, which is absolutely necessary for the sub-cluster effective Hamiltonian to be meaningful.

A nastier case

The effective Hamiltonian is seen to be an A-body operator in general, even though H itself may contain only two-body operators. Thus, $\hat{V}_{\sf eff}$ can be written in its most general form as

$$
\hat{\mathcal{V}}_{\text{eff}}^{(A)} = \sum_{\alpha_1, \cdots, \alpha_A \beta_1, \cdots, \beta_A} u_{\beta_1, \cdots}^{\alpha_1, \cdots} a_{\alpha_1}^{\dagger} \cdots a_{\alpha_A}^{\dagger} a_{\beta_A} \cdots a_{\beta_1},
$$

where $\alpha_k = (\rho_k, \sigma_k)$ and $u^{\alpha_1,\cdots}_{\beta_1,\cdots}$ represents a specific matrix element. The approximation idea is then to obtain instead an *a*-body effective interaction $\hat{V}_{\rm eff}^{(\mathsf{a})}$, where $\emph{a}<$ \emph{A} , and view this as an approximation to $\hat{V}_{\rm eff}^{(A)}$. This leads to

$$
\hat{V}_{\text{eff}}^{(A)} \approx \frac{\binom{A}{2}}{\binom{A}{a}\binom{a}{2}} \hat{V}_{\text{eff}}^{(a)},
$$

which is a much simpler operator, usually obtainable exactly by large-scale diagonalization of the a-body Hamiltonian.

A nastier case

The remaining question is which eigenpairs of $H^{(a)}$ should be reproduced by $\hat{H}^{(a)}_{\text{eff}}$ and which approximate eigenvectors should be used. There is no unique answer to this. The "best" answer would for each problem require a complete knowledge of the conserved observables of the many-body Hamiltonian.

On the other hand, if \hat{V} is a small perturbation, that is, we let $\hat{V} \mapsto \lambda \hat{V}$ and consider an adiabatic turning on by slowly increasing λ , then it is natural to choose the eigenvalues developing adiabatically from $\lambda=0.$ Indeed, $\hat{V}_{\mathrm{eff}}^{(a)}$ is then seen to be identical to a class of *a*-body terms in the perturbation series for the full $\hat{V}_{\mathrm{eff}}^{(A)}$ to infinite order. The problem is, that there is no way in general to decide which eigenvalues have developed adiabatically from $\lambda = 0$, and we must resort to a heuristic procedure.

A nastier case

Two alternatives present themselves as obvious candidates: Selecting the smallest eigenvalues, and selecting the eigenvalues whose eigenvectors have the largest overlap $\langle \psi_k | P | \psi_k \rangle$ with P. Both are equivalent for sufficiently small λ , but the eigenvalues will cross in the presence of so-called intruder states for larger λ . Moreover, the presence of perhaps unknown constants of motion will make the selection by eigenvalue problematic, as exact crossings may lead us to select eigenpairs with $\hat{P}\ket{\psi_k}=0$, which makes $\hat{H}_{\sf eff}^{(a)}$ ill-defined. We therefore consider selection by model space overlap to be more robust in general.

A nastier case, numerical experiments, only pairing

A nastier case, numerical experiments, only pairing

For $g > 0$, a double-logarithmic plot reveals an almost perfect g^3 -behaviour of all errors. Larger values of a give smaller errors, as one would expect, but only by a constant factor. Thus, all the $\hat{V}_{\rm eff}^{(a)}$ seem to be equivalent to perturbation theory to second order in the strength g with respect to accuracy. This order is constant, even though the complexity of calculating $\hat{V}_{\mathrm{eff}}^{(a)}$ increases by orders of magnitude. Most of the physical correlations are thus well-represented by a two-body effective interaction. This is expected since a pairing-type interaction favors strong two-particle clusters. The choice of a constant pairing strength enhances also this type of correlations. Three-body and four-body clusters tend to be small.

A nastier case, numerical experiments, particle-hole as well, four and five particles

A nastier case, numerical experiments, particle-hole as

Eigenvalue errors for H_{out} (a = 2), f = 0.05g

well, two and three particles

0.04

A nastier case, numerical experiments, particle-hole as

Eigenvalue errors for H_{eff} (a = 4), $f = 0.5g$

well, four and five particles

2.5

A nastier case, numerical experiments, particle-hole as well, two and three particles

Conclusions

- **•** Precise convergence criterion for bare Coulomb interactions
- An effective interaction improves considerably the convergence, and a much small set of single-particle states is necessary. However, not easy to find precise convergence criterion.
- Coupled-cluster calculations for Coulomb problems should exhibit the same pattern. What about nuclear forces? EFT-many-body strategy?
- When strong particle-hole correlations are present one may have problems in defining a proper model space. Level crossings and intruder states (Island of inversion problems in nuclear physics)
- We cannot define a priori what is a good model space and many-body interactions beyond two-body may cause problems.
- ● How can we link such problems with EFT?