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Motivation

1 Can we find a similarity transformation which reduces the role
of many-body forces?

2 Which conditions give such an optimal reduction?

3 How do we define good model spaces? And which
consequences does a good model space have for many-body
interactions?

4 How do we link standard many-body methods and EFT?

In this talk I will first discuss some mathematical properties of
effective interactions and CI methods applied to quantum dots.
Then I will show a model many-body problem where many-body
forces and the definition of the model space play significant roles.
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Definitions

We consider a general A-body situation where a Hilbert space of finite dimension n is
given along with an A-body Hamiltonian Ĥ with spectral decomposition given by

Ĥ =
nX

k=1

Ek |ψk 〉 〈ψk | ,

where {|ψk 〉}nk=1 is an orthonormal basis of eigenvectors and where Ek are the

corresponding eigenvalues. We choose the dimension n to be finite for simplicity, but

the theory may be generalized to infinite dimensional settings where Ĥ has a purely

discrete spectrum.
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Definitions

The Hilbert space is divided into the model space P, and its complement, denoted by
Q. We assume that m = dim(P).

The effective Hamiltonian Ĥeff is defined in the P-space only, and by definition its
eigenvalues are identical to the m eigenvalues of Ĥ. This is equivalent to Ĥeff being
given by

Ĥeff := P̂HP̂

= P̂e−Ĝ ĤeĜ P̂,

where H is assumed to obey the de-coupling equation

Q̂HP̂ = 0.

If the latter is satisfied, the P-space is easily seen to be invariant under H, and since

similarity transformations preserve eigenvalues, Ĥeff is seen to have m eigenvalues of

Ĥ.
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Definitions

Without loss of generality, we assume that the eigenvalues Ek of Ĥ are arranged so
that Ĥeff, which is non-Hermitian in general, has the spectral decomposition

Ĥeff =
mX

k=1

Ek |φk 〉 ˜〈φk |,

where {|φk 〉}mk=1 is a basis for the P-space, and where 〈φk |φ̃`〉 = δk,` defines the

bi-orthogonal basis {|φ̃k 〉}mk=1.
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The similarity transform operator exp(Ĝ) is of course not unique; Ek , k = 1, · · · ,m
can be chosen in many ways, and even if the effective eigenvector |φk 〉 is chosen to be
related to |ψk 〉, there is still great freedom of choice left.

Assume that we have determined the eigenvalues Ek , k = 1, . . . ,m that Ĥeff should

have. Two choices of the corresponding |φk 〉 are common: The Bloch-Brandow

choice, and the canonical Van Vleck choice, resulting in “the non-Hermitian” and “the

Hermitian” effective Hamiltonians, respectively. For a discussion of these approaches

see the recent work of Simen Kvaal, Phys. Rev. C 78, 044330 (2008).
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Definitions

In the Bloch-Brandow scheme, the effective eigenvectors are simply chosen as

|φk 〉 := P̂ |ψk 〉 ,

which gives meaning whenever P̂ |ψk 〉 defines a basis for P-space. In this case, Ĝ = ω̂,

where ω̂ = Q̂ω̂P̂, defined by

ω̂P̂ |ψk 〉 := Q̂ |ψk 〉 , k = 1, · · · ,m.
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In contrast, the canonical Van Vleck effective Hamiltonian chooses a certain
orthogonalization of {P̂ |ψk 〉}mk=1 as effective eigenvectors. In this case,

Ĝ = artanh(ω̂ − ω̂†), which relates the two effective Hamiltonians to each other. The

canonical effective interaction Ĥeff minimizes the quantity ∆ defined by

∆(|χ1〉 , · · · , |χm〉) :=
mX

k=1

‖ |χk 〉 − |ψk 〉 ‖2, (1)

where the minimum is taken with respect to all orthonormal sets of P-space vectors χ.

The Bloch-Brandow effective eigenvectors, on the other hand, yield the global

minimum of ∆.
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We have not specified which of the eigenvalues of H is to be reproduced by Ĥeff. In
general, we would like it to reproduce the ground state and the other lowest
eigenstates of H if m > 1.

We define the effective interaction V̂eff as

V̂eff := Ĥeff − P̂Ĥ0P̂,

where [Ĥ0, P̂] = 0 is assumed. This is satisfied whenever the model space is spanned

by Slater determinants being eigenvectors of Ĥ0. Common choice in many-body

physics.
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Let us briefly summarize the numerical algorithm for computing the (sub-cluster)

effective a-body interaction V̂
(a)
eff . (see Phys. Rev. C 78, 044330 (2008)).

We assume here, that the computational basis is given by {|k〉}nk=1, and that P̂ and Q̂
are given by

P̂ ≡
mX

k=1

|k〉 〈k|

and

Q̂ ≡ 1̂− P̂ =
nX

k=m+1

|k〉 〈k| ,

respectively. We will let all operators be represented by their matrices in this basis.
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Algorithm

The numerical algorithm can then be summarized as follows:

Completely diagonalize the a-body Hamiltonian matrix H, viz,

H = UEU†,

where U is an n × n unitary matrix, where Uj,k = 〈j |ψk 〉, and where E is
diagonal, with Ek,k = Ek .

Sort the eigenvalues and eigenvectors, i.e., permute the eigenvalues and columns
of U, according to increasing energy or model space overlap, whatever is desired.

Let Ũ = PUP = U1...m,1...m, i.e., the upper m ×m block.
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Compute the singular value decomposition (SVD) of Ũ, viz,

Ũ = XΣY †,

where X and Y are unitary matrices, and Σ is diagonal with diagonal elements
σ1 ≥ σ2 ≥ · · ·σm.

Compute the m ×m matrix V given by

V = XY †, (2)

with Vj,k = 〈j |φk 〉. Eq. (2) solves the minimization of ∆ in Eq. (1).

Compute the effective interaction matrix, viz,

Veff = VE1...m,1...mV † − PH0P.

Extract occupation number matrix elements uα1,··· ,αa
β1,··· ,βa

from Veff.
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Definitions and convergence criteria

The Hamiltonian of the quantum dot is given by

H := T + U, (3)

where T is the many-body HO Hamiltonian, and U is the inter-electron Coulomb
interactions. Thus, in dimensionless units,

U :=
NX

i<j

C(i , j) =
NX

i<j

λ

‖~ri −~rj‖
.

The parameter λ measures the strength of the interaction over the confinement of the
HO, viz,

λ :=
1

~ω

„
e2

4πε0ε

«
,

where we recall that
p

~/mω is the length unit. Typical values for GaAs

semiconductors are close to λ = 2. Increasing the trap size leads to a larger λ, and the

quantum dot then approaches the classical regime.
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Definitions and convergence criteria

For two particles in a parabolic trap, for certain values of the trap, one has closed-form
solutions (Taut 1993 and 1994).
The Hamiltonian (3) becomes

H = −
1

2
(∇2

1 +∇2
2) +

1

2
(r2

1 + r2
2 ) +

λ

r12
, (4)

where r12 = ‖~r1 −~r2‖ and rj = ‖~rj‖. Introduce a set of scaled centre of mass

coordinates given by ~R = (~r1 +~r2)/
√

2 and ~r = (~r1 −~r2)/
√

2.
This leads to the separable Hamiltonian

H = −
1

2
(∇2

r +∇2
R) +

1

2
(‖~r‖2 + ‖~R‖2) +

λ
√

2‖~r‖

= HHO(~R) + Hrel(~r).
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Definitions and convergence criteria

The ground state (having m = m′ = 0, n = n′ = 0) for λ = 1 is given by

Ψ0(~R,~r) =
D
√

2
(r12 +

√
2a)e−(r2

1 +r2
2 )/2,

with D and a being constants.

Observe that this function has a cusp at r = 0, i.e., at the origin x = y = 0 (where we

have introduced Cartesian coordinates ~r = (x , y) for the relative coordinate). Indeed,

the partial derivatives ∂xψ0 and ∂yψ0 are not continuous there. The cusp stems from

the famous “cusp condition” which simply states that, for a non-vanishing wave

function at r12 = 0, the Coulomb divergence must be compensated by a similar

divergence in the Laplacian.
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Definitions and convergence criteria

On the other hand, the non-smooth function Ψ0,0(~R,~r) is to be expanded in the HO
eigenfunctions, e.g., Fock-Darwin orbitals. For m = 0, we have

ΦFD
n,0 (r) =

r
2

π
Ln(r2)e−r2/2,

using the fact that these are independent of θ. Thus,

Ψ0(~r) = ΦFD
0,0 (R)u0,0(r) = ΦFD

0,0 (R)
∞X
n=0

cnΦFD
n,0 (r), (5)

The functions ΦFD
n,0 (r) are very smooth, as is seen by noting that

Ln(r2) = Ln(x2 + y2) is a polynomial in x and y , while u0,0(r) = u0,0(
p

x2 + y2), so

Eqn. (5) is basically approximating a square root with a polynomial. Therefore, the

cusp at r = 0 cannot be well approximated.
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Definitions and convergence criteria

One can show that the smoothness properties of the wave function Ψ is equivalent to
a certain decay rate of the coefficients cn in Eqn. (5) as n→∞. In this case, we will
show that

∞X
n=0

nk |cn|2 < +∞,

so that
|cn| = o(n−(k+1+ε)/2). (6)

Here, k is the number of times Ψ may be differentiated weakly, i.e., Ψ ∈ Hk (R2), and

ε ∈ [0, 1) is a constant. For the function Ψ0 we have k = 1. This kind of estimate

directly tells us that an approximation using only a few HO eigenfunctions necessarily

will give an error depending directly on the smoothness k.
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Definitions and convergence criteria

In a many-body context, define all possible Slater determinants for A particles in d
dimensions, constrained by the energy

E ≤ Rho +
Ad

2

where Rho is the last oscillator shell, one can show (see Simen Kvaal, arxiv:0808.2145,
and Phys. Rev. B, in press) that the error in the many-body energy by omitting shells
above Rho is given by

∆E ≤ C
∞X

n=Rho +1

(n +
1

2
)|cn|2,

with C a constant and replacing the sum by an intergral it can be approximated as

∆E ∼ O(R−k+ε−1
ho ).

This gives a precise error estimate when truncating the many-particle Hilbert space. It

depends on the properties (cusp conditions) of the wave function at r = 0.
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Numerical experiments, bare interaction vs effective
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Numerical experiments, bare interaction vs effective
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Numerical experiments, bare vs effective interaction
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Numerical experiments, bare vs effective interaction
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Petit summary

Quantum dots are in general kind problems. The two-particle problem has a
closed-form solution.

Precise convergence criterion for bare interaction

An effective interaction improves considerably the convergence, and a much
small set of single-particle states is necessary. However, not easy to find precise
convergence criterion

Coupled-cluster calculations should exhibit similar convergence patterns

Can extend the convergence criterion to other basis functions

Can we define a priori what is a good model space?
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A nastier case

Our specific model consists of N doubly-degenerate and equally spaced single-particle
levels labelled by p = 1, 2, . . . and spin σ = ±1.
We write the Hamiltonian as

Ĥ = Ĥ0 + V̂ ,

where
Ĥ0 = ξ

X
pσ

(p − 1)a†pσapσ

and

V̂ = −
1

2
g
X
pq

a†p+a†p−aq−ap+ −
1

2
f
X
pqr

“
a†p+a†p−aq−ar+ + h.c.

”
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A nastier case

Here, H0 is the unperturbed Hamiltonian with a spacing between successive

single-particle states given by ξ, which we may set to a constant value ξ = 1 without

loss of generality. The two-body operator V̂ has two terms. The first term represents

the pairing contribution and carries a constant strength g (it easy to extend our model

to include a state dependent interaction). The indices σ = ± represent the two

possible spin values.
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A nastier case

The first term of the interaction can only couple pairs and excites therefore only two
particles at the time.
The second interaction term, carrying a constant strength f , acts between a set of
particles with opposite spins and allows for the breaking of a pair or just to excite a
single-particle state. The spin of a given single-particle state is not changed. This
interaction can be interpreted as a particle-hole interaction if we label single-particle
states within the model space as hole-states. The single-particle states outside the
model space are then particle states.

In our model we have kept both the interaction strength and the single-particle level

as constants. In a realistic system like a nucleus this is not the case, however if a

harmonic oscillator basis is used, as done in the no-core shell-model calculations at

least the single-particle basis mimicks the input to realistic calculations.
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A nastier case

Finding Ĥeff is equivalent to solving the original problem. In order to be useful, we
need some sort of approximation scheme to find Ĥeff.
In our model, P is defined by restricting the allowed leves accessible for the A particles
under study. Thus,

P(A) := span {|(p1, σ1) · · · (pA, σA)〉 : pk ≤ NP} ,

where NP ≤ N is the number of levels accessible in the model space. This is the way

model spaces in general are built up, simply restricting the single-particle orbitals

accessible. It is by no means the only possible choice. On the other hand, this way of

defining the model space has a very intuitive appeal, as it naturally leads to a view of

Ĥeff as a renormalization of Ĥ. It also gives a natural relation between model spaces

for different A, which is absolutely necessary for the sub-cluster effective Hamiltonian

to be meaningful.
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A nastier case

The effective Hamiltonian is seen to be an A-body operator in general, even though H
itself may contain only two-body operators. Thus, V̂eff can be written in its most
general form as

V̂
(A)
eff =

X
α1,··· ,αA

X
β1,··· ,βA

uα1,···
β1,··· a

†
α1
· · · a†αA

aβA
· · · aβ1

,

where αk = (pk , σk ) and uα1,···
β1,··· represents a specific matrix element. The

approximation idea is then to obtain instead an a-body effective interaction V̂
(a)
eff ,

where a < A, and view this as an approximation to V̂
(A)
eff . This leads to

V̂
(A)
eff ≈

`A
2

´`A
a

´`a
2

´ V̂ (a)
eff ,

which is a much simpler operator, usually obtainable exactly by large-scale

diagonalization of the a-body Hamiltonian.
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A nastier case

The remaining question is which eigenpairs of H(a) should be reproduced by Ĥ
(a)
eff , and

which approximate eigenvectors should be used. There is no unique answer to this.
The “best” answer would for each problem require a complete knowledge of the
conserved observables of the many-body Hamiltonian.

On the other hand, if V̂ is a small perturbation, that is, we let V̂ 7→ λV̂ and consider

an adiabatic turning on by slowly increasing λ, then it is natural to choose the

eigenvalues developing adiabatically from λ = 0. Indeed, V̂
(a)
eff is then seen to be

identical to a class of a-body terms in the perturbation series for the full V̂
(A)
eff to

infinite order. The problem is, that there is no way in general to decide which

eigenvalues have developed adiabatically from λ = 0, and we must resort to a heuristic

procedure.
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A nastier case

Two alternatives present themselves as obvious candidates: Selecting the smallest

eigenvalues, and selecting the eigenvalues whose eigenvectors have the largest overlap

〈ψk |P|ψk 〉 with P. Both are equivalent for sufficiently small λ, but the eigenvalues

will cross in the presence of so-called intruder states for larger λ. Moreover, the

presence of perhaps unknown constants of motion will make the selection by

eigenvalue problematic, as exact crossings may lead us to select eigenpairs with

P̂ |ψk 〉 = 0, which makes Ĥ
(a)
eff ill-defined. We therefore consider selection by model

space overlap to be more robust in general.
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A nastier case, numerical experiments, only pairing

−1 −0.5 0 0.5 1
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Eigenvalue errors for H
eff

 (a = 2,3,4)

g

ei
ge

nv
al

ue
 e

rr
or

 

 

a = 2

a = 3

a = 4

10
−2

10
−1

10
0

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eigenvalue errors for H
eff

 (a = 2,3,4)

g

ei
ge

nv
al

ue
 e

rr
or

 

 

INT Workshop INT April 23 2009



Overview
Appetizer

QDots
Pspaces

A nastier case, numerical experiments, only pairing

For g > 0, a double-logarithmic plot reveals an almost perfect g3-behaviour of all

errors. Larger values of a give smaller errors, as one would expect, but only by a

constant factor. Thus, all the V̂
(a)
eff seem to be equivalent to perturbation theory to

second order in the strength g with respect to accuracy. This order is constant, even

though the complexity of calculating V̂
(a)
eff increases by orders of magnitude. Most of

the physical correlations are thus well-represented by a two-body effective interaction.

This is expected since a pairing-type interaction favors strong two-particle clusters.

The choice of a constant pairing strength enhances also this type of correlations.

Three-body and four-body clusters tend to be small.
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A nastier case, numerical experiments, particle-hole as
well, four and five particles

−1 −0.5 0 0.5 1
−0.02

−0.01

0

0.01

0.02

0.03

0.04

g

ei
ge

nv
al

ue
 e

rr
or

Eigenvalue errors for H
eff

 (a = 4), f = 0.05g

−1 −0.5 0 0.5 1
5

5.5

6

6.5

7

7.5

8

8.5

g

E
k

Exact aigenvalues, A=5, f = 0.05g

INT Workshop INT April 23 2009



Overview
Appetizer

QDots
Pspaces

A nastier case, numerical experiments, particle-hole as
well, two and three particles
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A nastier case, numerical experiments, particle-hole as
well, four and five particles
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A nastier case, numerical experiments, particle-hole as
well, two and three particles
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Conclusions

Precise convergence criterion for bare Coulomb interactions

An effective interaction improves considerably the convergence, and a much
small set of single-particle states is necessary. However, not easy to find precise
convergence criterion.

Coupled-cluster calculations for Coulomb problems should exhibit the same
pattern. What about nuclear forces? EFT-many-body strategy?

When strong particle-hole correlations are present one may have problems in
defining a proper model space. Level crossings and intruder states (Island of
inversion problems in nuclear physics)

We cannot define a priori what is a good model space and many-body
interactions beyond two-body may cause problems.

How can we link such problems with EFT?

INT Workshop INT April 23 2009


	Outline
	Main Talk
	Motivation and Overview
	Warming up, mathematical intermezzo
	Applications to quantum dots
	Problems with intruder states


