Nuclear matter and pairing in finite nuclei from low-momentum interactions

Kai Hebeler (TRIUMF)

Effective Field Theories and the Many-Body Problem

INT, Seattle, April 9, 2009

- I. Importance of nuclear matter results
- 2. Chiral 3N interactions as density-dependent two-body interactions
- 3. Results for neutron matter from chiral low-momentum interactions
- 4. Effective-mass approximations in DFT for calculations of pairing gaps
- 5. Conclusions and outlook

Outline

I. Importance of nuclear matter results

- 2. Chiral 3N interactions as density-dependent two-body interactions
- 3. Results for neutron matter from chiral low-momentum interactions
- 4. Effective-mass approximations in DFT for calculations of pairing gaps
- 5. Conclusions and outlook

Importance of nuclear matter results

- for the extremes of astrophysics: neutron stars, supernovae, neutrino interactions with nuclear matter
- constraining energy-density functionals, next-generation Skyrme functionals
- my focus: development of reliable and efficient methods to include 3N forces in microscopic many-body calculations of nuclear matter and finite nuclei.

Energy-density functionals for finite nuclei

Pairing gaps in semi-magic nuclei

Energy-density functionals for finite nuclei

Energy-density functionals for finite nuclei

Pairing gaps in semi-magic nuclei

Density Matrix expansions for low-momentum interactions

Universal nuclear energy density functional

Outline

- I. Importance of nuclear matter results
- 2. Chiral 3N interactions as density-dependent two-body interactions
- 3. Results for neutron matter from chiral low-momentum interactions
- 4. Effective-mass approximations in DFT for calculations of pairing gaps
- 5. Conclusions and outlook

Chiral EFT 3N interactions

3N interactions crucial for saturation of nuclear matter and correct LS splitting in nuclei

use in the following 3N force to N^2LO :

van Kolck (1994), Epelbaum et al. (2002)

large uncertainties at present:
$$c_1 = -0.9^{+0.2}_{-0.5}$$
, $c_3 = -4.7^{+1.5}_{-1.0}$, $c_4 = 3.5^{+0.5}_{-0.2}$
Meissner et al., Machleidt

significant reduction of size of couplings in N³LO

3N interactions perturbative for $\Lambda \lesssim 2\,{
m fm}^{-1}\,$ Nogga, Bogner, Schwenk (2004)

Chiral 3N interaction as densitydependent two-body interaction

antisymmetrized 3N interaction (at N²LO) in neutron matter:

$$V^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \sum_{i \neq j \neq k} A_{ijk} \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{q}_i)(\boldsymbol{\sigma}_j \cdot \mathbf{q}_j)}{(\mathbf{q}_i^2 + m_\pi^2)(\mathbf{q}_j^2 + m_\pi^2)} \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} + \frac{2c_3}{f_\pi^2} \mathbf{q}_i \cdot \mathbf{q}_j \right]$$

 c_4 , c_D and c_E terms vanish in neutron matter

Chiral 3N interaction as densitydependent two-body interaction

antisymmetrized 3N interaction (at N²LO) in neutron matter:

$$V^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \sum_{i \neq j \neq k} A_{ijk} \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{q}_i)(\boldsymbol{\sigma}_j \cdot \mathbf{q}_j)}{(\mathbf{q}_i^2 + m_\pi^2)(\mathbf{q}_j^2 + m_\pi^2)} \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} + \frac{2c_3}{f_\pi^2} \mathbf{q}_i \cdot \mathbf{q}_j \right]$$

 c_4 , c_D and c_E terms vanish in neutron matter

Basic idea: One particle only feels the average density $\overline{V}^{3\mathrm{N}} = \sum_{\mathbf{q},\sigma} V^{3\mathrm{N}} n(k_{\mathrm{F}} - q)$

Chiral 3N interaction as densitydependent two-body interaction

antisymmetrized 3N interaction (at N^2LO) in neutron matter:

$$V^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \sum_{i \neq j \neq k} A_{ijk} \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{q}_i)(\boldsymbol{\sigma}_j \cdot \mathbf{q}_j)}{(\mathbf{q}_i^2 + m_\pi^2)(\mathbf{q}_j^2 + m_\pi^2)} \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} + \frac{2c_3}{f_\pi^2} \mathbf{q}_i \cdot \mathbf{q}_j \right]$$

 c_4 , c_D and c_E terms vanish in neutron matter

Calculation of \overline{V}^{3N} in SNM in progress. Here all 3N diagrams are contributing.

Operator form of $\overline{V}^{\rm 3N}$

general momentum dependence : $\overline{V}^{3N} = \overline{V}^{3N}(\mathbf{k}, \mathbf{k}', \mathbf{P})$

P-dependence only weak, evaluate for $\mathbf{P} = 0$:

$$\overline{V}_{P=0}^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} A(\mathbf{k}, \mathbf{k}') + \frac{2c_3}{f_\pi^2} B(\mathbf{k}, \mathbf{k}') \right]$$

Operator form of $\overline{V}^{\rm 3N}$

general momentum dependence : $\overline{V}^{3N} = \overline{V}^{3N}(\mathbf{k}, \mathbf{k}', \mathbf{P})$

P-dependence only weak, evaluate for $\mathbf{P} = 0$:

$$\overline{V}_{P=0}^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} A(\mathbf{k}, \mathbf{k}') + \frac{2c_3}{f_\pi^2} B(\mathbf{k}, \mathbf{k}') \right]$$

$$\begin{split} B(\mathbf{k},\mathbf{k}') &= \\ & -\frac{1}{3} \Big\{ \frac{\rho(k,k')(\mathbf{k}+\mathbf{k}')^4}{((\mathbf{k}+\mathbf{k}')^2+m_\pi^2)^2} + 2B_1^s(\mathbf{k},\mathbf{k}') - B_1^s(\mathbf{k},-\mathbf{k}') - (B_2^s(\mathbf{k},\mathbf{k}')+B_2^s(\mathbf{k}',\mathbf{k})) \Big\} \\ & +\frac{1}{3} (\boldsymbol{\sigma}\cdot\boldsymbol{\sigma}') \Big\{ \frac{2}{3} \frac{\rho(k,k')(\mathbf{k}-\mathbf{k}')^4}{((\mathbf{k}-\mathbf{k}')^2+m_\pi^2)^2} + \frac{1}{3} \frac{\rho(k,k')(\mathbf{k}+\mathbf{k}')^4}{((\mathbf{k}+\mathbf{k}')^2+m_\pi^2)^2} \\ & +B_1^s(\mathbf{k},-\mathbf{k}') - \frac{1}{3} \left[B_2^s(\mathbf{k},\mathbf{k}') + B_2^s(\mathbf{k}',\mathbf{k}) \right] - \frac{2}{3} \left[B_2^s(\mathbf{k},-\mathbf{k}') + B_2^s(\mathbf{k}',-\mathbf{k}) \right] \Big\} \\ & +\frac{2}{3} \left[\frac{\rho(k,k')(\mathbf{k}+\mathbf{k}')^2S_{12}(\mathbf{k}+\mathbf{k}')}{((\mathbf{k}+\mathbf{k}')^2+m_\pi^2)^2} - \frac{\rho(k,k')(\mathbf{k}-\mathbf{k}')^2S_{12}(\mathbf{k}-\mathbf{k}')}{((\mathbf{k}-\mathbf{k}')^2+m_\pi^2)^2} \right] \\ & +\frac{2}{3} \sigma^a \sigma'^b \left[B_{ab}^t(\mathbf{k},\mathbf{k}') - B_{ab}^t(\mathbf{k},-\mathbf{k}') + B_{ab}^t(\mathbf{k}',\mathbf{k}) - B_{ab}^t(\mathbf{k}',-\mathbf{k}) \right] \\ & +\frac{1}{3} i \left(\sigma^a + \sigma'^a \right) \left[B_a^v(\mathbf{k},\mathbf{k}') - B_a^v(\mathbf{k},-\mathbf{k}') \right] \end{split}$$

Operator form of $\overline{V}^{\rm 3N}$

general momentum dependence : $\overline{V}^{3N} = \overline{V}^{3N}(\mathbf{k},\mathbf{k}',\mathbf{P})$

P-dependence only weak, evaluate for $\mathbf{P} = 0$:

$$\overline{V}_{P=0}^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} A(\mathbf{k}, \mathbf{k}') + \frac{2c_3}{f_\pi^2} B(\mathbf{k}, \mathbf{k}') \right]$$

 $B_1^s({\bf k},{\bf k}')$

$$\begin{cases} B_1^s(\mathbf{k}_1, \mathbf{k}_2) &= \int \frac{d^3 \mathbf{q}}{(2\pi)^3} n(q) f_R(\Lambda_{3N}, q, k_1) f_R(\Lambda_{3N}, q, k_2) \\ &\cdot \frac{((\mathbf{k}_1 + \mathbf{q}) \cdot (\mathbf{k}_2 + \mathbf{q}))^2}{((\mathbf{k}_1 + \mathbf{q})^2 + m_\pi^2)((\mathbf{k}_2 + \mathbf{q})^2 + m_\pi^2)} \end{cases}$$

Operator form of \overline{V}^{3N}

general momentum dependence : $\overline{V}^{3N} = \overline{V}^{3N}(\mathbf{k}, \mathbf{k}', \mathbf{P})$

P-dependence only weak, evaluate for $\mathbf{P} = 0$:

$$\overline{V}_{P=0}^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} A(\mathbf{k}, \mathbf{k}') + \frac{2c_3}{f_\pi^2} B(\mathbf{k}, \mathbf{k}') \right]$$

 \overline{V}^{3N} provides additive corrections to the free-space NN interaction:

$$V = V^{\rm NN} + \overline{V}^{\rm 3N}$$

- neglect P-dependence in the following, set P=0
- in fixed-P approximation \overline{V}^{3N} matrix elements have the same form like genuine free-space NN matrix elements
- straightforward to incorporate in existing many-body schemes

Partial wave matrix elements $(\Lambda_{3N} = 2.0 \, \text{fm}^{-1})$

- non-trivial density dependence
- $\overline{V}^{3N}(k, k'; {}^{1}S_{0}) \sim k_{\rm F}^{4} \sim \rho^{4/3}$ for $k, k' \lesssim 1.0 \,{\rm fm}^{-1}$
- strong non-central components

- I. Importance of nuclear matter results
- 2. Chiral 3N interactions as density-dependent two-body interactions
- 3. Results for neutron matter from chiral low-momentum interactions
- 4. Effective-mass approximations in DFT for calculations of pairing gaps
- 5. Conclusions and outlook

Neutron matter results: EOS (first order), Test of fixed-P approximation

P-independent effective NN interaction is a very good approximation!

Neutron matter results: single-particle properties

- 3N effects very small at HF level
- enhancement of effective-mass at 2nd order due to e-mass
- slight suppression of effective-mass at 2nd order due to 3N force

Neutron matter results: EOS (second order)

Neutron matter results: EOS (second order)

- result practically cutoff independent at 2nd order
- self-energy effects small
- system seems perturbative for low-momentum interactions
- improvement of recent SNM calculation in progress (exact treatment of double exchange terms and self-consistent self-energy to 2nd order)

Neutron matter results: Uncertainties due to coupling constants

$$c_1 = -0.9^{+0.2}_{-0.5}, c_3 = -4.7^{+1.5}_{-1.0}, c_4 = 3.5^{+0.5}_{-0.2}$$

Energy very sensitive to c_3 variations

Compare uncertainty to nuclear phenomenology.

Neutron matter results: Symmetry energy

use:

$$E(\rho, \alpha = 1) = -a_V + \frac{K_0}{18\rho_0^2}(\rho - \rho_0)^2 + S_2(\rho)$$
$$S_2(\rho) = a_4 + \frac{p_0}{\rho_0^2}(\rho - \rho_0)$$

$K_0 [{ m MeV}]$	$c_1 \; [\mathrm{GeV}^{-1}]$	$c_3 [{\rm GeV^{-1}}]$	$a_4 [\mathrm{MeV}]$	$p_0 \; [{ m MeV} \; { m fm}^{-3}]$
190	-0.81	-3.2	32.9	2.8
190	-0.81	-5.7	36.5	3.9
240	-0.81	-3.2	32.9	2.9
240	-0.81	-5.7	36.5	4.0

given the experimental constraint $a_4 = 30 \pm 4 \,\mathrm{MeV}$ smaller absolute values of c_3 are preferred from our results

- only small overall effects in neutron matter
- below $k_{\rm F} \approx 0.6 \, {\rm fm}^{-1}$ 3N effects negligible
- expect larger effects in SNM due to larger matrix elements of $\overline{V}_{
 m SNM}^{
 m 3N}$

- I. Importance of nuclear matter results
- 2. Chiral 3N interactions as density-dependent two-body interactions
- 3. Results for neutron matter from chiral low-momentum interactions
- 4. Effective-mass approximations in DFT for calculations of pairing gaps
- 5. Conclusions and outlook

Consistency of effective-mass approximations in DFT calculations of pairing gaps using microscopic interactions

Basic problem:

Current EDFs parametrize normal self-energy effects in terms of momentum-independent effective-mass approximations

Approximation generally justified?

Inconsistencies in different EDF calculations of pairing gaps in finite nuclei. The only difference is the **resolution scale** of the pairing interaction. talk by T. Lesinski

Strategy:

Perform analogous calculations microscopically and consistently to first order in INM at different cutoffs.

Expansion scheme depends on the cutoff scale!

Consistency of effective-mass approximations in DFT calculations of pairing gaps using microscopic interactions

Basic problem:

Current EDFs parametrize normal self-energy effects in terms of momentum-independent effective-mass approximations

Approximation generally justified?

Inconsistencies in different EDF calculations of pairing gaps in finite nuclei. The only difference is the **resolution scale** of the pairing interaction. talk by T. Lesinski

Effective mass results

Probe sensitivity to two different self-energy approximation schemes

$$X_{pe}(k_{\rm F}) = X(p = k_{\rm F}) \qquad \qquad X_{av}(k_{\rm F}) = \frac{\int f(q,\Lambda) q^2 dq \, X(q,k_{\rm F}) \, \bar{u}_q \, \bar{v}_q}{\int f(q,\Lambda) \, q^2 dq \, \bar{u}_q \, \bar{v}_q}$$

Effective mass results

Probe sensitivity to two different self-energy approximation schemes

$$X_{pe}(k_{\rm F}) = X(p = k_{\rm F}) \qquad \qquad X_{av}(k_{\rm F}) = \frac{\int f(q,\Lambda) q^2 dq \, X(q,k_{\rm F}) \, \bar{u}_q \, \bar{v}_q}{\int f(q,\Lambda) \, q^2 dq \, \bar{u}_q \, \bar{v}_q}$$

Pairing gap results

- gaps for soft interactions insensitive to self-energy approximation schemes
- gaps for hard interactions depend strongly on the approximation scheme

Analysis of results $\Delta(k_{\rm F}) = \int dq Y(k_{\rm F}, q)$

gap is generated

• for low cutoffs from low momentum modes

• for hard cutoffs from high momentum modes due to coupling of low with high modes in $V_{\rm NN}$

Momentum-independent effective-mass approximations for the computation of pairing gaps only reliable for soft interactions. Large sensitivity for hard interactions!

Resulting pairing gaps in semimagic nuclei

more details tomorrow in talk by T. Lesinski!

- I. Importance of nuclear matter results
- 2. Chiral 3N interactions as density-dependent two-body interactions
- 3. Results for neutron matter from chiral low-momentum interactions
- 4. Effective-mass approximations in DFT for calculations of pairing gaps
- 5. Conclusions and outlook

Conclusions and Outlook

- self-consistent calculation of the EOS of PNM to second order from lowmomentum chiral NN (N3LO, Machleidt) and 3N (N2LO) interactions
- microscopic derivation of density dependent effective NN interaction from
 3N interaction in the zero P-approximation
- effective NN interaction efficient to use and accounts for 3N effects in many-body systems in a microscopic way
- self-energy approximations used in current EDFs for calculations of pairing gaps only reliable for low-momentum interactions

• extension of effective NN interaction to SNM and asymmetric NM • application of \overline{V}^{3N} to finite nuclei (CC, construction/constraints of nonempirical EDFs, density-matrix expansions, ...)