

Universality in QCD and Halo Nuclei

H.-W. Hammer

Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics Universität Bonn

Bethe Center for Theoretical Physics

Bundesministerium für Bildung und Forschung Deutsche Forschungsgemeinschaft

DFG

Collaborators: E. Braaten, D. Canham, D. Kang, L. Platter, R. Springer, ...

- Introduction
- Effective Field Theory for large scattering length
- Limit cycle ⇔ Efimov effect
- Halo nuclei
- Scattering properties of the X(3872)
- Summary and Outlook

Review article: Braaten, HWH, Phys. Rep. 428 (2006) 259

Epelbaum, HWH, Meißner, arXiv:0811.1338 (to appear in Rev. Mod. Phys.)

thanks to D. Phillips

Effective Field Theory

Separation of scales:

 $1/k = \lambda \gg R$

Limited resolution at low energy:

 \longrightarrow expand in powers of kR

Effective Field Theory

- Separation of scales:
 - $1/k = \lambda \gg R$
- Limited resolution at low energy:

 \longrightarrow expand in powers of kR

- Short-distance physics not resolved
 - \rightarrow capture in low-energy constants using renormalization
 - \rightarrow include long-range physics explicitly
- Systematic, model independent \rightarrow error estimates
- Classic example: light-light-scattering (Euler, Heisenberg, 1936) Simpler theory for $\omega \ll m_e$: $\mathcal{L}_{QED}[\psi, \overline{\psi}, A_{\mu}] \to \mathcal{L}_{eff}[A_{\mu}]$

EFT for Many-Body Systems

universität**bonn**

Few-body systems

 \longrightarrow fix interaction/low-energy constants for many-body calculations

Few-body physics in many-body systems

 \longrightarrow certain properties of many-body systems are determined by effective few-body physics

Limited resolution at low energy —> cluster structure

Example: halo nuclei

Large Scattering Length

- Strong interaction \implies large scattering length a
- Natural expansion parameter: $\ell/|a|$, $k\ell$,... ($\ell \sim r_e, l_{vdW}, ...$)

$$a > 0 \implies B_d \approx \frac{\hbar^2}{ma^2}$$

Atomic physics:

- ⁴He: $a \approx 104 \text{ Å} \gg r_e \approx 7 \text{ Å} \sim l_{vdW} \longrightarrow B_d \approx 100 \text{ neV}$
- Feshbach resonances → variable scattering length
- Nuclear physics: S-wave NN-scattering, halo nuclei,...
 - 1S_0 , 3S_1 : $|a| \gg r_e \sim 1/m_\pi \longrightarrow B_d \approx 2.2 \text{ MeV}$
 - ⁶He: 2n separation energy pprox 973 keV
- Particle physics:

Is the X(3872) a D^0D^{0*} molecule? $(J^{PC} = 1^{++})$ $m_X - (m_{D^0} + m_{D^{0*}}) = (-0.3 \pm 0.4) \text{ MeV}$ universitätbo

EFT for large \mathbf{a}

Effective Lagrangian (Kaplan, 1997; Bedaque, HWH, van Kolck, 1999)

$$\mathcal{L}_{d} = \psi^{\dagger} \left(i\partial_{t} + \frac{\vec{\nabla}^{2}}{2m} \right) \psi + \frac{g_{2}}{4} d^{\dagger}d - \frac{g_{2}}{4} (d^{\dagger}\psi^{2} + (\psi^{\dagger})^{2}d) - \frac{g_{3}}{36} d^{\dagger}d\psi^{\dagger}\psi + \dots$$

- 2- and 3-body interaction at leading order g_2 , g_3
- 2-body amplitude:
- 3-body equation:
 (S-waves)

Dimensionless coupling:

$$\frac{g_3}{2g_2^2} = \frac{H(\Lambda)}{\Lambda^2}$$

Renormalization

• $H(\Lambda)$ periodic: limit cycle

 $\Lambda \to \Lambda \, e^{n\pi/s_0} \approx \Lambda(22.7)^n$

(Wilson, 1971)

Discrete scale invariance

 $H(\Lambda) = \frac{\cos(s_0 \ln(\Lambda/\Lambda_*) + \arctan(s_0))}{\cos(s_0 \ln(\Lambda/\Lambda_*) - \arctan(s_0))}, \quad s_0 \approx 1.00624$

(Bedaque, HWH, van Kolck, 1999)

Observable Consequences?

 \implies Efimov effect, log-periodic dependence of observables on scattering length, limit cycle in deformed QCD?,...

Renormalization group approach (Barford, Birse, 2005)

Limit Cycle: Efimov Effect

Universal spectrum of three-body states

(V. Efimov, Phys. Lett. **33B** (1970) 563)

- Discrete scale invariance for fixed angle ξ
- Geometrical spectrum für $1/a \rightarrow 0$
- Manifestation in scattering observables

 \implies log-periodic dependence on a

 \implies indirect observation of the Efimov effect

Universal Correlations

- universitätbonn
- 2 Parameters at LO \Rightarrow 3-body observables are correlated
 - \implies Phillips line (Phillips, 1968)
- No four-body parameter at LO (Platter, HWH, Meißner, 2004)
 - \Rightarrow 4-body observables are correlated \implies Tjon line

- Variation of Λ_* parametrizes correlations
- Nuclear physics: Λ dependence of V_{low-k} (Bogner et al., 2004)

More on the 4-Body System

- Universal properties of 4-body system with large a
 - Bound state spectrum
 - Scattering Observables
- "Efimov-plot": 4-body bound state spectrum as function of 1/a

Signature in Cs loss data

von Stecher, D'Incao, Greene, arXiv:0810.3876

Ferlaino, Knoop, Berninger, Harm, D'Incao, Nägerl, Grimm, arXiv:0903.1276

universitätbo

Cold Atoms/BEC

• Velocity distribution (T = 400 nK, 200 nK, 50 nK)

(Source: http://jilawww.colorado.edu/bec/)

Variable scattering length via Feshbach resonances

Efimov States in ¹³³Cs

- universität**bonn**
- Experimental evidence for Efimov states in ¹³³Cs

(Kraemer et al. (Innsbruck), Nature 440 (2006) 315)

Identification via 3-body recombination rate

Treatment of finite temperature (Braaten, HWH, Kang, Platter, 2008)

Efimov States in ⁶Li

- Efimov effect for fermions $\Rightarrow \ge 3$ spin states
- Experimetal evidence for Efimov states in ⁶Li
 - Ottenstein et al. (Heidelberg), Phys. Rev. Lett. 101 (2008) 203202
 - Huckans et al. (Penn State), arXiv:0810.3288

(Braaten, HWH, Kang, Platter, arXiv:0811.3578)

- Systematic normalization error: 70-90%
- Prediction of resonance around $B \approx 1160 \text{ G}$
- Other approaches: Schmidt et al., arXiv:0812.1191; Naidon et al., arXiv:0811:4086

- Low separation energy of valence nucleons: $B_{valence} \ll B_{core}, E_{ex}$
 - \longrightarrow close to "nucleon drip line" \longrightarrow scale separation \longrightarrow EFT

- EFT for halo nuclei
 - $n\alpha$ -System ("⁵He") (Bedaque, Bertulani, HWH, van Kolck, 2002)
 - $\alpha \alpha$ -System ("⁸Be") (Higa, HWH, van Kolck, 2008)

3-Body Halos

- Examples: ${}^{14}\text{Be} \longleftrightarrow {}^{12}\text{Be} + n + n$, ${}^{20}\text{C} \longleftrightarrow {}^{18}\text{C} + n + n$
- "Effective" 3-body system: separation energy of valence nucleons small compared to binding energy of "core"
- Efimov effect in halo nuclei? \Rightarrow excited states

Canham, HWH, Eur. Phys. J. A **37** (2008) 367 (cf. Amorim, Frederico, Tomio, 1997)

$$F(k^2) = \int d^3 p \, d^3 q \, \Psi(\vec{p}, \vec{q}) \Psi(\vec{p}, \vec{q} - \vec{k}) = 1 - \frac{1}{6} k^2 \langle r^2 \rangle + \dots$$

Canham, HWH, Eur. Phys. J. A 37 (2008) 367

universität**bonn**

• Structure of halo nuclei \rightarrow matter form factors, radii

nucleus	B_{nnc} [keV]	B_{nc} [keV]	$\sqrt{\langle r_{nn}^2 angle}$ [fm]	$\sqrt{\langle r_{nc}^2 angle}$ [fm]
14 Be	1120	-200.0	4.1 ± 0.5	$\textbf{3.5}\pm\textbf{0.5}$
²⁰ C	3506	161	2.8 ± 0.3	$\textbf{2.4}\pm\textbf{0.3}$
	3506	530	3.0 ± 0.7	$\textbf{2.5}\pm\textbf{0.6}$
	3506	60	$\textbf{2.8}\pm\textbf{0.2}$	$\textbf{2.3}\pm\textbf{0.2}$
20 C*	65 ± 6.8	60	42 ± 3	38 ± 3

Canham, HWH, Eur. Phys. J. A 37 (2008) 367

(cf. Yamashita, Tomio, Frederico, 2004)

- Input: TUNL Nuclear data evaluation project, ...
- Experiment: ${}^{14}\text{Be} \to \sqrt{\langle r_{nn}^2 \rangle} = (5.4 \pm 1.0) \text{ fm}$ (Marques et al., Phys. Rev. C 64 (2001) 061301)

Exotic Charmonium Mesons

- Many new $c\bar{c}$ -mesons at B-factories: X, Y, Z
 - Challenge for understanding of QCD
 - Large scattering length physics important
- Example: X(3872) (Belle, CDF, BaBar, D0)

 $m_X = (3871.55 \pm 0.20) \text{ MeV} \qquad \Gamma < 2.3 \text{ MeV} \qquad J^{PC} = 1^{++}$

- No ordinary $c\bar{c}$ -state
 - Decays violate isospin
 - Measured mass depends on decay channel
- Nature of X(3872) ?
 - $D^0 D^{0*}$ -molecule? (cf. Tornquist, 1991)
 - Tetraquark
 - Charmonium Hybrid
 - ۰۰۰

universitätbo

Nature of X(3872)

- Nature of X(3872) not finally resolved
- Assumption: X(3872) is weakly-bound D^0 - D^{0*} -molecule

 $\implies |X\rangle = (|D^0 \bar{D}^{0*}\rangle + |\bar{D}^0 D^{0*}\rangle)/\sqrt{2}, \qquad B_X = (0.26 \pm 0.41) \text{ MeV}$

 \implies universal properties (cf. Braaten et al., 2003-2008, ...)

- Explains isospin violation in decays of X(3872) \Rightarrow superposition of I = 1 and I = 0
- Different masses due to different line shapes in decay channels
- Large scattering length determines interaction of X(3872) with D^0 and D^{0*}
 - \implies no Efimov effect \Rightarrow no X-D- and X-D*-molecule

 \implies parameter-free prediction of X-D-, X-D*-scattering

EFT with explicit pions: Fleming, Kusunoki, Mehen, van Kolck, 2007

Predictions for scattering amplitude/cross section

Canham, HWH, Springer, in preparation

- Rare events at B factories $(B \to X, \bar{B} \to D, D^*)$
- Final state interaction of D, D^* mesons in B_c -decays (e.g. LHCb)

universität**bonn**

Summary and Outlook

- EFT \Rightarrow (effective) few-body properties of many-body systems
- EFT for systems with large scattering length
 - Limit cycle in three-body system ⇔ Efimov effect
 - Universal correlations (Phillips, Tjon line,...)
- Applications in atomic, nuclear, and particle physics
 - cold atoms close to Feshbach resonance
 - halo nuclei
 - scattering properties of the X(3872)
- Future: more exciting applications
 - Halo nuclei: Structure, Reactions, ...
 - Three-nucleon system on the lattice: finite V, limit cycle, ...
 - Cold atoms: $N \ge 4$, 2d-systems, ...
 - ۰۰۰