Coupled-Cluster theory for Nuclei

Gaute Hagen¹ Collaborators : D. Dean, M. Hjorth-Jensen, T. Papenbrock and A. Schwenk

¹Oak Ridge National Laboratory, Physics Division, E-mail: hageng@ornl.gov

INT Workshop Effective Field Theories and the Many-Body Problem April 7, 2009

Outline

- 1 Status and goals in microscopic nuclear structure approaches
- 2 Coupled Cluster approach to nuclear structure
- Coupled-Cluster in J-coupled scheme
 CCSD and ACCSD(T) results with "bare" chiral interactions applied to ¹⁶⁻²⁸O, ⁴⁰Ca, ⁴⁸Ca and ⁴⁸Ni
- Coupled Cluster for open quantum systems
 CCSD calculation of Helium chain
 Charge radii and densities in ⁴He and ⁸He
- **5** Conclusion and Perspectives

Motivation

Coupled-Cluster approach to nuclear structure Spherical CCSD Open quantum systems Conclusion and Perspectives

Ab-initio approaches to light and medium mass nuclei

Effective Field Theories and the Many-Body Problem

Motivation

Coupled-Cluster approach to nuclear structure Spherical CCSD Open quantum systems Conclusion and Perspectives

N-N force from Chiral perturbation theory

Coupled Cluster Theory

Exponential Ansatz for
$$\Psi$$

 $|\Psi\rangle = e^{\hat{T}}|\Phi_0\rangle, \quad \hat{T} = \hat{T}_1 + \hat{T}_2 + \ldots + \hat{T}_A$
 $\hat{T}_1 = \sum_{i,a} t_i^a \hat{a}_a^{\dagger} \hat{a}_i, \quad \hat{T}_2 = \frac{1}{2} \sum_{i < j,a < b} t_{ij}^{ab} \hat{a}_a^{\dagger} \hat{a}_b^{\dagger} \hat{a}_j \hat{a}_i.$

Coupled Cluster Equations $\Delta E = \langle \Phi_0 | (H_N exp(T))_C | \Phi_0 \rangle$ $0 = \langle \Phi_p | (H_N exp(T))_C | \Phi_0 \rangle$ $\bar{H} = (H_N exp(T))_C$

- Coupled Cluster Theory is fully microscopic .
- Ocupled Cluster is size extensive. No unlinked diagrams enters, and error scales linearly with number of particles.
- 3 Low computational cost (CCSD scales as $n_o^2 n_u^4$).
- Gapable of systematic improvements.
- O Amenable to parallel computing.

Coupled Cluster in pictures

$$\left| \Psi \right\rangle = e^{T^{(a)}} \left| \Phi \right\rangle, \quad T^{(A)} = \sum_{k=1}^{m_A} T_k$$

$$T_1 = \sum_{\substack{i \\ a}} t_i^a \left| \Phi_i^a \right\rangle, \quad T_2 = \sum_{\substack{i > j \\ a > b}} t_{ij}^{ab} \left| \Phi_{ij}^a \right\rangle, \quad T_3 = \sum_{\substack{i > j > k \\ a > b > c}} t_{ijk}^{abc} \left| \Phi_{ijk}^{abc} \right\rangle$$

Size Matters! Role of size-extensivity

Goldstone's linked cluster theorem (1955)

Formal diagrammatic proof of Brueckner's conjecture that perturbation theory is size extensive. Only linked diagrams contribute to the energy of a (closed shell) nucleus. Unlinked diagrams do not scale with mass number A and the sum of all unlinked diagrams is zero.

- Size extensive theories: Many-body perturbation theory, Full Configuration Interaction (FCI) and Coupled-cluster theory
- Non-size extensive theories: Particle-hole truncated shell-model (CISD, CISDT...)

Comparison with Shell Model/Configuration Interaction

In Shell Model approach a linear excitation operator is used instead of an exponential. $\Psi=(1+B_1+B_2+...)\Phi_0$

- Any particle-hole truncation introduces unlinked diagrams, and it is therefore not size extensive.
- Dimension increases dramatically with number of active particles.

Effective Field Theories and the Many-Body Problem

Comparison with Shell Model/Configuration Interaction

Relationship between shell model and CC amplitudes

Coupled Cluster meets benchmarks of ³H and ⁴He!

CCSD(T) and Faddeev (-Yakubovsky) results for ³H and ⁴He using V_{low-k} from AV18 with $\Lambda = 1.9 {\rm fm}^{-1}$. CCSD(T) are within the errors (50 keV) of the Faddeev results! (G. Hagen et al., Phys. Rev. C 76, 044305 (2007))

Disagreement between CCM and IT-NCSM for ⁴⁰Ca

	Coupled-Cluster	IT-NCSM
¹⁶ O	-142.8 (CCSD)	
	-148.2 (CCSD(T))	-137.8 (4p-4h)
⁴⁰ Ca	-491.2 (CCSD)	-461.8 (3p-3h)
	-502.9 (CCSD(T))	-471.0 (4p-4h)

- Coupled-Cluster theory **size extensive**, energy scales correctly with size

- IT-NCSM is **not size extensive**. Can not judge the quality of a calculation of large system from the quality of a small (light) system.

Refs.:

- 1. Roth and Navratil PRL 99, 092501 (2007)
- 2. Hagen, Dean, Hjorth-Jensen, Papenbrock, Schwenk PRC 76, 044305 (2007)

3. Dean, Hagen, Hjorth-Jensen, Papenbrock, Schwenk PRL. 101, 119201 (2008) (comment)

4. Roth and Navratil, arxiv:0801.1484 (reply)

Spherical CCSD

Spherical Coupled-Cluster Approach

- **1** Possible for nuclei with closed sub-shell (or cs ± 1)
- 2 Relatively simple since similarity transformed Hamiltonian is two-body (CCSD) or three-body (CCSDT) at most
- **3** Enourmous computational reduction: $n_o + n_u \rightarrow (n_o + n_u)^{2/3}$ (naive estimate) CCSD(T) for ⁴⁰Ca and ⁴⁸Ca on a single CPU (now) CCSDT for ⁴⁸Ca on many CPUs (future) CCSD(T) for ¹⁰⁰Sn and ¹³²Sn with "bare" chiral interactions on many CPUs.

$$\begin{split} \hat{\mathcal{T}}_1 &= \sum_{j_i, j_a} t_{j_i}^{j^a} (a_{j_a}^{\dagger} \times \tilde{a}_{j_i})^{(0)} \,, \\ \hat{\mathcal{T}}_2 &= \sum_{j_j, j_a, j_b, J} t_{j_i, j_j}^{j_a, j_b} (J) (a_{j_a}^{\dagger} \times a_{j_b}^{\dagger})^{(J)} \cdot (\tilde{a}_{j_j} \times \tilde{a}_{j_i})^{(J)} \,. \end{split}$$

 j_i and j_a denote the spin of the occupied and unoccupied subshells.

Motivation Coupled-Cluster approach to nuclear structure Spherical CCSD

Open quantum systems Conclusion and Perspectives Spherical CCSD

¹⁶O, ⁴⁰Ca, ⁴⁸Ca and ⁴⁸Ni with "bare" chiral interactions

Medium-Mass Nuclei from Chiral Nucleon-Nucleon Interactions, G. Hagen et. al, Phys. Rev. Lett. 101, 092502 (2008) Motivation Coupled-Cluster approach to nuclear structure Spherical CCSD

Open quantum systems Conclusion and Perspectives Spherical CCSD

¹⁶O, ⁴⁰Ca, ⁴⁸Ca and ⁴⁸Ni ground state densities

Spherical CCSD

Charge and matter radii/Summary of results

- Mirror nuclei ⁴⁸Ca and ⁴⁸Ni differ by 1.38 MeV/A \rightarrow close to mass table predictions.
- 3NF and triples expected to yield $\sim 1 MeV/A$?
- Radii and and densities stronger model space dependence.

Nucleus	E/A	V/A	Q	$\Delta E/A$	$< r^2 >_{ch}^{1/2}$	$< r^2 >_{ch}^{1/2} (Exp)$
⁴ He	-5.99	-22.75	0.90	1.08		1.673(1)
¹⁶ O	-6.72	-30.69	1.08	1.25	2.72(5)	2.737(8)
⁴⁰ Ca	-7.72	-36.40	1.18	0.84	3.25(9)	3.4764
⁴⁸ Ca	-7.40	-37.97	1.21	1.27	3.24(9)	3.4738
⁴⁸ Ni	-6.02	-36.04	1.20	1.21	3.52(15)	?

Effective Field Theories and the Many-Body Problem

Motivation Coupled-Cluster approach to nuclear structure Spherical CCSD

Spherical CCSD Open quantum systems

Conclusion and Perspectives

Parallelization of coupled-cluster code

Computational challenges

- Inclusion of three-nucleon force
- Needs coding in current J-coupled scheme
- ۵ Generation of matrix elements
- Approximation possible ? ٥

Computational details

- 350 cpu hours per point (N=14)
- N = 14 requires 20Gb of memory
- Triples correction factor 20 more expensive
- MPI code with distributed matrix elements of interaction and intermediates.
- BLAS routines for (some) computationally expensive tasks
- Weak scaling expected

Spherical CCSD

Triples correction to ground state energies

- \sim 400keV/A missing for ^{16}O and $^{48}\text{Ca.}$
- Interesting isospin behavior of three-body force in Calcium isotopes.

CCSD ACCSD(T) Nucleus E/A $\Delta E/A$ E/A $\Delta E/A$ 160-6 72 1.25 -7.56 0 41 ⁴⁰Ca -7.72 0.84 -8.63 -0.08 ⁴⁸Ca -7.401.27-8.26 0.40

Effective Field Theories and the Many-Body Problem

Spherical CCSD

Dripline in Oxygen isotopes

- Evidence of new magic numbers in oxygen isotopes N = 14 and N = 16.
- Does ²⁸O exist ? ²⁸O is a doubly magic nucleus.
- All shell model calculation in the s d shell with realistic NN interactions predicts dripline beyond ²⁸O.
- Preliminary results from Otsuka et al. with inclusion of 3NF predicts ²⁸O unstable.
- Adding one more proton binds 6 more neutrons in fluorine isotopes.
- Can Ab-initio theory answer this question ?

Effective Field Theories and the Many-Body Problem Coupled-Cluster theory for Nuclei

Motivation Coupled-Cluster approach to nuclear structure Soherical CCSD

Spherical CCSD

Open quantum systems Conclusion and Perspectives

²²O, ²⁴O, and ²⁸O with N³LO (500 MeV)

	²² 0	²⁴ O	²⁸ O
E ₀	50.37	56.19	71.58
$\Delta E_{\rm CCSD}$	-175.79	-190.39	-207.67
$\Delta E_{\mathrm{CCSD}-\lambda\mathrm{T}}$	-19.22	-19.64	-19.85

Motivation Coupled-Cluster approach to nuclear structure Soherical CCSD

> Open quantum systems Conclusion and Perspectives

Spherical CCSD

²²O, ²⁴O, and ²⁸O with N³LO (600 MeV)

	²² 0	²⁴ 0	²⁸ O
E ₀	46.33	52.94	68.57
$\Delta E_{\rm CCSD}$	-156.51	-168.49	-182.42
$\Delta E_{\mathrm{CCSD}-\lambda\mathrm{T}}$	-20.71	-22.49	-22.86

Motivation Coupled-Cluster approach to nuclear structure Spherical CCSD

Open quantum systems Conclusion and Perspectives Spherical CCSD

Is ²⁸O stable ?

- Ab-initio Coupled-Cluster calculations can not rule out the existence of ²⁸O.
- Cutoff variation indicates that three-nucleon forces will play a crucial role in the determination of the neutron dripline.

Motivation Coupled-Cluster approach to nuclear structure Spherical CCSD

Open quantum systems Conclusion and Perspectives Spherical CCSD

Cutoff dependence and summary of results for Oxygen isotopes

N ³ LO (500 MeV)								
	CCSD		ACCSD(T)					
Nucleus	E/A	E/A $\Delta E/A$		$\Delta E/A$	$< r^2 >^{1/2}$			
¹⁶ 0	-6.72	1.25	-7.53	0.44				
²² 0	-5.72	1.64	-6.59	0.77	2.82			
²⁴ 0	-5.58	1.42	-6.42	0.58	2.89			
²⁸ 0	-4.86	?	-5.57	?	3.06			

N ³ LO (600 MeV)							
	CCSD ACCSD(T)						
Nucleus	E/A	$\Delta E/A$	E/A	$\Delta E/A$	$< r^2 >^{1/2}$		
¹⁶ 0	-6.06	1.92	-7.01	0.97			
²² O	-5.01	2.36	-5.95	1.45	2.93		
²⁴ 0	-4.84	2.18	-5.76	1.26	3.08		
²⁸ 0	-4.11	?	-4.90	?	3.30		

Effective Field Theories and the Many-Body Problem Coupled-Cluster theory for Nuclei

Spherical CCSD

$^{16}\text{O},~^{40}\text{Ca}$ with $V_{\rm UCOM}$

Motivation Coupled-Cluster approach to nuclear structure Spherical CCSD Open quantum systems

Conclusion and Perspectives

CCSD at the dripline Spherical CCSD

Ab-initio approach weakly bound and unbound nuclear states

CCSD at the dripline Spherical CCSD

Coupled Cluster for open quantum systems

Open Quantum System. Coupling with continuum taken into account. Closed Quantum System. No coupling with external continuum.

CCSD at the dripline Spherical CCSD

Berggren Single-particle basis

Complex energies requires a generalized completeness relation

$$\begin{split} |\Psi(\mathbf{r},t)|^2 &= |\Phi(\mathbf{r})|^2 \exp(-\frac{\Gamma}{\hbar}t), \ E = E_r - i\Gamma/2.\\ \mathbf{1} &= \sum_{n=b,d} |\psi_l(k_n)\rangle \langle \tilde{\psi}_l(k_n)| + \int_{L^+} dk \ k^2 |\psi_l(k)\rangle \langle \tilde{\psi}_l(k)|. \end{split}$$

Effective Field Theories and the Many-Body Problem

Motivation Coupled-Cluster approach to nuclear structure Spherical CCSD Open quantum systems

Conclusion and Perspectives

CCSD at the dripline Spherical CCSD

CCSD results for Helium chain using V_{low-k}

- $V_{\text{low}-k}$ from N3LO with $\Lambda = 1.9 \text{fm}^{-1}$.
- G. Hagen et al., Phys. Lett. B 656, 169 (2007). arXiv:nucl-th/0610072.
- First *ab-initio* calculation of decay widths of a whole isotopic chain.
- CCM unique method for dripline nuclei.
- ~ 1000 active orbitals
- Underbinding hints at missing 3NF

CCSD at the dripline Spherical CCSD

⁴He and ⁸He density distributions with V-srg

- Single-particle density in ⁴He and ⁸He.
- Gamow-Hartree-Fock basis has correct asymptotics.
- N³LO evolved down to $\lambda = 2.0 {\rm fm}^{-1}$ from similarity renormalization group theory.

Effective Field Theories and the Many-Body Problem Coupled-Cluster theory for Nuclei

CCSD at the dripline Spherical CCSD

Partial wave decomposition of ⁸He density

- N³LO evolved down to $\lambda = 2.0 {\rm fm}^{-1}$ from similarity renormalization group theory.
- Neutron skin in ⁸He is mainly built from s- and p-partial waves.
 Protons are mainly occupying s- partial waves.

CCSD at the dripline Spherical CCSD

Matter and charge radii of ⁸He using V-srg

- Λ dependence on ⁸He charge and matter radii indicates missing 3NF.
- Hamiltonians with two-body renormalized interactions (SRG/low-k) underestimates matter and charge radii.

Effective Field Theories and the Many-Body Problem

Conclusion

- Coupled Cluster meets few-body benchmark calculations.
- J-coupled CCSD and ACCSD(T) code has been derived and implemented. Coupled cluster approach to medium mass and driplines with bare interactions!
- Derived and implemented Equation of Motion CCM; calculation of density distributions and radii.
- CCM has been succesfully applied to the description of weakly bound and unbound helium isotopes.
- We have a tool to attack the structure and properties of dripline and medium mass nuclei !

Future perspectives

- Revisit Helium chain with 3NF. Spin-orbit splitting in He7 and He9.
- Matter and charge radii of ¹¹Li.
- Excited states and matter densities for dripline nuclei.
- Coupled Cluster approach to nuclear matter.
- Construction of effective interaction for shell-model calculations.
- Coupled-Cluster approach to nuclear reactions; CC-LIT and construction of optical potentials from folding procedures.
- We are developing a J-coupled CCSDT code.
- Ab-initio description of ⁵⁶Ni, ¹⁰⁰Sn and ²⁰⁸Pb within reach!

Coupled-Cluster method and the Center of Mass

- Our implementation of CCM does not preserve translational invariance.
- 2 In oscillator basis $\langle H_{CM} \rangle \sim 200$ keV for ⁴⁰Ca with vlowk and N = 8. In HF basis energies are expected to be much better than wave functions.

Compare two methods

Exact diagonalization (CI) of intrinsic Hamiltonian in all A-body states built from this s.p. basis → Variational but breaks translational invariance, result :*E_{CI}*

2 NCSM in $N\hbar\Omega$ space spanned by this basis → Variational keeps translational invariance, result E_{NCSM}

 $E_{\text{EXACT}} \leq E_{CI} \leq E_{NCSM}$

Elastic scattering of protons from ¹⁶O and ⁴⁰Ca

- g-folding optical potential model with realistic one-body density matrices from ab-initio Coupled-Cluster calculations. With K. Amos (To be submitted for publication in Phys. Rev. C)
- Elastic scattering of protons from ¹⁶O (left figure) and ⁴⁰Ca (right figure) at 65 MeV and 200 MeV.

Effective Field Theories and the Many-Body Problem

Spherical Coupled-Cluster Approach

Speedup of J-coupled CCSD code for 40 Ca as compared to m-scheme CCSD code.

Effective Field Theories and the Many-Body Problem Coupled-Cluster theory for Nuclei

How well does SR-CC describe open-shell nuclei?

Various Coupled Cluster approaches to the ^{3–6}He ground states.Single reference Coupled-Cluster methods works!

Method	³ He	⁴ He	⁵ He	⁶ He	$\langle J^2 angle$, ⁶ He
CCSD	-6.21	-26.19	-21.53	-20.96	0.61
CCSD(T)	-6.40	-26.27	-21.88	-22.60	0.65
CCSDT-1	-6.41	-28.27	-21.89	-22.85	0.29
CCSDT-2	-6.41	-28.26	-21.89	-22.78	0.25
CCSDT-3	-6.42	-26.27	-21.92	-22.90	0.26
CCSDT	-6.45	-26.28	-22.01	-22.52	0.04
FCI	-6.45	-26.3	-22.1	-22.7	0.00

Size Matters! Role of size-extensivity

Disconnected diagrams in truncated shell model/CI models (CISD, CISDT,...) leads to wrong scaling of energy with increasing number of particles.

Effective Field Theories and the Many-Body Problem

Different contributions to E_{CCSD} from 3NF in ⁴He

Three-body Hamiltonian in normal ordered form: (G. Hagen et al., PRC (76) 034302 (2007))

$$\hat{H}_{3} = \frac{1}{6} \sum_{ijk} \langle ijk||ijk\rangle + \frac{1}{2} \sum_{ijpq} \langle ijp||ijq\rangle \{\hat{a}_{p}^{\dagger}\hat{a}_{q}\} + \frac{1}{4} \sum_{ipqrs} \langle ipq||irs\rangle \{\hat{a}_{p}^{\dagger}\hat{a}_{q}^{\dagger}\hat{a}_{s}\hat{a}_{r}\} + \hat{h}_{3} ,$$

Really good news!

- The "density dependent" terms of 3NF are dominant!
- *ϵ* from residual 3NF
 costs 1 *ϵ* of work !
- "2-body" machinery can be used.
- Residual 3NF can be neglected!

Effective Field Theories and the Many-Body Problem

Properties of weakly bound nuclei

Convergence of ⁴He and ⁸He ground state energies with increasing number of partial waves in the basis.

Matter and charge radii of ⁴He using V-srg

- Λ dependence on ⁴He charge and matter radii indicates missing 3NF.
- Hamiltonians with two-body renormalized interactions (SRG/low-k) underestimates matter and charge radii.

Effective Field Theories and the Many-Body Problem Coupled-

Properties of weakly bound nuclei

$\hbar\omega$ dependence on ${}^{4}\text{He}$ and ${}^{8}\text{He}$ charge and matter radii.

Coupled Cluster Theory

Exponential Ansatz for
$$\Psi$$

 $|\Psi\rangle = e^{\hat{T}}|\Phi_0\rangle, \quad \hat{T} = \hat{T}_1 + \hat{T}_2 + \ldots + \hat{T}_A$
 $\hat{T}_1 = \sum_{i,a} t_i^a \hat{a}_a^{\dagger} \hat{a}_i, \quad \hat{T}_2 = \frac{1}{2} \sum_{i < j, a < b} t_{ij}^{ab} \hat{a}_a^{\dagger} \hat{a}_b^{\dagger} \hat{a}_j \hat{a}_i.$

Coupled Cluster Equations $\Delta E = \langle \Phi_0 | (H_N exp(T))_C | \Phi_0 \rangle$ $0 = \langle \Phi_p | (H_N exp(T))_C | \Phi_0 \rangle$ $\bar{H} = (H_N exp(T))_C$

Iterative CCSDT-n approximations to full CCSDT

Effective Field Theories and the Many-Body Problem Coupled-Cluster theory for Nuclei

Coupled Cluster Theory with 3NF

- We have derived and implemented Coupled Cluster equations for three-body Hamiltonians.
- Probe cutoff dependence of V_{low-k} with three nucleon force in light and medium heavy nuclei.
- Does 3NF provide the necessary repulsion/attraction needed to approach experimental mass values ?
- "Coupled-cluster theory for three-body Hamiltonians "
 G. Hagen et al., PRC (76) 034302 (2007).

N-N force from Chiral perturbation theory

Effective Field Theories and the Many-Body Problem

N-N phase shifts order by order in Chiral EFT

N-N phase shifts up to 300 MeV from NLO, N2LO and N3LO interactions. Red line from Entem&Machleidt, PRC 68, 041001 (2003), green lines from Epelbaum et. al.,

Eur. Phys. J. A15, 543 (2002).

3NF contribution to the \hat{T}_1 cluster equation

Energy and 1p-1h equation as examples. Factorization of diagrams

very useful!

1p-1h: 15 diagrams

2p-2h: 51 diagrams

Coupled Cluster Results for ⁴He with 3NF

- $V_{\text{low}-k}$ from AV18 with $\Lambda = 1.9 \text{fm}^{-1}$.
- SNF brings in repulsion as expected !
- CCSD and CCSD(T) with 3NF meets Faddeev-Yakubovsky benchmark ! $E_{CCSD(T)} \approx -28.24$ MeV. F-Y E = -28.20(5)MeV.

Effective Field Theories and the Many-Body Problem

Different contributions to E_{CCSD} from 3NF in ⁴He

Three-body Hamiltonian in normal ordered form:

$$\hat{H}_{3} = \frac{1}{6} \sum_{ijk} \langle ijk||ijk\rangle + \frac{1}{2} \sum_{ijpq} \langle ijp||ijq\rangle \{\hat{a}_{p}^{\dagger}\hat{a}_{q}\} + \frac{1}{4} \sum_{ipqrs} \langle ipq||irs\rangle \{\hat{a}_{p}^{\dagger}\hat{a}_{q}^{\dagger}\hat{a}_{s}\hat{a}_{r}\} + \hat{h}_{3} ,$$

Really good news!

- The "density dependent" terms of 3NF are dominant!
- ϵ from residual 3NF costs 1ϵ of work !
- "2-body" machinery can be used.
- Residual three-nucleon force can be neglected!

Effective Field Theories and the Many-Body Problem

CCM vs. exact calculations for open-shell nuclei.

Various Coupled Cluster approaches to the ^{3–6}He ground states.Single reference Coupled-Cluster methods works!

Method	³ He	⁴ He	⁵ He	⁶ He	$\langle J \rangle$, ⁶ He
CCSD	-6.21	-26.19	-21.53	-20.96	0.61
CCSD(T)	-6.40	-26.27	-21.88	-22.60	0.65
CCSDT-1	-6.41	-28.27	-21.89	-22.85	0.29
CCSDT-2	-6.41	-28.26	-21.89	-22.78	0.25
CCSDT-3	-6.42	-26.27	-21.92	-22.90	0.26
CCSDT	-6.45	-26.28	-22.01	-22.52	0.04
Exact	-6.45	-26.3	-22.1	-22.7	0.00

Convergence of CCSD results

Effective Field Theories and the Many-Body Problem

Convergence of CCSD energy with $2n + l \le 10$ truncation.

- ⁵He ground state energy starting with oscillator bases given for different $\hbar\omega$ values.
- Weak $\hbar\omega$ dependence, Results are well converged. $\Delta Re[E] \sim 0.1 \text{MeV}, \ \Delta Im[E] \sim 0.01 \text{MeV}$

Effective Field Theories and the Many-Body Problem

Convergence of CCSD energy.

CCSD convergence of ⁵He ground state energy for the s - d space (300 orbitals) using n = 20 discretization points for L^+ . The calculation where performed using two very different L^+ contours

Effective Field Theories and the Many-Body Problem

Coupled Cluster Results for Helium isotopes with TNF

CC results with V_{low-k} from N3LO NN-interaction. Rather limited model-space N = 3. Only contact term at NN2LO is retained in the three nucleon force. TNF fitted to reproduce binding energy of ⁴He.

